
C H A P T E R 4

Process Management

4.1 Introduction to Process Management

A process is a program in execution. A process must have system resources, such
as memory and the underlying CPU. The kernel supports the illusion of concur-
rent execution of multiple processes by scheduling system resources among the set
of processes that are ready to execute. On a multiprocessor, multiple processes
may really execute concurrently. This chapter describes the composition of a pro-
cess, the method that the system uses to switch between processes, and the
scheduling policy that it uses to promote sharing of the CPU. It also introduces
process creation and termination, and details the signal facilities and process-
debugging facilities.

Tw o months after the developers began the first implementation of the UNIX
operating system, there were two processes: one for each of the terminals of the
PDP-7. At age 10 months, and still on the PDP-7, UNIX had many processes, the
fork operation, and something like the wait system call. A process executed a new
program by reading in a new program on top of itself. The first PDP-11 system
(First Edition UNIX) saw the introduction of exec. All these systems allowed only
one process in memory at a time. When a PDP-11 with memory management (a
KS-11) was obtained, the system was changed to permit several processes to
remain in memory simultaneously, to reduce swapping. But this change did not
apply to multiprogramming because disk I/O was synchronous. This state of
affairs persisted into 1972 and the first PDP-11/45 system. True multiprogram-
ming was finally introduced when the system was rewritten in C. Disk I/O for one
process could then proceed while another process ran. The basic structure of pro-
cess management in UNIX has not changed since that time [Ritchie, 1988].

A process operates in either user mode or kernel mode. In user mode, a pro-
cess executes application code with the machine in a nonprivileged protection
mode. When a process requests services from the operating system with a system
call, it switches into the machine’s privileged protection mode via a protected
mechanism and then operates in kernel mode.

79

Front Page 79

80 Chapter 4 Process Management

The resources used by a process are similarly split into two parts. The
resources needed for execution in user mode are defined by the CPU architecture
and typically include the CPU’s general-purpose registers, the program counter,
the processor-status register, and the stack-related registers, as well as the contents
of the memory segments that constitute the FreeBSD notion of a program (the text,
data, shared library, and stack segments).

Kernel-mode resources include those required by the underlying hardware—
such as registers, program counter, and stack pointer—and also by the state
required for the FreeBSD kernel to provide system services for a process. This
kernel state includes parameters to the current system call, the current process’s
user identity, scheduling information, and so on. As described in Section 3.1, the
kernel state for each process is divided into several separate data structures, with
two primary structures: the process structure and the user structure.

The process structure contains information that must always remain resident
in main memory, along with references to other structures that remain resident,
whereas the user structure contains information that needs to be resident only
when the process is executing (although user structures of other processes also
may be resident). User structures are allocated dynamically through the memory-
management facilities. Historically, more than one-half of the process state was
stored in the user structure. In FreeBSD, the user structure is used for only a cou-
ple of structures that are referenced from the process structure. Process structures
are allocated dynamically as part of process creation and are freed as part of pro-
cess exit.

Multiprogramming

The FreeBSD system supports transparent multiprogramming: the illusion of con-
current execution of multiple processes or programs. It does so by context
switching—that is, by switching between the execution context of processes. A
mechanism is also provided for scheduling the execution of processes—that is,
for deciding which one to execute next. Facilities are provided for ensuring con-
sistent access to data structures that are shared among processes.

Context switching is a hardware-dependent operation whose implementation
is influenced by the underlying hardware facilities. Some architectures provide
machine instructions that save and restore the hardware-execution context of the
process, including the virtual-address space. On the others, the software must col-
lect the hardware state from various registers and save it, then load those registers
with the new hardware state. All architectures must save and restore the software
state used by the kernel.

Context switching is done frequently, so increasing the speed of a context
switch noticeably decreases time spent in the kernel and provides more time for
execution of user applications. Since most of the work of a context switch is
expended in saving and restoring the operating context of a process, reducing the
amount of the information required for that context is an effective way to produce
faster context switches.

Back Page 80

Scheduling

Fair scheduling of processes is an involved task that is dependent on the types of
executable programs and on the goals of the scheduling policy. Programs are
characterized according to the amount of computation and the amount of I/O that
they do. Scheduling policies typically attempt to balance resource utilization
against the time that it takes for a program to complete. In FreeBSD’s default
scheduler, which we shall refer to as the time-share scheduler, a process’s priority
is periodically recalculated based on various parameters, such as the amount of
CPU time it has used, the amount of memory resources it holds or requires for
execution, and so on. Some tasks require more precise control over process
execution called real-time scheduling, which must ensure that processes finish
computing their results by a specified deadline or in a particular order. The
FreeBSD kernel implements real-time scheduling with a separate queue from the
queue used for regular time-shared processes. A process with a real-time priority
is not subject to priority degradation and will only be preempted by another pro-
cess of equal or higher real-time priority. The FreeBSD kernel also implements a
queue of processes running at idle priority. A process with an idle priority will
run only when no other process in either the real-time or time-share-scheduled
queues is runnable and then only if its idle priority is equal or greater than all
other runnable idle priority processes.

The FreeBSD time-share scheduler uses a priority-based scheduling policy
that is biased to favor interactive programs, such as text editors, over long-running
batch-type jobs. Interactive programs tend to exhibit short bursts of computation
followed by periods of inactivity or I/O. The scheduling policy initially assigns to
each process a high execution priority and allows that process to execute for a
fixed time slice. Processes that execute for the duration of their slice have their
priority lowered, whereas processes that give up the CPU (usually because they do
I/O) are allowed to remain at their priority. Processes that are inactive hav e their
priority raised. Thus, jobs that use large amounts of CPU time sink rapidly to a
low priority, whereas interactive jobs that are mostly inactive remain at a high pri-
ority so that, when they are ready to run, they will preempt the long-running
lower-priority jobs. An interactive job, such as a text editor searching for a string,
may become compute-bound briefly and thus get a lower priority, but it will return
to a high priority when it is inactive again while the user thinks about the result.

Some tasks such as the compilation of a large application may be done in
many small steps in which each component is compiled in a separate process. No
individual step runs long enough to have its priority degraded, so the compilation
as a whole impacts the interactive programs. To detect and avoid this problem, the
scheduling priority of a child process is propagated back to its parent. When a
new child process is started, it begins running with its parents current priority.
Thus, as the program that coordinates the compilation (typically make) starts
many compilation steps, its priority is dropped because of the CPU-intensive
behavior of its children. Later compilation steps started by make begin running
and stay at a lower priority, which allows higher-priority interactive programs to
run in preference to them as desired.

Section 4.1 Introduction to Process Management 81

Front Page 81

82 Chapter 4 Process Management

The system also needs a scheduling policy to deal with problems that arise
from not having enough main memory to hold the execution contexts of all pro-
cesses that want to execute. The major goal of this scheduling policy is to mini-
mize thrashing—a phenomenon that occurs when memory is in such short supply
that more time is spent in the system handling page faults and scheduling pro-
cesses than in user mode executing application code.

The system must both detect and eliminate thrashing. It detects thrashing by
observing the amount of free memory. When the system has few free memory
pages and a high rate of new memory requests, it considers itself to be thrashing.
The system reduces thrashing by marking the least-recently run process as not
being allowed to run. This marking allows the pageout daemon to push all the
pages associated with the process to backing store. On most architectures, the ker-
nel also can push to backing store the user structure of the marked process. The
effect of these actions is to cause the process to be swapped out (see Section 5.12).
The memory freed by blocking the process can then be distributed to the remain-
ing processes, which usually can then proceed. If the thrashing continues, addi-
tional processes are selected for being blocked from running until enough memory
becomes available for the remaining processes to run effectively. Eventually,
enough processes complete and free their memory that blocked processes can
resume execution. However, even if there is not enough memory, the blocked pro-
cesses are allowed to resume execution after about 20 seconds. Usually, the
thrashing condition will return, requiring that some other process be selected for
being blocked (or that an administrative action be taken to reduce the load).

4.2 Process State

Every process in the system is assigned a unique identifier termed the process
identifier (PID). PIDs are the common mechanism used by applications and by the
kernel to reference processes. PIDs are used by applications when the latter are
sending a signal to a process and when receiving the exit status from a deceased
process. Two PIDs are of special importance to each process: the PID of the pro-
cess itself and the PID of the process’s parent process.

The layout of process state was completely reorganized in FreeBSD 5.2. The
goal was to support multiple threads that share an address space and other
resources. Threads have also been called lightweight processes in other systems.
A thread is the unit of execution of a process; it requires an address space and
other resources, but it can share many of those resources with other threads.
Threads sharing an address space and other resources are scheduled independently
and can all do system calls simultaneously. The reorganization of process state in
FreeBSD 5.2 was designed to support threads that can select the set of resources to
be shared, known as variable-weight processes [Aral et al., 1989].

The developers did the reorganization by moving many components of pro-
cess state from the process and user structures into separate substructures for each
type of state information, as shown in Figure 4.1. The process structure references

Back Page 82

thread list

scheduling info

thread

scheduling info

thread

credential

syscall vector

process group

VM space

file descriptors

resource limits

session

region list

process

entry

signal actions

statistics

user structure

file entries

thread information
machine-dependent

thread kernel stack

thread control block

thread information
machine-dependent

thread kernel stack

thread control block

Figure 4.1 Process state.

all the substructures directly or indirectly. The user structure remains primarily as
a historic artifact for the benefit of debuggers. The thread structure contains just
the information needed to run in the kernel: information about scheduling, a stack
to use when running in the kernel, a thread control block (TCB), and other
machine-dependent state. The TCB is defined by the machine architecture; it
includes the general-purpose registers, stack pointers, program counter, processor-
status longword, and memory-management registers.

In their lightest-weight form, FreeBSD threads share all the process resources
including the PID. When additional parallel computation is needed, a new thread
is created using the kse_create system call. All the scheduling and management
of the threads is handled by a user-level scheduler that is notified of thread transi-
tions via callbacks from the kernel. The user-level thread manager must also keep
track of the user-level stacks being used by each of the threads, since the entire
address space is shared including the area normally used for the stack. Since the
threads all share a single process structure, they hav e only a single PID and thus
show up as a single entry in the ps listing.

Many applications do not wish to share all of a process’s resources. The rfork
system call creates a new process entry that shares a selected set of resources from
its parent. Typically the signal actions, statistics, and the stack and data parts of
the address space are not shared. Unlike the lightweight thread created by

Section 4.2 Process State 83

Front Page 83

84 Chapter 4 Process Management

kse_create, the rfork system call associates a PID with each thread that shows up
in a ps listing and that can be manipulated in the same way as any other process in
the system. Processes created by fork, vfork, or rfork have just a single thread
structure associated with them.

The Process Structure

In addition to the references to the substructures, the process entry shown in
Figure 4.1 contains the following categories of information:

• Process identification: the PID and the parent PID

• Signal state: signals pending delivery, signal mask, and summary of signal
actions

• Tracing: process tracing information

• Timers: real-time timer and CPU-utilization counters

The process substructures shown in Figure 4.1 have the following categories of
information:

• Process-group identification: the process group and the session to which the pro-
cess belongs

• User credentials: the real, effective, and saved user and group identifiers

• Memory management: the structure that describes the allocation of virtual
address space used by the process; the VM space and its related structures are
described more fully in Chapter 5

• File descriptors: an array of pointers to file entries indexed by the process open
file descriptors; also, the open file flags and current directory

• System call vector: The mapping of system call numbers to actions; in addition
to current and deprecated native FreeBSD executable formats, the kernel can run
binaries compiled for several other UNIX variants such as Linux, OSF/1, and
System V Release 4 by providing alternative system call vectors when such
environments are requested

• Resource accounting: the rlimit structures that describe the utilization of the
many resources provided by the system (see Section 3.8)

• Statistics: statistics collected while the process is running that are reported when
it exits and are written to the accounting file; also, includes process timers and
profiling information if the latter is being collected

• Signal actions: the action to take when a signal is posted to a process

• Thread structure: The contents of the thread structure (described at the end of
this section)

Back Page 84

Table 4.1 Process states.

State Description

NEW undergoing process creation

NORMAL thread(s) will be RUNNABLE, SLEEPING, or STOPPED

ZOMBIE undergoing process termination

The state element of the process structure holds the current value of the process
state. The possible state values are shown in Table 4.1. When a process is first
created with a fork system call, it is initially marked as NEW. The state is changed
to NORMAL when enough resources are allocated to the process for the latter to
begin execution. From that point onward, a process’s state will fluctuate among
NORMAL (where its thread(s) will be either RUNNABLE—that is, preparing to be
or actually executing; SLEEPING—that is, waiting for an event; or STOPPED—that
is, stopped by a signal or the parent process) until the process terminates. A
deceased process is marked as ZOMBIE until it has freed its resources and commu-
nicated its termination status to its parent process.

The system organizes process structures into two lists. Process entries are on
the zombproc list if the process is in the ZOMBIE state; otherwise, they are on the
allproc list. The two queues share the same linkage pointers in the process struc-
ture, since the lists are mutually exclusive. Segregating the dead processes from
the live ones reduces the time spent both by the wait system call, which must scan
the zombies for potential candidates to return, and by the scheduler and other
functions that must scan all the potentially runnable processes.

Most threads, except the currently executing thread (or threads if the system
is running on a multiprocessor), are also in one of two queues: a run queue or
a sleep queue. Threads that are in a runnable state are placed on a run queue,
whereas threads that are blocked awaiting an event are located on a sleep queue.
Stopped threads awaiting an event are located on a sleep queue, or they are on nei-
ther type of queue. The run queues are organized according to thread-scheduling
priority and are described in Section 4.4. The sleep queues are organized in a data
structure that is hashed by event identifier. This organization optimizes finding the
sleeping threads that need to be awakened when a wakeup occurs for an event.
The sleep queues are described in Section 4.3.

The p_pptr pointer and related lists (p_children and p_sibling) are used in
locating related processes, as shown in Figure 4.2 (on page 86). When a process
spawns a child process, the child process is added to its parent’s p_children list.
The child process also keeps a backward link to its parent in its p_pptr pointer. If a
process has more than one child process active at a time, the children are linked
together through their p_sibling list entries. In Figure 4.2, process B is a direct
descendant of process A, whereas processes C, D, and E are descendants of pro-
cess B and are siblings of one another. Process B typically would be a shell that

Section 4.2 Process State 85

Front Page 85

86 Chapter 4 Process Management

p_pptr
process C process D process E

process B

process A

p_children

p_pptr

p_children p_pptr

p_siblingp_sibling

p_pptr

Figure 4.2 Process-group hierarchy.

started a pipeline (see Sections 2.4 and 2.6) including processes C, D, and E.
Process A probably would be the system-initialization process init (see Sections
3.1 and 14.6).

CPU time is made available to threads according to their scheduling class and
scheduling priority. As shown in Table 4.2, the FreeBSD kernel has two kernel
and three user scheduling classes. The kernel will always run the thread in the
highest-priority class. Any kernel-interrupt threads will run in preference to any-
thing else followed by any top-half-kernel threads. Any runnable real-time
threads are run in preference to runnable threads in the share and idle classes.
Runnable time-share threads are run in preference to runnable threads in the idle
class. The priorities of threads in the real-time and idle classes are set by the
applications using the rtprio system call and are never adjusted by the kernel. The
bottom-half interrupt priorities are set when the devices are configured and never
change. The top-half priorities are set based on predefined priorities for each ker-
nel subsystem and never change.

The priorities of threads running in the time-share class are adjusted by the
kernel based on resource usage and recent CPU utilization. A thread has two
scheduling priorities: one for scheduling user-mode execution and one for
scheduling kernel-mode execution. The kg_user_pri field associated with the
thread structure contains the user-mode scheduling priority, whereas the td_priority
field holds the current scheduling priority. The current priority may be different
from the user-mode priority when the thread is executing in the top half of the ker-
nel. Priorities range between 0 and 255, with a lower value interpreted as a higher
priority (see Table 4.2). User-mode priorities range from 128 to 255; priorities
less than 128 are used only when a thread is asleep—that is, awaiting an event in
the kernel—and immediately after such a thread is awakened. Threads in the ker-
nel are given a higher priority because they typically hold shared kernel resources
when they awaken. The system wants to run them as quickly as possible once
they get a resource so that they can use the resource and return it before another
thread requests it and gets blocked waiting for it.

When a thread goes to sleep in the kernel, it must specify whether it should be
aw akened and marked runnable if a signal is posted to it. In FreeBSD, a kernel
thread will be awakened by a signal only if it sets the PCATCH flag when it sleeps.
The msleep() interface also handles sleeps limited to a maximum time duration
and the processing of restartable system calls. The msleep() interface includes a

Back Page 86

Table 4.2 Thread-scheduling classes.

Range Class Thread type

0 – 63 ITHD Bottom-half kernel (interrupt)

64 – 127 KERN Top-half kernel

128 – 159 REALTIME Real-time user

160 – 223 TIMESHARE Time-sharing user

224 – 255 IDLE Idle user

reference to a string describing the event that the thread awaits; this string is
externally visible—for example, in ps. The decision of whether to use an inter-
ruptible sleep depends on how long the thread may be blocked. Because it is com-
plex to be prepared to handle signals in the midst of doing some other operation,
many sleep requests are not interruptible; that is, a thread will not be scheduled to
run until the event for which it is waiting occurs. For example, a thread waiting
for disk I/O will sleep with signals blocked.

For quickly occurring events, delaying to handle a signal until after they com-
plete is imperceptible. However, requests that may cause a thread to sleep for a
long period, such as waiting for terminal or network input, must be prepared to
have their sleep interrupted so that the posting of signals is not delayed indefi-
nitely. Threads that sleep interruptibly may abort their system call because of a
signal arriving before the event for which they are waiting has occurred. To avoid
holding a kernel resource permanently, these threads must check why they hav e
been awakened. If they were awakened because of a signal, they must release any
resources that they hold. They must then return the error passed back to them by
msleep(), which will be EINTR if the system call is to be aborted after the signal
or ERESTART if it is to be restarted. Occasionally, an event that is supposed to
occur quickly, such as a disk I/O, will get held up because of a hardware failure.
Because the thread is sleeping in the kernel with signals blocked, it will be imper-
vious to any attempts to send it a signal, even a signal that should cause it to exit
unconditionally. The only solution to this problem is to change sleep()s on hard-
ware events that may hang to be interruptible.

In the remainder of this book, we shall always use sleep() when referring to
the routine that puts a thread to sleep, even when the msleep() interface is the one
that is being used.

The Thread Structure

The thread structure shown in Figure 4.1 contains the following categories of
information:

• Scheduling: the thread priority, user-mode scheduling priority, recent CPU uti-
lization, and amount of time spent sleeping

Section 4.2 Process State 87

Front Page 87

88 Chapter 4 Process Management

• Thread state: the run state of a thread (runnable, sleeping); additional status
flags; if the thread is sleeping, the wait channel, the identity of the event for
which the thread is waiting (see Section 4.3), and a pointer to a string describing
the event

• Machine state: the machine-dependent thread information

• TCB: the user- and kernel-mode execution states

• Kernel stack: the per-thread execution stack for the kernel

Historically, the kernel stack was mapped to a fixed location in the virtual address
space. The reason for using a fixed mapping is that when a parent forks, its run-
time stack is copied for its child. If the kernel stack is mapped to a fixed address,
the child’s kernel stack is mapped to the same addresses as its parent kernel stack.
Thus, all its internal references, such as frame pointers and stack-variable refer-
ences, work as expected.

On modern architectures with virtual address caches, mapping the user struc-
ture to a fixed address is slow and inconvenient. FreeBSD 5.2 removes this con-
straint by eliminating all but the top call frame from the child’s stack after copying
it from its parent so that it returns directly to user mode, thus avoiding stack copy-
ing and relocation problems.

Every thread that might potentially run must have its stack resident in mem-
ory because one task of its stack is to handle page faults. If it were not resident, it
would page fault when the thread tried to run, and there would be no kernel stack
available to service the page fault. Since a system may have many thousands of
threads, the kernel stacks must be kept small to avoid wasting too much physical
memory. In FreeBSD 5.2 on the PC, the kernel stack is limited to two pages of
memory. Implementors must be careful when writing code that executes in the
kernel to avoid using large local variables and deeply nested subroutine calls, to
avoid overflowing the run-time stack. As a safety precaution, some architectures
leave an inv alid page between the area for the run-time stack and the data struc-
tures that follow it. Thus, overflowing the kernel stack will cause a kernel-access
fault instead of disastrously overwriting other data structures. It would be possible
to simply kill the process that caused the fault and continue running. However, the
FreeBSD kernel panics on a kernel-access fault because such a fault shows a fun-
damental design error in the kernel. By panicking and creating a crash dump, the
error can usually be pinpointed and corrected.

4.3 Context Switching

The kernel switches among threads in an effort to share the CPU effectively; this
activity is called context switching. When a thread executes for the duration of
its time slice or when it blocks because it requires a resource that is currently

Back Page 88

unavailable, the kernel finds another thread to run and context switches to it.
The system can also interrupt the currently executing thread to run a thread trig-
gered by an asynchronous event, such as a device interrupt. Although both sce-
narios involve switching the execution context of the CPU, switching between
threads occurs synchronously with respect to the currently executing thread,
whereas servicing interrupts occurs asynchronously with respect to the current
thread. In addition, interprocess context switches are classified as voluntary or
involuntary. A voluntary context switch occurs when a thread blocks because it
requires a resource that is unavailable. An involuntary context switch takes
place when a thread executes for the duration of its time slice or when the sys-
tem identifies a higher-priority thread to run.

Each type of context switching is done through a different interface. Volun-
tary context switching is initiated with a call to the sleep() routine, whereas an
involuntary context switch is forced by direct invocation of the low-level context-
switching mechanism embodied in the mi_switch() and setrunnable() routines.
Asynchronous event handling is triggered by the underlying hardware and is effec-
tively transparent to the system. Our discussion will focus on how asynchronous
ev ent handling relates to synchronizing access to kernel data structures.

Thread State

Context switching between threads requires that both the kernel- and user-mode
context be changed. To simplify this change, the system ensures that all a thread’s
user-mode state is located in one data structure: the thread structure (most kernel
state is kept elsewhere). The following conventions apply to this localization:

• Kernel-mode hardware-execution state: Context switching can take place in only
kernel mode. The kernel’s hardware-execution state is defined by the contents of
the TCB that is located in the thread structure.

• User-mode hardware-execution state: When execution is in kernel mode, the user-
mode state of a thread (such as copies of the program counter, stack pointer, and
general registers) always resides on the kernel’s execution stack that is located in
the thread structure. The kernel ensures this location of user-mode state by requir-
ing that the system-call and trap handlers save the contents of the user-mode
execution context each time that the kernel is entered (see Section 3.1).

• The process structure: The process structure always remains resident in memory.

• Memory resources: Memory resources of a process are effectively described by
the contents of the memory-management registers located in the TCB and by the
values present in the process and thread structures. As long as the process
remains in memory, these values will remain valid, and context switches can be
done without the associated page tables being saved and restored. However,
these values need to be recalculated when the process returns to main memory
after being swapped to secondary storage.

Section 4.3 Context Switching 89

Front Page 89

90 Chapter 4 Process Management

Low-Level Context Switching

The localization of the context of a process in the latter’s thread structure permits
the kernel to do context switching simply by changing the notion of the current
thread structure and (if necessary) process structure, and restoring the context
described by the TCB within the thread structure (including the mapping of the
virtual address space). Whenever a context switch is required, a call to the
mi_switch() routine causes the highest-priority thread to run. The mi_switch()
routine first selects the appropriate thread from the scheduling queues, and then
resumes the selected thread by loading its process’s context from its TCB. Once
mi_switch() has loaded the execution state of the new thread, it must also check
the state of the new thread for a nonlocal return request (such as when a process
first starts execution after a fork; see Section 4.5).

Voluntary Context Switching

A voluntary context switch occurs whenever a thread must await the availability of
a resource or the arrival of an event. Voluntary context switches happen fre-
quently in normal system operation. For example, a thread typically blocks each
time that it requests data from an input device, such as a terminal or a disk. In
FreeBSD, voluntary context switches are initiated through the sleep() routine.
When a thread no longer needs the CPU, it inv okes sleep() with a scheduling pri-
ority and a wait channel. The priority specified in a sleep() call is the priority that
should be assigned to the thread when that thread is awakened. This priority does
not affect the user-level scheduling priority.

The wait channel is typically the address of some data structure that identifies
the resource or event for which the thread is waiting. For example, the address of
a disk buffer is used while the thread is waiting for the buffer to be filled. When
the buffer is filled, threads sleeping on that wait channel will be awakened. In
addition to the resource addresses that are used as wait channels, there are some
addresses that are used for special purposes:

• The global variable lbolt is awakened by the scheduler once per second. Threads
that want to wait for up to 1 second can sleep on this global variable. For example,
the terminal-output routines sleep on lbolt while waiting for output-queue space to
become available. Because queue space rarely runs out, it is easier simply to
check for queue space once per second during the brief periods of shortages than it
is to set up a notification mechanism such as that used for managing disk buffers.
Programmers can also use the lbolt wait channel as a crude watchdog timer when
doing debugging.

• When a parent process does a wait system call to collect the termination status of
its children, it must wait for one of those children to exit. Since it cannot know
which of its children will exit first, and since it can sleep on only a single wait
channel, there is a quandary on how to wait for the next of multiple events. The
solution is to have the parent sleep on its own process structure. When a child

Back Page 90

exits, it awakens its parent’s process-structure address rather than its own. Thus,
the parent doing the wait will awaken independent of which child process is the
first to exit. Once running, it must scan its list of children to determine which
one exited.

• When a thread does a sigpause system call, it does not want to run until it
receives a signal. Thus, it needs to do an interruptible sleep on a wait channel
that will never be awakened. By convention, the address of the user structure is
given as the wait channel.

Sleeping threads are organized in an array of queues (see Figure 4.3). The
sleep() and wakeup() routines hash wait channels to calculate an index into the
sleep queues. The sleep() routine takes the following steps in its operation:

1. Prevent interrupts that might cause thread-state transitions by acquiring the
sched_lock mutex (mutexes are explained in the next section).

2. Record the wait channel in the thread structure and hash the wait-channel
value to locate a sleep queue for the thread.

3. Set the thread’s priority to the priority that the thread will have when the
thread is awakened and set the SLEEPING flag.

4. Place the thread at the end of the sleep queue selected in step 2.

5. Call mi_switch() to request that a new thread be scheduled; the sched_lock
mutex is released as part of switching to the other thread.

Figure 4.3 Queueing structure for sleeping threads.

hash-table header
sleep queue

td_slpq.tqe_next

td_slpq.tqe_prev

•
•
•

thread thread

threadthread thread

thread

Section 4.3 Context Switching 91

Front Page 91

92 Chapter 4 Process Management

A sleeping thread is not selected to execute until it is removed from a sleep
queue and is marked runnable. This operation is done by the wakeup() routine,
which is called to signal that an event has occurred or that a resource is available.
Wakeup() is inv oked with a wait channel, and it awakens all threads sleeping on
that wait channel. All threads waiting for the resource are awakened to ensure that
none are inadvertently left sleeping. If only one thread were awakened, it might
not request the resource on which it was sleeping, and any other threads waiting
for that resource would be left sleeping forever. A thread that needs an empty disk
buffer in which to write data is an example of a thread that may not request the
resource on which it was sleeping. Such a thread can use any available buffer. If
none is available, it will try to create one by requesting that a dirty buffer be writ-
ten to disk and then waiting for the I/O to complete. When the I/O finishes, the
thread will awaken and will check for an empty buffer. If sev eral are available, it
may not use the one that it cleaned, leaving any other threads waiting for the
buffer that it cleaned sleeping forever.

In instances where a thread will always use a resource when it becomes avail-
able, wakeup_one() can be used instead of wakeup(). The wakeup_one() routine
wakes up only the first thread that it finds waiting for a resource. The assumption
is that when the awakened thread is done with the resource it will issue another
wakeup_one() to notify the next waiting thread that the resource is available. The
succession of wakeup_one() calls will continue until all threads waiting for the
resource have been awakened and had a chance to use it.

To avoid having excessive numbers of threads awakened, kernel programmers
try to use wait channels with fine enough granularity that unrelated uses will not
collide on the same resource. Thus, they put locks on each buffer in the buffer
cache rather than putting a single lock on the buffer cache as a whole. The prob-
lem of many threads awakening for a single resource is further mitigated on a
uniprocessor by the latter’s inherently single-threaded operation. Although many
threads will be put into the run queue at once, only one at a time can execute.
Since the uniprocessor kernel runs nonpreemptively, each thread will run its sys-
tem call to completion before the next one will get a chance to execute. Unless
the previous user of the resource blocked in the kernel while trying to use the
resource, each thread waiting for the resource will be able to get and use the
resource when it is next run.

A wakeup() operation processes entries on a sleep queue from front to back.
For each thread that needs to be awakened, wakeup() does the following:

1. Removes the thread from the sleep queue

2. Recomputes the user-mode scheduling priority if the thread has been sleeping
longer than one second

3. Makes the thread runnable if it is in a SLEEPING state and places the thread
on the run queue if its process is not swapped out of main memory. If the
process has been swapped out, the swapin process will be awakened to load it
back into memory (see Section 5.12); if the thread is in a STOPPED state, it is

Back Page 92

Table 4.3 Locking hierarchy.

Level Type Sleep Description

Lowest hardware no memory-interlocked test-and-set

spin mutex no spin lock

sleep mutex no spin for a while, then sleep

lock manager yes sleep lock

Highest witness yes partially ordered sleep locks

not put on a run queue until it is explicitly restarted by a user-level process,
either by a ptrace system call (see Section 4.9) or by a continue signal (see
Section 4.7)

If wakeup() moved any threads to the run queue and one of them had a scheduling
priority higher than that of the currently executing thread, it will also request that
the CPU be rescheduled as soon as possible.

Synchronization

Historically, BSD systems ran only on uniprocessor architectures. Once a process
began running in the top half of the kernel, it would run to completion or until it
needed to sleep waiting for a resource to become available. The only contention
for data structure access occurred at the points at which it slept or during an inter-
rupt that needed to update a shared data structure. Synchronization with other
processes was handled by ensuring that all shared data structures were consistent
before going to sleep. Synchronization with interrupts was handled by raising the
processor priority level to guard against interrupt activity while the shared data
structure was manipulated.

Simple multiprocessor support was added to FreeBSD 3.0. It worked by cre-
ating a giant lock that protected the kernel. When a process entered the kernel it
would have to acquire the giant lock before it could proceed. Thus, at most one
processor could run in the kernel at a time. All the other processors could run
only processes executing in user mode.

Symmetric multiprocessing (SMP) first appeared in FreeBSD 5.0 and required
the addition of new synchronization schemes to eliminate the uniprocessor
assumptions implicit in the FreeBSD 4.0 kernel [Schimmel, 1994]. Some subsys-
tems in the FreeBSD 5.2 kernel have not yet been converted to symmetric multi-
processing and are still protected by the giant lock. However, most of the heavily
used parts of the kernel have been moved out from under the giant lock, including
much of the virtual memory system, the networking stack, and the filesystem.

Table 4.3 shows the hierarchy of locking that is necessary to support sym-
metric multiprocessing. The column labeled sleep in Table 4.3 shows whether a

Section 4.3 Context Switching 93

Front Page 93

94 Chapter 4 Process Management

lock of that type may be held when a thread goes to sleep. At the lowest level,
the hardware must provide a memory interlocked test-and-set instruction. The
test-and-set instruction must allow two operations to be done on a main-memory
location—the reading of the existing value followed by the writing of a new
value—without any other processor being able to read or write that memory loca-
tion between the two memory operations. Some architectures support more com-
plex versions of the test-and-set instruction. For example, the PC provides a
memory interlocked compare-and-swap instruction.

Spin locks are built from the hardware test-and-set instruction. A memory
location is reserved for the lock with a value of zero showing that the lock is free
and a value of one showing that the lock is held. The test-and-set instruction tries
to acquire the lock. The lock value is tested and the lock unconditionally set to
one. If the tested value is zero, then the lock was successfully acquired and the
thread may proceed. If the value is one, then some other thread held the lock so
the thread must loop doing the test-and-set until the thread holding the lock (and
running on a different processor) stores a zero into the lock to show that it is done
with it. Spin locks are used for locks that are held only briefly—for example, to
protect a list while adding or removing an entry from it.

It is wasteful of CPU cycles to use spin locks for resources that will be held
for long periods of time. For example, a spin lock would be inappropriate for a
disk buffer that would need to be locked throughout the time that a disk I/O was
being done. Here a sleep lock should be used. When a thread trying to acquire a
sleep-type lock finds that the lock is held, it is put to sleep so that other threads
can run until the lock becomes available.

The time to acquire a lock can be variable—for example, a lock needed to
search and remove an item from a list. The list usually will be short, for which a
spin lock would be appropriate, but will occasionally grow long. Here a hybrid
lock is used; the lock spins for a while, but if unsuccessful after a specified num-
ber of attempts, it reverts to a sleep-type lock. Most architectures require 100 to
200 instructions to put a thread to sleep and then awaken it again. A spin lock that
can be acquired in less than this time is going to be more efficient than a sleep
lock. The hybrid lock is usually set to try for about half this time before reverting
to a sleep lock.

Spin locks are never appropriate on a uniprocessor, since the only way that a
resource held by another thread will ever be released will be when that thread gets
to run. Thus, spin locks are always converted to sleep locks when running on a
uniprocessor.

The highest-level locking prevents threads from deadlocking when locking
multiple resources. Suppose that two threads, A and B, require exclusive access to
two resources, R1 and R2, to do some operation as shown in Figure 4.4. If thread
A acquires R1 and thread B acquires R2, then a deadlock occurs when thread A
tries to acquire R2 and thread B tries to acquire R1. To avoid deadlock, FreeBSD
5.2 maintains a partial ordering on all the locks. The two partial-ordering rules are
as follows:

Back Page 94

2

R R R R
1’ 1’’ 2’ 2’’

Class 1 Class 2

Thread
BA

Thread

R
1

R

Figure 4.4 Partial ordering of resources.

1. A thread may acquire only one lock in each class.

2. A thread may acquire only a lock in a higher-numbered class than the highest-
numbered class for which it already holds a lock.

In Figure 4.4 thread A holds R1 and can request R2 as R1 and R2 are in different
classes and R2 is in a higher-numbered class than R1. Howev er, thread B must
release R2 before requesting R1, since R2 is in a higher class than R1. Thus, thread
A will be able to acquire R2 when it is released by thread B. After thread A com-
pletes and releases R1 and R2, thread B will be able to acquire both of those locks
and run to completion without deadlock.

Historically, the class members and ordering were poorly documented and
unenforced. Violations were discovered when threads would deadlock and a care-
ful analysis done to figure out what ordering had been violated. With an increas-
ing number of developers and a growing kernel, the ad hoc method of maintaining
the partial ordering of locks became untenable. A witness module was added to
the kernel to derive and enforce the partial ordering of the locks. The witness
module keeps track of the locks acquired and released by each thread. It also
keeps track of the order in which locks are acquired relative to each other. Each
time a lock is acquired, the witness module uses these two lists to verify that a
lock is not being acquired in the wrong order. If a lock order violation is detected,
then a message is output to the console detailing the locks involved and the loca-
tions in question. The witness module also verifies that no spin locks are held
when requesting a sleep lock or voluntarily going to sleep.

The witness module can be configured to either panic or drop into the kernel
debugger when an order violation occurs or some other witness check fails. When
running the debugger, the witness module can output the list of locks held by the
current thread to the console along with the filename and line number at which
each lock was last acquired. It can also dump the current order list to the console.
The code first displays the lock order tree for all the sleep locks. Then it displays

Section 4.3 Context Switching 95

Front Page 95

96 Chapter 4 Process Management

the lock order tree for all the spin locks. Finally, it displays a list of locks that
have not yet been acquired.

Mutex Synchronization

Mutexes are the primary method of thread synchronization. The major design
considerations for mutexes are

• Acquiring and releasing uncontested mutexes should be as cheap as possible.

• Mutexes must have the information and storage space to support priority propa-
gation.

• A thread must be able to recursively acquire a mutex if the mutex is initialized to
support recursion.

There are currently two flavors of mutexes: those that sleep and those that do
not. By default, mutexes will sleep when they are already held. As a machine-
dependent optimization they may spin for some amount of time before sleeping.
Most kernel code uses the default lock type; the default lock type allows the
thread to be disconnected from the CPU if it cannot get the lock. The machine-
dependent implementation may treat the lock as a short-term spin lock under
some circumstances. However, it is always safe to use these forms of locks in an
interrupt thread without fear of deadlock against an interrupted thread on the
same CPU. If a thread interrupted the thread that held a mutex and then tried to
acquire the mutex, it would be put to sleep until the thread holding the mutex ran
to completion and released the mutex.

Mutexes that do not sleep are called spin mutexes. A spin mutex will not
relinquish the CPU when it cannot immediately get the requested lock, but it will
loop, waiting for the mutex to be released by another CPU. This spinning can
result in deadlock if a thread interrupted the thread that held a mutex and then
tried to acquire the mutex. To protect an interrupt service routine from blocking
against itself all interrupts are blocked on the local processor while holding a spin
lock. Thus, the interrupt can run only on another processor during the period that
the mutex is held.

Spin locks are specialized locks that are intended to be held for short periods
of time; their primary purpose is to protect portions of the code that implement
default (i.e., sleep) locks. These mutexes should only be used to protect data
shared with any devices that require nonpreemptive interrupts and low-level
scheduling code. On most architectures both acquiring and releasing an uncon-
tested spin mutex is more expensive than the same operation on a nonspin mutex.
It is permissible to hold multiple spin mutexes. Here, it is a required that they be
released in the opposite order to that in which they were acquired. It is not per-
missible to go to sleep while holding a spin mutex.

The mtx_init() function must be used to initialize a mutex before it can be

Back Page 96

passed to mtx_lock(). The mtx_init() function specifies a type that the witness
code uses to classify a mutex when doing checks of lock ordering. It is not per-
missible to pass the same mutex to mtx_init() multiple times without intervening
calls to mtx_destroy().

The mtx_lock() function acquires a mutual exclusion lock for the currently
running kernel thread. If another kernel thread is holding the mutex, the caller
will sleep until the mutex is available. The mtx_lock_spin() function is similar to
the mtx_lock() function except that it will spin until the mutex becomes available.
Interrupts are disabled on the CPU holding the mutex during the spin and remain
disabled following the acquisition of the lock.

It is possible for the same thread to recursively acquire a mutex with no ill
effects if the MTX_RECURSE bit was passed to mtx_init() during the initialization
of the mutex. The witness module verifies that a thread does not recurse on a non-
recursive lock. A recursive lock is useful if a resource may be locked at two or
more levels in the kernel. By allowing a recursive lock, a lower layer need not
check if the resource has already been locked by a higher layer; it can simply lock
and release the resource as needed.

The mtx_trylock() function tries to acquire a mutual exclusion lock for the
currently running kernel thread. If the mutex cannot be immediately acquired,
mtx_trylock() will return 0; otherwise the mutex will be acquired and a nonzero
value will be returned.

The mtx_unlock() function releases a mutual exclusion lock; if a higher-priority
thread is waiting for the mutex, the releasing thread will be put to sleep to allow the
higher-priority thread to acquire the mutex and run. A mutex that allows recursive
locking maintains a reference count showing the number of times that it has been
locked. Each successful lock request must have a corresponding unlock request.
The mutex is not released until the final unlock has been done, causing the reference
count to drop to zero.

The mtx_unlock_spin() function releases a spin-type mutual exclusion lock;
interrupt state from before the lock was acquired is restored.

The mtx_destroy() function destroys a mutex so the data associated with it may
be freed or otherwise overwritten. Any mutex that is destroyed must previously
have been initialized with mtx_init(). It is permissible to have a single reference to
a mutex when it is destroyed. It is not permissible to hold the mutex recursively or
have another thread blocked on the mutex when it is destroyed. If these rules are
violated, the kernel will panic.

The giant lock that protects subsystems in FreeBSD 5.2 that have not yet been
converted to operate on a multiprocessor must be acquired before acquiring other
mutexes. Put another way: It is impossible to acquire giant nonrecursively while
holding another mutex. It is possible to acquire other mutexes while holding
giant, and it is possible to acquire giant recursively while holding other mutexes.

Sleeping while holding a mutex (except for giant) is almost never safe and
should be avoided. There are numerous assertions that will fail if this is
attempted.

Section 4.3 Context Switching 97

Front Page 97

98 Chapter 4 Process Management

Lock-Manager Locks

Interprocess synchronization to a resource typically is implemented by associating
it with a lock structure. The kernel has a lock manager that manipulates a lock.
The operations provided by the lock manager are

• Request shared: Get one of many possible shared locks. If a thread holding an
exclusive lock requests a shared lock, the exclusive lock will be downgraded to a
shared lock.

• Request exclusive: Stop further shared locks when they are cleared, grant a pend-
ing upgrade (see following) if it exists, and then grant an exclusive lock. Only
one exclusive lock may exist at a time, except that a thread holding an exclusive
lock may get additional exclusive locks if it explicitly sets the canrecurse flag in
the lock request or if the canrecurse flag was set when the lock was initialized.

• Request upgrade: The thread must hold a shared lock that it wants to have
upgraded to an exclusive lock. Other threads may get exclusive access to the
resource between the time that the upgrade is requested and the time that it is
granted.

• Request exclusive upgrade: The thread must hold a shared lock that it wants to
have upgraded to an exclusive lock. If the request succeeds, no other threads
will have gotten exclusive access to the resource between the time that the
upgrade is requested and the time that it is granted. However, if another thread
has already requested an upgrade, the request will fail.

• Request downgrade: The thread must hold an exclusive lock that it wants to have
downgraded to a shared lock. If the thread holds multiple (recursive) exclusive
locks, they will all be downgraded to shared locks.

• Request release: Release one instance of a lock.

• Request drain: Wait for all activity on the lock to end, and then mark it decom-
missioned. This feature is used before freeing a lock that is part of a piece of
memory that is about to be released.

Locks must be initialized before their first use by calling the lockinit() func-
tion. Parameters to the lockinit() function include the following:

• A top-half kernel priority at which the thread should run once it has acquired
the lock

• Flags such as canrecurse that allows the thread currently holding an exclusive
lock to get another exclusive lock rather than panicking with a ‘‘locking against
myself ’’ failure

• A string that describes the resource that the lock protects referred to as the wait
channel message

• An optional maximum time to wait for the lock to become available

Back Page 98

Other Synchronization

In addition to the general lock manager locks and mutexes, there are three other
types of locking available for use in the kernel. These other types of locks are less
heavily used, but they are included here for completeness.

Shared/exclusive locks are used to protect data that are read far more often
than they are written. Mutexes are inherently more efficient than shared/exclusive
locks. However, shared/exclusive locks are faster than lock-manager locks
because they lack many of the lock-manager lock features such as the ability to be
upgraded or downgraded.

Condition variables are used with mutexes to wait for conditions to occur.
Threads wait on condition variables by calling cv_wait(), cv_wait_sig() (wait
unless interrupted by a signal), cv_timedwait() (wait for a maximum time), or
cv_timedwait_sig() (wait unless interrupted by a signal or for a maximum time).
Threads unblock waiters by calling cv_signal() to unblock one waiter, or
cv_broadcast() to unblock all waiters. The cv_waitq_remove() function removes
a waiting thread from a condition variable wait queue if it is on one.

A thread must hold a mutex before calling cv_wait(), cv_wait_sig(),
cv_timedwait(), or cv_timedwait_sig(). When a thread waits on a condition, the
mutex is atomically released before the thread is blocked, and then atomically
reacquired before the function call returns. All waiters must use the same mutex
with a condition variable. A thread must hold the mutex while calling cv_signal()
or cv_broadcast().

Counting semaphores provide a mechanism for synchronizing access to a
pool of resources. Unlike mutexes, semaphores do not have the concept of an
owner, so they can also be useful in situations where one thread needs to acquire a
resource and another thread needs to release it. Each semaphore has an integer
value associated with it. Posting (incrementing) always succeeds, but waiting
(decrementing) can only successfully complete if the resulting value of the
semaphore is greater than or equal to zero. Semaphores are not used where
mutexes and condition variables will suffice. Semaphores are a more complex
synchronization mechanism than mutexes and condition variables, and are not as
efficient.

4.4 Thread Scheduling

Traditionally, the FreeBSD scheduler had an ill-defined set of hooks spread
through the kernel. In FreeBSD 5.0, these hooks were regularized and a well-
defined API was created so that different schedulers could be developed. Since
FreeBSD 5.0, the kernel has had two schedulers available:

• The historic 4.4BSD scheduler found in the file /sys/kern/sched_4bsd.c. This
scheduler is described at the beginning of this section.

• The new ULE scheduler first introduced in FreeBSD 5.0 and found in the file
/sys/kern/sched_ule.c [Roberson, 2003]. The name is not an acronym. If the

Section 4.4 Thread Scheduling 99

Front Page 99

100 Chapter 4 Process Management

underscore in its file name is removed, the rationale for its name becomes
apparent. This scheduler is described at the end of this section.

Because a busy system makes thousands of scheduling decisions per second,
the speed with which scheduling decisions are made is critical to the performance
of the system as a whole. Other UNIX systems have added a dynamic scheduler
switch that must be traversed for every scheduling decision. To avoid this over-
head, FreeBSD requires that the scheduler be selected at the time the kernel is
built. Thus, all calls into the scheduling code are resolved at compile time rather
than going through the overhead of an indirect function call for every scheduling
decision. By default, kernels up through FreeBSD 5.1 use the 4.4BSD scheduler.
Beginning with FreeBSD 5.2, the ULE scheduler is used by default.

The 4.4BSD Scheduler

All threads that are runnable are assigned a scheduling priority that determines in
which run queue they are placed. In selecting a new thread to run, the system
scans the run queues from highest to lowest priority and chooses the first thread on
the first nonempty queue. If multiple threads reside on a queue, the system runs
them round robin; that is, it runs them in the order that they are found on the
queue, with equal amounts of time allowed. If a thread blocks, it is not put back
onto any run queue. If a thread uses up the time quantum (or time slice) allowed
it, it is placed at the end of the queue from which it came, and the thread at the
front of the queue is selected to run.

The shorter the time quantum, the better the interactive response. However,
longer time quanta provide higher system throughput because the system will have
less overhead from doing context switches and processor caches will be flushed
less often. The time quantum used by FreeBSD is 0.1 second. This value was
empirically found to be the longest quantum that could be used without loss of the
desired response for interactive jobs such as editors. Perhaps surprisingly, the
time quantum has remained unchanged over the past 20 years. Although the time
quantum was originally selected on centralized timesharing systems with many
users, it is still correct for decentralized workstations today. While workstation
users expect a response time faster than that anticipated by the timesharing users
of 20 years ago, the shorter run queues on the typical workstation makes a shorter
quantum unnecessary.

Time-Share Thread Scheduling

The FreeBSD time-share-scheduling algorithm is based on multilevel feedback
queues. The system adjusts the priority of a thread dynamically to reflect resource
requirements (e.g., being blocked awaiting an event) and the amount of resources
consumed by the thread (e.g., CPU time). Threads are moved between run queues
based on changes in their scheduling priority (hence the word feedback in the name
multilevel feedback queue). When a thread other than the currently running thread
attains a higher priority (by having that priority either assigned or given when it is

Back Page 100

aw akened), the system switches to that thread immediately if the current thread is
in user mode. Otherwise, the system switches to the higher-priority thread as soon
as the current thread exits the kernel. The system tailors this short-term scheduling
algorithm to favor interactive jobs by raising the scheduling priority of threads that
are blocked waiting for I/O for 1 or more seconds and by lowering the priority of
threads that accumulate significant amounts of CPU time.

Short-term thread scheduling is broken up into two parts. The next section
describes when and how a thread’s scheduling priority is altered; the section after
that describes the management of the run queues and the interaction between
thread scheduling and context switching.

Calculations of Thread Priority

A thread’s scheduling priority is determined directly by two values associated with
the thread structure: kg_estcpu and kg_nice. The value of kg_estcpu provides an
estimate of the recent CPU utilization of the thread. The value of kg_nice is a
user-settable weighting factor that ranges numerically between −20 and 20. The
normal value for kg_nice is 0. Negative values increase a thread’s priority,
whereas positive values decrease its priority.

A thread’s user-mode scheduling priority is calculated after every four clock
ticks (typically 40 milliseconds) that it has been found running by this equation:

kg_user_pri = PRI_MIN_TIMESHARE +

kg_estcpu

4

+ 2 × kg_nice. (Eq. 4.1)

Values less than PRI_MIN_TIMESHARE (160) are set to PRI_MIN_TIMESHARE
(see Table 4.2); values greater than PRI_MAX_TIMESHARE (223) are set to
PRI_MAX_TIMESHARE. This calculation causes the priority to decrease linearly
based on recent CPU utilization. The user-controllable kg_nice parameter acts as a
limited weighting factor. Neg ative values retard the effect of heavy CPU utiliza-
tion by offsetting the additive term containing kg_estcpu. Otherwise, if we ignore
the second term, kg_nice simply shifts the priority by a constant factor.

The CPU utilization, kg_estcpu, is incremented each time that the system
clock ticks and the thread is found to be executing. In addition, kg_estcpu is
adjusted once per second via a digital decay filter. The decay causes about 90 per-
cent of the CPU usage accumulated in a 1-second interval to be forgotten over a
period of time that is dependent on the system load average. To be exact,
kg_estcpu is adjusted according to

kg_estcpu =
(2 × load)

(2 × load +1)
kg_estcpu + kg_nice, (Eq. 4.2)

where the load is a sampled average of the sum of the lengths of the run queue
and of the short-term sleep queue over the previous 1-minute interval of system
operation.

To understand the effect of the decay filter, we can consider the case where a
single compute-bound thread monopolizes the CPU. The thread’s CPU utilization

Section 4.4 Thread Scheduling 101

Front Page 101

102 Chapter 4 Process Management

will accumulate clock ticks at a rate dependent on the clock frequency. The load
av erage will be effectively 1, resulting in a decay of

kg_estcpu = 0. 66 × kg_estcpu + kg_nice.

If we assume that the thread accumulates Ti clock ticks over time interval i and
that kg_nice is zero, then the CPU utilization for each time interval will count into
the current value of kg_estcpu according to

kg_estcpu = 0. 66 × T0

kg_estcpu = 0. 66 × (T1 + 0. 66 × T0) = 0. 66 × T1 + 0. 44 × T0

kg_estcpu = 0. 66 × T2 + 0. 44 × T1 + 0. 30 × T0

kg_estcpu = 0. 66 × T3 + . . . + 0. 20 × T0

kg_estcpu = 0. 66 × T4 + . . . + 0. 13 × T0.

Thus, after five decay calculations, only 13 percent of T0 remains present in the
current CPU utilization value for the thread. Since the decay filter is applied once
per second, we can also say that about 90 percent of the CPU utilization is forgot-
ten after 5 seconds.

Threads that are runnable have their priority adjusted periodically as just
described. However, the system ignores threads blocked awaiting an event: These
threads cannot accumulate CPU usage, so an estimate of their filtered CPU usage
can be calculated in one step. This optimization can significantly reduce a sys-
tem’s scheduling overhead when many blocked threads are present. The system
recomputes a thread’s priority when that thread is awakened and has been sleeping
for longer than 1 second. The system maintains a value, kg_slptime, that is an
estimate of the time a thread has spent blocked waiting for an event. The value of
kg_slptime is set to 0 when a thread calls sleep() and is incremented once per sec-
ond while the thread remains in a SLEEPING or STOPPED state. When the thread
is awakened, the system computes the value of kg_estcpu according to

kg_estcpu =

(2 × load)

(2 × load +1)

kg_slptime

× kg_estcpu, (Eq. 4.3)

and then recalculates the scheduling priority using Eq. 4.1. This analysis ignores
the influence of kg_nice; also, the load used is the current load average rather than
the load average at the time that the thread blocked.

Thread-Priority Routines

The priority calculations used in the short-term scheduling algorithm are spread
out in several areas of the system. Tw o routines, schedcpu() and roundrobin(),
run periodically. Schedcpu() recomputes thread priorities once per second, using
Eq. 4.2, and updates the value of kg_slptime for threads blocked by a call to
sleep(). The roundrobin() routine runs 10 times per second and causes the system
to reschedule the threads in the highest-priority (nonempty) queue in a round-
robin fashion, which allows each thread a 100-millisecond time quantum.

Back Page 102

The CPU usage estimates are updated in the system clock-processing mod-
ule, hardclock(), which executes 100 times per second. Each time that a thread
accumulates four ticks in its CPU usage estimate, kg_estcpu, the system recalcu-
lates the priority of the thread. This recalculation uses Eq. 4.1 and is done by the
resetpriority() routine. The decision to recalculate after four ticks is related to
the management of the run queues described in the next section. In addition to
issuing the call from hardclock(), each time setrunnable() places a thread on a
run queue, it also calls resetpriority() to recompute the thread’s scheduling prior-
ity. This call from wakeup() to setrunnable() operates on a thread other than the
currently running thread. So setrunnable() inv okes updatepri() to recalculate the
CPU usage estimate according to Eq. 4.3 before calling resetpriority(). The rela-
tionship of these functions is shown in Figure 4.5.

Thread Run Queues and Context Switching

The kernel has a single set of run queues to manage all the thread scheduling
classes shown in Table 4.2. The scheduling-priority calculations described in the
previous section are used to order the set of timesharing threads into the priority
ranges between 160 and 223. The real-time threads and the idle threads priorities
are set by the applications themselves but are constrained by the kernel to be
within the ranges 128 to 159 and 224 to 255, respectively. The number of queues
used to hold the collection of all runnable threads in the system affects the cost of
managing the queues. If only a single (ordered) queue is maintained, then select-
ing the next runnable thread becomes simple but other operations become expen-
sive. Using 256 different queues can significantly increase the cost of identifying
the next thread to run. The system uses 64 run queues, selecting a run queue for a
thread by dividing the thread’s priority by 4. To sav e time, the threads on each
queue are not further sorted by their priorities.

The run queues contain all the runnable threads in main memory except the
currently running thread. Figure 4.6 (on page 104) shows how each queue is
organized as a doubly linked list of thread structures. The head of each run queue
is kept in an array. Associated with this array is a bit vector, rq_status, that is used

Figure 4.5 Procedural interface to priority calculation.

setpriority()

sched_clock()

wakeup()

updatepri()

setrunnable()statclock()

hardclock()

Section 4.4 Thread Scheduling 103

Front Page 103

104 Chapter 4 Process Management

td_runq.tqe_prev

td_runq.tqe_next

thread thread

threadthread thread

thread

priority
high

low
priority

•
•
•

run queues

Figure 4.6 Queueing structure for runnable threads.

in identifying the nonempty run queues. Tw o routines, runq_add() and
runq_remove (), are used to place a thread at the tail of a run queue, and to take a
thread off the head of a run queue. The heart of the scheduling algorithm is the
runq_choose() routine. The runq_choose() routine is responsible for selecting a
new thread to run; it operates as follows:

1. Ensure that our caller acquired the sched_lock.

2. Locate a nonempty run queue by finding the location of the first nonzero bit in
the rq_status bit vector. If rq_status is zero, there are no threads to run, so
select the idle loop thread.

3. Given a nonempty run queue, remove the first thread on the queue.

4. If this run queue is now empty as a result of removing the thread, reset the
appropriate bit in rq_status.

5. Return the selected thread.

The context-switch code is broken into two parts. The machine-independent code
resides in mi_switch(); the machine-dependent part resides in cpu_switch(). On
most architectures, cpu_switch() is coded in assembly language for efficiency.

Given the mi_switch() routine and the thread-priority calculations, the only
missing piece in the scheduling facility is how the system forces an involuntary
context switch. Remember that voluntary context switches occur when a thread
calls the sleep() routine. Sleep() can be invoked by only a runnable thread, so
sleep() needs only to place the thread on a sleep queue and to invoke mi_switch()
to schedule the next thread to run. Often an interrupt thread will not want to
sleep() itself but will be delivering data that will cause the kernel to want to run a
different thread than the one that was running before the interrupt. Thus, the

Back Page 104

kernel needs a mechanism to request that an involuntary context switch be done at
the conclusion of the interrupt.

This mechanism is handled by setting the currently running thread’s
TDF_NEEDRESCHED flag and then posting an asynchronous system trap (AST).
An AST is a trap that is delivered to a thread the next time that that thread is
preparing to return from an interrupt, a trap, or a system call. Some architec-
tures support ASTs directly in hardware; other systems emulate ASTs by check-
ing an AST flag at the end of every system call, trap, and interrupt. When the
hardware AST trap occurs or the AST flag is set, the mi_switch() routine is
called, instead of the current thread resuming execution. Rescheduling requests
are made by the swi_sched(), resetpriority(), setrunnable(), wakeup(),
roundrobin(), and schedcpu() routines.

With the advent of multiprocessor support FreeBSD can preempt threads
executing in kernel mode. However, such preemption is generally not done, so the
worst-case real-time response to events is defined by the longest path through the
top half of the kernel. Since the system guarantees no upper bounds on the dura-
tion of a system call, FreeBSD is decidedly not a real-time system. Attempts to
retrofit BSD with real-time thread scheduling have addressed this problem in dif-
ferent ways [Ferrin & Langridge, 1980; Sanderson et al., 1986].

The ULE Scheduler

The ULE scheduler was developed as part of the overhaul of FreeBSD to support
SMP. A new scheduler was undertaken for several reasons:

• To address the need for processor affinity in SMP systems

• To provide better support for symmetric multithreading (SMT)—processors with
multiple, on chip, CPU cores

• To improve the performance of the scheduling algorithm so that it is no longer
dependent on the number of threads in the system

The goal of a multiprocessor system is to apply the power of multiple CPUs to
a problem, or set of problems, to achieve a result in less time than it would run on
a single-processor system. If a system has the same number of runnable threads
as it does CPUs, then achieving this goal is easy. Each runnable thread gets a CPU
to itself and runs to completion. Typically, there are many runnable threads com-
peting for a few processors. One job of the scheduler is to ensure that the CPUs
are always busy and are not wasting their cycles. When a thread completes its
work, or is blocked waiting for resources, it is removed from the processor on
which it was running. While a thread is running on a processor, it brings its work-
ing set—the instructions it is executing and the data on which it is operating—into
the memory cache of the CPU. Migrating a thread has a cost. When a thread is
moved from one processor to another, its in-cache working set is lost and must be
removed from the processor on which it was running and then loaded into the new
CPU to which it has been migrated. The performance of an SMP system with a

Section 4.4 Thread Scheduling 105

Front Page 105

106 Chapter 4 Process Management

naive scheduler that does not take this cost into account can fall beneath that of a
single-processor system. The term processor affinity describes a scheduler that
only migrates threads when necessary to give an idle processor something to do.

Many microprocessors now provide support for symmetric multithreading
where the processor is built out of multiple CPU cores, each of which can execute
a thread. The CPU cores in an SMT processor share all the processor’s resources,
such as memory caches and access to main memory, so they are more tightly syn-
chronized than the processors in an SMP system. From a thread’s perspective, it
does not know that there are other threads running on the same processor because
the processor is handling them independently. The one piece of code in the sys-
tem that needs to be aware of the multiple cores is the scheduling algorithm. The
SMT case is a slightly different version of the processor affinity problem presented
by an SMP system. Each CPU core can be seen as a processor with its own set of
threads. In an SMP system composed of CPUs that support SMT, the scheduler
treats each core on a processor as a less powerful resource but one to which it is
cheaper to migrate threads.

The original FreeBSD scheduler maintains a global list of threads that it tra-
verses once per second to recalculate their priorities. The use of a single list for
all threads means that the performance of the scheduler is dependent on the num-
ber of tasks in the system, and as the number of tasks grow, more CPU time must
be spent in the scheduler maintaining the list. A design goal of the ULE scheduler
was to avoid the need to consider all the runnable threads in the system to make a
scheduling decision.

The ULE scheduler creates a set of three queues for each CPU in the system.
Having per-processor queues makes it possible to implement processor affinity in
an SMP system.

One queue is the idle queue, where all idle threads are stored. The other two
queues are designated current and next. Threads are picked to run, in priority
order, from the current queue until it is empty, at which point the current and next
queues are swapped and scheduling is started again. Threads in the idle queue are
run only when the other two queues are empty. Real-time and interrupt threads
are always inserted into the current queue so that they will have the least possible
scheduling latency. Interactive threads are also inserted into the current queue to
keep the interactive response of the system acceptable. A thread is considered to
be interactive if the ratio of its voluntary sleep time versus its run time is below a
certain threshold. The interactivity threshold is defined in the ULE code and is not
configurable. ULE uses two equations to compute the interactivity score of a
thread. For threads whose sleep time exceeds their run time Eq 4.4 is used:

interactivity score =
scaling factor

sleep

run

(Eq. 4.4)

When a thread’s run time exceeds its sleep time, Eq. 4.5 is used instead.

interactivity score =
scaling factor

run

sleep

+ scaling factor (Eq. 4.5)

Back Page 106

The scaling factor is the maximum interactivity score divided by two. Threads
that score below the interactivity threshold are considered to be interactive; all
others are noninteractive. The sched_interact_update() routine is called at several
points in a threads existence—for example when the thread is awakened by a
wakeup() call—to update the thread’s run time and sleep time. The sleep and run-
time values are only allowed to grow to a certain limit. When the sum of the run
time and sleep time pass the limit, they are reduced to bring them back into range.
An interactive thread whose sleep history was not remembered at all would not
remain interactive, resulting in a poor user experience. Remembering an interac-
tive thread’s sleep time for too long would allow the thread to more than its fair
share of the CPU. The amount of history that is kept and the interactivity thresh-
old are the two values that most strongly influence a user’s interactive experience
on the system.

Noninteractive threads are put into the next queue and are scheduled to run
when the queues are switched. Switching the queues guarantees that a thread gets
to run at least once every two queue switches regardless of priority, which ensures
fair sharing of the processor.

There are two mechanisms used to migrate threads among multiple proces-
sors. When a CPU has no work to do in any of its queues, it marks a bit in a bit-
mask shared by all processors that says that it is idle. Whenever an active CPU is
about to add work to its own run queue, it first checks to see if it has excess work
and if another processor in the system is idle. If an idle processor is found, then
the thread is migrated to the idle processor using an interprocessor interrupt (IPI).
Making a migration decision by inspecting a shared bitmask is much faster than
scanning the run queues of all the other processors. Seeking out idle processors
when adding a new task works well because it spreads the load when it is pre-
sented to the system.

The second form of migration, called push migration, is done by the system
on a periodic basis and more aggressively offloads work to other processors in the
system. Twice per second the sched_balance() routine picks the most-loaded and
least-loaded processors in the system and equalizes their run queues. The balanc-
ing is done only between two processors because it was thought that two processor
systems would be the most common and to prevent the balancing algorithm from
being too complex and adversely affecting the performance of the scheduler. Push
migration ensures fairness among the runnable threads. For example, with three
runnable threads on a two-processor system, it would be unfair for one thread to
get a processor to itself while the other two had to share the second processor. By
pushing a thread from the processor with two threads to the processor with one
thread, no single thread would get to run alone indefinitely.

Handling the SMT case is a derivative form of load balancing among full-
fledged CPUs and is handled by processor groups. Each CPU core in an SMT pro-
cessor is given its own kseq structure, and these structures are grouped under a
kseq group structure. An example of a single processor with two cores is shown
in Figure 4.7 (on page 108). In an SMP system with multiple SMT capable proces-
sors there would be one processor group per CPU. When the scheduler is deciding
to which processor or core to migrate a thread, it will try to pick a core on the

Section 4.4 Thread Scheduling 107

Front Page 107

108 Chapter 4 Process Management

struct kseq_group

ksq_idle

ksq_group

ksq_siblings

ksq_curr

ksq_next

ksq_timeshare[1]

ksq_timeshare[0]

ksq_group

ksq_siblings

ksq_curr

ksq_next

ksq_timeshare[1]

ksg_members

ksg_transferable
ksg_load

ksg_mask

ksg_idlemask

ksg_cpus

ksg_cpumask

ksq_idle

ksq_timeshare[0]

struct kseq

struct kseq

Figure 4.7 Processor with two cores.

same processor before picking one on another processor because that is the
lowest-cost migration path.

4.5 Process Creation

In FreeBSD, new processes are created with the fork family of system calls. The
fork system call creates a complete copy of the parent process. The rfork system
call creates a new process entry that shares a selected set of resources from its par-
ent rather than making copies of everything. The vfork system call differs from
fork in how the virtual-memory resources are treated; vfork also ensures that the
parent will not run until the child does either an exec or exit system call. The
vfork system call is described in Section 5.6.

The process created by a fork is termed a child process of the original parent
process. From a user’s point of view, the child process is an exact duplicate of the
parent process except for two values: the child PID and the parent PID. A call to
fork returns the child PID to the parent and zero to the child process. Thus, a pro-
gram can identify whether it is the parent or child process after a fork by checking
this return value.

A fork involves three main steps:

1. Allocating and initializing a new process structure for the child process

Back Page 108

2. Duplicating the context of the parent (including the thread structure and virtual-
memory resources) for the child process

3. Scheduling the child process to run

The second step is intimately related to the operation of the memory-management
facilities described in Chapter 5. Consequently, only those actions related to pro-
cess management will be described here.

The kernel begins by allocating memory for the new process and thread
entries (see Figure 4.1). These thread and process entries are initialized in three
steps: One part is copied from the parent’s corresponding structure, another part is
zeroed, and the rest is explicitly initialized. The zeroed fields include recent CPU
utilization, wait channel, swap and sleep time, timers, tracing, and pending-signal
information. The copied portions include all the privileges and limitations inher-
ited from the parent, including the following:

• The process group and session

• The signal state (ignored, caught, and blocked signal masks)

• The kg_nice scheduling parameter

• A reference to the parent’s credential

• A reference to the parent’s set of open files

• A reference to the parent’s limits

The explicitly set information includes

• Entry onto the list of all processes

• Entry onto the child list of the parent and the back pointer to the parent

• Entry onto the parent’s process-group list

• Entry onto the hash structure that allows the process to be looked up by its PID

• A pointer to the process’s statistics structure, allocated in its user structure

• A pointer to the process’s signal-actions structure, allocated in its user structure

• A new PID for the process

The new PID must be unique among all processes. Early versions of BSD verified
the uniqueness of a PID by performing a linear search of the process table. This
search became infeasible on large systems with many processes. FreeBSD main-
tains a range of unallocated PIDs between lastpid and pidchecked. It allocates a
new PID by incrementing and then using the value of lastpid. When the newly
selected PID reaches pidchecked, the system calculates a new range of unused
PIDs by making a single scan of all existing processes (not just the active ones are
scanned—zombie and swapped processes also are checked).

Section 4.5 Process Creation 109

Front Page 109

110 Chapter 4 Process Management

The final step is to copy the parent’s address space. To duplicate a process’s
image, the kernel invokes the memory-management facilities through a call to
vm_forkproc(). The vm_forkproc() routine is passed a pointer to the initialized
process structure for the child process and is expected to allocate all the resources
that the child will need to execute. The call to vm_forkproc() returns through a
different execution path directly into user mode in the child process and via the
normal execution path in the parent process.

Once the child process is fully built, its thread is made known to the scheduler
by being placed on the run queue. The alternate return path will set the return
value of fork system call in the child to 0. The normal execution return path in the
parent sets the return value of the fork system call to be the new PID.

4.6 Process Termination

Processes terminate either voluntarily through an exit system call or involuntarily
as the result of a signal. In either case, process termination causes a status code
to be returned to the parent of the terminating process (if the parent still exists).
This termination status is returned through the wait4 system call. The wait4 call
permits an application to request the status of both stopped and terminated pro-
cesses. The wait4 request can wait for any direct child of the parent, or it can
wait selectively for a single child process or for only its children in a particular
process group. Wait4 can also request statistics describing the resource utiliza-
tion of a terminated child process. Finally, the wait4 interface allows a process
to request status codes without blocking.

Within the kernel, a process terminates by calling the exit() routine. The exit()
routine first kills off any other threads associated with the process. The termination
of other threads is done as follows:

• Any thread entering the kernel from user space will thread_exit() when it traps
into the kernel.

• Any thread already in the kernel and attempting to sleep will return immediately
with EINTR or EAGAIN, which will force them to back out to user space, freeing
resources as they go. When the thread attempts to return to user space, it will
instead hit thread_exit().

The exit() routine then cleans up the process’s kernel-mode execution state by
doing the following:

• Canceling any pending timers

• Releasing virtual-memory resources

• Closing open descriptors

Back Page 110

• Handling stopped or traced child processes

With the kernel-mode state reset, the process is then removed from the list of
active processes—the allproc list—and is placed on the list of zombie processes
pointed to by zombproc. The process state is changed to show that no thread is
currently running. The exit() routine then does the following:

• Records the termination status in the p_xstat field of the process structure

• Bundles up a copy of the process’s accumulated resource usage (for accounting
purposes) and hangs this structure from the p_ru field of the process structure

• Notifies the deceased process’s parent

Finally, after the parent has been notified, the cpu_exit() routine frees any machine-
dependent process resources and arranges for a final context switch from the process.

The wait4 call works by searching a process’s descendant processes for pro-
cesses that have terminated. If a process in ZOMBIE state is found that matches
the wait criterion, the system will copy the termination status from the deceased
process. The process entry then is taken off the zombie list and is freed. Note that
resources used by children of a process are accumulated only as a result of a wait4
system call. When users are trying to analyze the behavior of a long-running pro-
gram, they would find it useful to be able to obtain this resource usage information
before the termination of a process. Although the information is available inside
the kernel and within the context of that program, there is no interface to request it
outside that context until process termination.

4.7 Signals

UNIX defines a set of signals for software and hardware conditions that may arise
during the normal execution of a program; these signals are listed in Table 4.4 (on
page 112). Signals may be delivered to a process through application-specified
signal handlers or may result in default actions, such as process termination, car-
ried out by the system. FreeBSD signals are designed to be software equivalents
of hardware interrupts or traps.

Each signal has an associated action that defines how it should be handled
when it is delivered to a process. If a process contains more than one thread, each
thread may specify whether it wishes to take action for each signal. Typically, one
thread elects to handle all the process-related signals such as interrupt, stop, and
continue. All the other threads in the process request that the process-related sig-
nals be masked out. Thread-specific signals such as segmentation fault, floating
point exception, and illegal instruction are handled by the thread that caused them.
Thus, all threads typically elect to receive these signals. The precise disposition of

Section 4.7 Signals 111

Front Page 111

112 Chapter 4 Process Management

Table 4.4 Signals defined in FreeBSD.

Name Default action Description

SIGHUP terminate process terminal line hangup

SIGINT terminate process interrupt program

SIGQUIT create core image quit program

SIGILL create core image illegal instruction

SIGTRAP create core image trace trap

SIGABRT create core image abort

SIGEMT create core image emulate instruction executed

SIGFPE create core image floating-point exception

SIGKILL terminate process kill program

SIGBUS create core image bus error

SIGSEGV create core image segmentation violation

SIGSYS create core image bad argument to system call

SIGPIPE terminate process write on a pipe with no one to read it

SIGALRM terminate process real-time timer expired

SIGTERM terminate process software termination signal

SIGURG discard signal urgent condition on I/O channel

SIGSTOP stop process stop signal not from terminal

SIGTSTP stop process stop signal from terminal

SIGCONT discard signal a stopped process is being continued

SIGCHLD discard signal notification to parent on child stop or exit

SIGTTIN stop process read on terminal by background process

SIGTTOU stop process write to terminal by background process

SIGIO discard signal I/O possible on a descriptor

SIGXCPU terminate process CPU time limit exceeded

SIGXFSZ terminate process file-size limit exceeded

SIGVTALRM terminate process virtual timer expired

SIGPROF terminate process profiling timer expired

SIGWINCH discard signal window size changed

SIGINFO discard signal information request

SIGUSR1 terminate process user-defined signal 1

SIGUSR2 terminate process user-defined signal 2

signals to threads is given in the later subsection on posting a signal. First, we
describe the possible actions that can be requested.

The disposition of signals is specified on a per-process basis. If a process has
not specified an action for a signal, it is given a default action (see Table 4.4) that
may be any one of the following:

Back Page 112

• Ignoring the signal

• Terminating all the threads in the process

• Terminating all the threads in the process after generating a core file that con-
tains the process’s execution state at the time the signal was delivered

• Stopping all the threads in the process

• Resuming the execution of all the threads in the process

An application program can use the sigaction system call to specify an action for a
signal, including these choices:

• Taking the default action

• Ignoring the signal

• Catching the signal with a handler

A signal handler is a user-mode routine that the system will invoke when the sig-
nal is received by the process. The handler is said to catch the signal. The two
signals SIGSTOP and SIGKILL cannot be masked, ignored, or caught; this restric-
tion ensures that a software mechanism exists for stopping and killing runaway
processes. It is not possible for a process to decide which signals would cause the
creation of a core file by default, but it is possible for a process to prevent the cre-
ation of such a file by ignoring, blocking, or catching the signal.

Signals are posted to a process by the system when it detects a hardware
ev ent, such as an illegal instruction, or a software event, such as a stop request
from the terminal. A signal may also be posted by another process through the kill
system call. A sending process may post signals to only those receiving processes
that have the same effective user identifier (unless the sender is the superuser). A
single exception to this rule is the continue signal, SIGCONT, which always can be
sent to any descendant of the sending process. The reason for this exception is to
allow users to restart a setuid program that they hav e stopped from their keyboard.

Like hardware interrupts, each thread in a process can mask the delivery of
signals. The execution state of each thread contains a set of signals currently
masked from delivery. If a signal posted to a thread is being masked, the signal
is recorded in the thread’s set of pending signals, but no action is taken until the
signal is unmasked. The sigprocmask system call modifies a set of masked sig-
nals for a thread. It can add to the set of masked signals, delete from the set of
masked signals, or replace the set of masked signals. Although the delivery of
the SIGCONT signal to the signal handler of a process may be masked, the action
of resuming that stopped process is not masked.

Tw o other signal-related system calls are sigsuspend and sigaltstack. The
sigsuspend call permits a thread to relinquish the processor until that thread
receives a signal. This facility is similar to the system’s sleep() routine. The
sigaltstack call allows a process to specify a run-time stack to use in signal

Section 4.7 Signals 113

Front Page 113

114 Chapter 4 Process Management

delivery. By default, the system will deliver signals to a process on the latter’s
normal run-time stack. In some applications, however, this default is unaccept-
able. For example, if an application has many threads that have carved up the
normal run-time stack into many small pieces, it is far more memory efficient to
create one large signal stack on which all the threads handle their signals than it
is to reserve space for signals on each thread’s stack.

The final signal-related facility is the sigreturn system call. Sigreturn is the
equivalent of a user-level load-processor-context operation. A pointer to a
(machine-dependent) context block that describes the user-level execution state of
a thread is passed to the kernel. The sigreturn system call restores state and
resumes execution after a normal return from a user’s signal handler.

History of Signals

Signals were originally designed to model exceptional events, such as an attempt
by a user to kill a runaway program. They were not intended to be used as a gen-
eral interprocess-communication mechanism, and thus no attempt was made to
make them reliable. In earlier systems, whenever a signal was caught, its action
was reset to the default action. The introduction of job control brought much more
frequent use of signals and made more visible a problem that faster processors also
exacerbated: If two signals were sent rapidly, the second could cause the process to
die, even though a signal handler had been set up to catch the first signal. Thus,
reliability became desirable, so the developers designed a new framework that con-
tained the old capabilities as a subset while accommodating new mechanisms.

The signal facilities found in FreeBSD are designed around a virtual-machine
model, in which system calls are considered to be the parallel of machine’s hard-
ware instruction set. Signals are the software equivalent of traps or interrupts, and
signal-handling routines do the equivalent function of interrupt or trap service rou-
tines. Just as machines provide a mechanism for blocking hardware interrupts so
that consistent access to data structures can be ensured, the signal facilities allow
software signals to be masked. Finally, because complex run-time stack environ-
ments may be required, signals, like interrupts, may be handled on an alternate
application-provided run-time stack. These machine models are summarized in
Table 4.5.

Posting of a Signal

The implementation of signals is broken up into two parts: posting a signal to a
process and recognizing the signal and delivering it to the target thread. Signals
may be posted by any process or by code that executes at interrupt level. Signal
delivery normally takes place within the context of the receiving thread. But when
a signal forces a process to be stopped, the action can be carried out on all the
threads associated with that process when the signal is posted.

A signal is posted to a single process with the psignal() routine or to a group
of processes with the gsignal() routine. The gsignal() routine invokes psignal()

Back Page 114

Table 4.5 Comparison of hardware-machine operations and the corresponding software
virtual-machine operations.

Hardware Machine Software Virtual Machine

instruction set set of system calls

restartable instructions restartable system calls

interrupts/traps signals

interrupt/trap handlers signal handlers

blocking interrupts masking signals

interrupt stack signal stack

for each process in the specified process group. The actions associated with
posting a signal are straightforward, but the details are messy. In theory, posting a
signal to a process simply causes the appropriate signal to be added to the set of
pending signals for the appropriate thread within the process, and the selected
thread is then set to run (or is awakened if it was sleeping at an interruptible prior-
ity level).

The disposition of signals is set on a per-process basis. So the kernel first
checks to see if the signal should be ignored in which case it is discarded. If the
process has specified the default action, then the default action is taken. If the pro-
cess has specified a signal handler that should be run, then the kernel must select
the appropriate thread within the process that should handle the signal. When a
signal is raised because of the action of the currently running thread (for example,
a segment fault), the kernel will only try to deliver it to that thread. If the thread is
masking the signal, then the signal will be held pending until it is unmasked.
When a process-related signal is sent (for example, an interrupt), then the kernel
searches all the threads associated with the process, searching for one that does
not have the signal masked. The signal is delivered to the first thread that is found
with the signal unmasked. If all threads associated with the process are masking
the signal, then the signal is left in the list of signals pending for the process for
later delivery.

The cursig() routine calculates the next signal, if any, that should be delivered
to a thread. It determines the next signal by inspecting the process’s signal list,
p_siglist, to see if it has any signals that should be propagated to the thread’s sig-
nal list, td_siglist. It then inspects the td_siglist field to check for any signals that
should be delivered to the thread. Each time that a thread returns from a call to
sleep() (with the PCATCH flag set) or prepares to exit the system after processing
a system call or trap, it checks to see whether a signal is pending delivery. If a sig-
nal is pending and must be delivered in the thread’s context, it is removed from the
pending set, and the thread invokes the postsig() routine to take the appropriate
action.

Section 4.7 Signals 115

Front Page 115

116 Chapter 4 Process Management

The work of psignal() is a patchwork of special cases required by the process-
debugging and job-control facilities and by intrinsic properties associated with sig-
nals. The steps involved in posting a signal are as follows:

1. Determine the action that the receiving process will take when the signal is
delivered. This information is kept in the p_sigignore and p_sigcatch fields of
the process’s process structure. If a process is not ignoring or catching a sig-
nal, the default action is presumed to apply. If a process is being traced by its
parent—that is, by a debugger—the parent process is always permitted to
intercede before the signal is delivered. If the process is ignoring the signal,
psignal()’s work is done and the routine can return.

2. Given an action, psignal() selects the appropriate thread and adds the signal to
the thread’s set of pending signals, td_siglist, and then does any implicit
actions specific to that signal. For example, if the signal is a continue signal,
SIGCONT, any pending signals that would normally cause the process to stop,
such as SIGTTOU, are removed.

3. Next, psignal() checks whether the signal is being masked. If the thread is
currently masking delivery of the signal, psignal()’s work is complete and it
may return.

4. If, however, the signal is not being masked, psignal() must either do the action
directly or arrange for the thread to execute so that the thread will take the
action associated with the signal. Before setting the thread to a runnable state,
psignal() must take different courses of action depending on the thread state
as follows:

SLEEPING The thread is blocked awaiting an event. If the thread is sleeping
noninterruptibly, then nothing further can be done. Otherwise, the
kernel can apply the action—either directly or indirectly—by wak-
ing up the thread. There are two actions that can be applied directly.
For signals that cause a process to stop, all the threads in the process
are placed in the STOPPED state, and the parent process is notified of
the state change by a SIGCHLD signal being posted to it. For signals
that are ignored by default, the signal is removed from the signal list
and the work is complete. Otherwise, the action associated with the
signal must be done in the context of the receiving thread, and the
thread is placed onto the run queue with a call to setrunnable().

STOPPED The process is stopped by a signal or because it is being debugged.
If the process is being debugged, then there is nothing to do until the
controlling process permits it to run again. If the process is stopped
by a signal and the posted signal would cause the process to stop
again, then there is nothing to do, and the posted signal is discarded.

Back Page 116

Otherwise, the signal is either a continue signal or a signal that
would normally cause the process to terminate (unless the signal is
caught). If the signal is SIGCONT, then all the threads in the process
that were previously running are set running again. Any threads in
the process that were blocked waiting on an event are returned to the
SLEEPING state. If the signal is SIGKILL, then all the threads in the
process are set running again no matter what, so that they can termi-
nate the next time that they are scheduled to run. Otherwise, the sig-
nal causes the threads in the process to be made runnable, but the
threads are not placed on the run queue because they must wait for a
continue signal.

RUNNABLE, NEW, ZOMBIE
If a thread scheduled to receive a signal is not the currently execut-
ing thread, its TDF_NEEDRESCHED flag is set, so that the signal will
be noticed by the receiving thread as soon as possible.

Delivering a Signal

Most actions associated with delivering a signal to a thread are carried out within
the context of that thread. A thread checks its td_siglist field for pending signals
at least once each time that it enters the system, by calling cursig().

If cursig() determines that there are any unmasked signals in the thread’s
signal list, it calls issignal() to find the first unmasked signal in the list. If deliv-
ering the signal causes a signal handler to be invoked or a core dump to be made,
the caller is notified that a signal is pending, and the delivery is done by a call to
postsig(). That is,

if (sig = cursig(curthread))

postsig(sig);

Otherwise, the action associated with the signal is done within issignal() (these
actions mimic the actions carried out by psignal()).

The postsig() routine has two cases to handle:

1. Producing a core dump

2. Invoking a signal handler

The former task is done by the coredump() routine and is always followed by a call
to exit() to force process termination. To inv oke a signal handler, postsig() first cal-
culates a set of masked signals and installs that set in td_sigmask. This set normally
includes the signal being delivered, so that the signal handler will not be invoked
recursively by the same signal. Any signals specified in the sigaction system call at
the time the handler was installed also will be included. The postsig() routine then

Section 4.7 Signals 117

Front Page 117

118 Chapter 4 Process Management

step 1—sendsig()

step 3—sigtramp() returnsstep 2—sigtramp() called

step 4—sigreturn()

framen

signal context

framen

signal context

framen

signal context

framen

signal handler

Figure 4.8 Delivery of a signal to a process. Step 1: The kernel places a signal context on
the user’s stack. Step 2: The kernel places a signal-handler frame on the user’s stack and
arranges to start running the user process in the sigtramp() code. When the sigtramp() rou-
tine starts running, it calls the user’s signal handler. Step 3: The user’s signal handler re-
turns to the sigtramp() routine, which pops the signal-handler context from the user’s stack.
Step 4: The sigtramp() routine finishes by calling the sigreturn system call, which restores
the previous user context from the signal context, pops the signal context from the stack,
and resumes the user’s process at the point at which it was running before the signal oc-
curred.

calls the sendsig() routine to arrange for the signal handler to execute immediately
after the thread returns to user mode. Finally, the signal in td_siglist is cleared and
postsig() returns, presumably to be followed by a return to user mode.

The implementation of the sendsig() routine is machine dependent. Figure 4.8
shows the flow of control associated with signal delivery. If an alternate stack has
been requested, the user’s stack pointer is switched to point at that stack. An argu-
ment list and the thread’s current user-mode execution context are stored by the
kernel on the (possibly new) stack. The state of the thread is manipulated so that,
on return to user mode, a call will be made immediately to a body of code termed
the signal-trampoline code. This code invokes the signal handler (between steps 2
and 3 in Figure 4.8) with the appropriate argument list, and, if the handler returns,
makes a sigreturn system call to reset the thread’s signal state to the state that
existed before the signal.

Back Page 118

4.8 Process Groups and Sessions

A process group is a collection of related processes, such as a shell pipeline, all
of which have been assigned the same process-group identifier. The process-
group identifier is the same as the PID of the process group’s initial member; thus
process-group identifiers share the name space of process identifiers. When a
new process group is created, the kernel allocates a process-group structure to be
associated with it. This process-group structure is entered into a process-group
hash table so that it can be found quickly.

A process is always a member of a single process group. When it is created,
each process is placed into the process group of its parent process. Programs such
as shells create new process groups, usually placing related child processes into a
group. A process can change its own process group or that of a child process by
creating a new process group or by moving a process into an existing process
group using the setpgid system call. For example, when a shell wants to set up a
new pipeline, it wants to put the processes in the pipeline into a process group dif-
ferent from its own so that the pipeline can be controlled independently of the
shell. The shell starts by creating the first process in the pipeline, which initially
has the same process-group identifier as the shell. Before executing the target pro-
gram, the first process does a setpgid to set its process-group identifier to the same
value as its PID. This system call creates a new process group, with the child pro-
cess as the process-group leader of the process group. As the shell starts each
additional process for the pipeline, each child process uses setpgid to join the
existing process group.

In our example of a shell creating a new pipeline, there is a race condition.
As the additional processes in the pipeline are spawned by the shell, each is placed
in the process group created by the first process in the pipeline. These conven-
tions are enforced by the setpgid system call. It restricts the set of process-group
identifiers to which a process may be set to either a value equal its own PID or a
value of another process-group identifier in its session. Unfortunately, if a pipeline
process other than the process-group leader is created before the process-group
leader has completed its setpgid call, the setpgid call to join the process group will
fail. As the setpgid call permits parents to set the process group of their children
(within some limits imposed by security concerns), the shell can avoid this race by
making the setpgid call to change the child’s process group both in the newly cre-
ated child and in the parent shell. This algorithm guarantees that, no matter which
process runs first, the process group will exist with the correct process-group
leader. The shell can also avoid the race by using the vfork variant of the fork sys-
tem call that forces the parent process to wait until the child process either has
done an exec system call or has exited. In addition, if the initial members of the
process group exit before all the pipeline members have joined the group—for
example, if the process-group leader exits before the second process joins the
group, the setpgid call could fail. The shell can avoid this race by ensuring that all
child processes are placed into the process group without calling the wait system

Section 4.8 Process Groups and Sessions 119

Front Page 119

120 Chapter 4 Process Management

call, usually by blocking the SIGCHLD signal so that the shell will not be notified
yet if a child exits. As long as a process-group member exists, even as a zombie
process, additional processes can join the process group.

There are additional restrictions on the setpgid system call. A process may
join process groups only within its current session (discussed in the next section),
and it cannot have done an exec system call. The latter restriction is intended to
avoid unexpected behavior if a process is moved into a different process group
after it has begun execution. Therefore, when a shell calls setpgid in both parent
and child processes after a fork, the call made by the parent will fail if the child
has already made an exec call. However, the child will already have joined the
process group successfully, and the failure is innocuous.

Sessions

Just as a set of related processes are collected into a process group, a set of pro-
cess groups are collected into a session. A session is a set of one or more process
groups and may be associated with a terminal device. The main uses for sessions
are to collect together a user’s login shell and the jobs that it spawns and to create
an isolated environment for a daemon process and its children. Any process that
is not already a process-group leader may create a session using the setsid system
call, becoming the session leader and the only member of the session. Creating a
session also creates a new process group, where the process-group ID is the PID of
the process creating the session, and the process is the process-group leader. By
definition, all members of a process group are members of the same session.

A session may have an associated controlling terminal that is used by default
for communicating with the user. Only the session leader may allocate a control-
ling terminal for the session, becoming a controlling process when it does so. A

Figure 4.9 A session and its processes. In this example, process 3 is the initial member
of the session—the session leader—and is referred to as the controlling process if it has a
controlling terminal. It is contained in its own process group, 3. Process 3 has spawned
two jobs: One is a pipeline composed of processes 4 and 5, grouped together in process
group 4, and the other one is process 8, which is in its own process group, 8. No process-
group leader can create a new session; thus, processes 3, 4, or 8 could not start its own ses-
sion, but process 5 would be allowed to do so.

Session

process 8

process group 8

controlling
process 3

process group 3

process 4 process 5

process group 4

Back Page 120

• • •

pg_session

pg_session

pg_session

s_login

p_pglist

p_pgrp

p_pgrp

p_pgrp

p_pgrp

pg_hash

LISTHEAD pgrphashtbl

pg_members

pg_members

pg_hash

p_pglist

s_ttyvp

t_termios

t_winsize

struct session

struct pgrp

struct tty

struct pgrp

t_session

s_ttyp

struct pgrp

pg_hash

pg_members p_pglist

s_leader

t_pgrp (foreground process group)

p_pglistprocess 8

process 4 process 5

process 3

pg_id = 8

pg_id = 4

pg_id = 3

pg_jobc = 0

pg_jobc = 2

pg_jobc = 1

s_count = 3

Figure 4.10 Process-group organization.

device can be the controlling terminal for only one session at a time. The
terminal I/O system (described in Chapter 10) synchronizes access to a terminal
by permitting only a single process group to be the foreground process group for
a controlling terminal at any time. Some terminal operations are restricted to
members of the session. A session can have at most one controlling terminal.
When a session is created, the session leader is dissociated from its controlling
terminal if it had one.

A login session is created by a program that prepares a terminal for a user to
log into the system. That process normally executes a shell for the user, and thus
the shell is created as the controlling process. An example of a typical login ses-
sion is shown in Figure 4.9.

The data structures used to support sessions and process groups in FreeBSD are
shown in Figure 4.10. This figure parallels the process layout shown in Figure 4.9.
The pg_members field of a process-group structure heads the list of member pro-
cesses; these processes are linked together through the p_pglist list entry in the

Section 4.8 Process Groups and Sessions 121

Front Page 121

122 Chapter 4 Process Management

process structure. In addition, each process has a reference to its process-group
structure in the p_pgrp field of the process structure. Each process-group struc-
ture has a pointer to its enclosing session. The session structure tracks per-login
information, including the process that created and controls the session, the con-
trolling terminal for the session, and the login name associated with the session.
Tw o processes wanting to determine whether they are in the same session can tra-
verse their p_pgrp pointers to find their process-group structures and then compare
the pg_session pointers to see whether the latter are the same.

Job Control

Job control is a facility first provided by the C shell [Joy, 1994] and today pro-
vided by most shells. It permits a user to control the operation of groups of pro-
cesses termed jobs. The most important facilities provided by job control are the
abilities to suspend and restart jobs and to do the multiplexing of access to the
user’s terminal. Only one job at a time is given control of the terminal and is able
to read from and write to the terminal. This facility provides some of the advan-
tages of window systems, although job control is sufficiently different that it is
often used in combination with window systems. Job control is implemented on
top of the process group, session, and signal facilities.

Each job is a process group. Outside the kernel, a shell manipulates a job by
sending signals to the job’s process group with the killpg system call, which deliv-
ers a signal to all the processes in a process group. Within the system, the two main
users of process groups are the terminal handler (Chapter 10) and the interprocess-
communication facilities (Chapter 11). Both facilities record process-group iden-
tifiers in private data structures and use them in delivering signals. The terminal
handler, in addition, uses process groups to multiplex access to the controlling
terminal.

For example, special characters typed at the keyboard of the terminal (e.g., con-
trol-C or control-\) result in a signal being sent to all processes in one job in the ses-
sion; that job is in the foreground, whereas all other jobs in the session are in the
background. A shell may change the foreground job by using the tcsetpgrp() func-
tion, implemented by the TIOCSPGRP ioctl on the controlling terminal. Background
jobs will be sent the SIGTTIN signal if they attempt to read from the terminal, nor-
mally stopping the job. The SIGTTOU signal is sent to background jobs that
attempt an ioctl system call that would alter the state of the terminal, and, if the
TOSTOP option is set for the terminal, if they attempt to write to the terminal.

The foreground process group for a session is stored in the t_pgrp field of the
session’s controlling terminal tty structure (see Chapter 10). All other process
groups within the session are in the background. In Figure 4.10, the session leader
has set the foreground process group for its controlling terminal to be its own pro-
cess group. Thus, its two jobs are in the background, and the terminal input and
output will be controlled by the session-leader shell. Job control is limited to pro-
cesses contained within the same session and to the terminal associated with the
session. Only the members of the session are permitted to reassign the controlling
terminal among the process groups within the session.

Back Page 122

If a controlling process exits, the system revokes further access to the con-
trolling terminal and sends a SIGHUP signal to the foreground process group. If a
process such as a job-control shell exits, each process group that it created will
become an orphaned process group: a process group in which no member has a
parent that is a member of the same session but of a different process group.
Such a parent would normally be a job-control shell capable of resuming stopped
child processes. The pg_jobc field in Figure 4.10 counts the number of processes
within the process group that have the controlling process as a parent. When that
count goes to zero, the process group is orphaned. If no action were taken by the
system, any orphaned process groups that were stopped at the time that they
became orphaned would be unlikely ever to resume. Historically, the system
dealt harshly with such stopped processes: They were killed. In POSIX and
FreeBSD, an orphaned process group is sent a hangup and a continue signal if any
of its members are stopped when it becomes orphaned by the exit of a parent pro-
cess. If processes choose to catch or ignore the hangup signal, they can continue
running after becoming orphaned. The system keeps a count of processes in each
process group that have a parent process in another process group of the same
session. When a process exits, this count is adjusted for the process groups of all
child processes. If the count reaches zero, the process group has become
orphaned. Note that a process can be a member of an orphaned process group
ev en if its original parent process is still alive. For example, if a shell starts a job
as a single process A, that process then forks to create process B, and the parent
shell exits; then process B is a member of an orphaned process group but is not
an orphaned process.

To avoid stopping members of orphaned process groups if they try to read or
write to their controlling terminal, the kernel does not send them SIGTTIN and
SIGTTOU signals, and prevents them from stopping in response to those signals.
Instead, attempts to read or write to the terminal produce an error.

4.9 Jails

The FreeBSD access control mechanism is designed for an environment with two
types of users: those with and those without administrative privilege. It is often
desirable to delegate some but not all administrative functions to untrusted or less
trusted parties and simultaneously impose systemwide mandatory policies on
process interaction and sharing. Historically, attempting to create such an envi-
ronment has been both difficult and costly. The primary mechanism for partial
delegation of administrative authority is to write a set-user-identifier program that
carefully controls which of the administrative privileges may be used. These set-
user-identifier programs are complex to write, difficult to maintain, limited in
their flexibility, and are prone to bugs that allow undesired administrative privi-
lege to be gained.

Many operating systems attempt to address these limitations by providing
fine-grained access controls for system resources [P1003.1e, 1998]. These efforts

Section 4.9 Jails 123

Front Page 123

124 Chapter 4 Process Management

vary in degrees of success, but almost all suffer from at least three serious
limitations:

1. Increasing the granularity of security controls increases the complexity of the
administration process, in turn increasing both the opportunity for incorrect
configuration, as well as the demand on administrator time and resources.
Often the increased complexity results in significant frustration for the admin-
istrator, which may result in two disastrous types of policy: running with secu-
rity features disabled and running with the default configuration on the
assumption that it will be secure.

2. Usefully segregating capabilities and assigning them to running code and
users is difficult. Many privileged operations in FreeBSD seem independent
but are interrelated. The handing out of one privilege may be transitive to
many others. For example, the ability to mount filesystems allows new set-
user-identifier programs to be made available that in turn may yield other
unintended security capabilities.

3. Introducing new security features often involves introducing new security
management interfaces. When fine-grained capabilities are introduced to
replace the set-user-identifier mechanism in FreeBSD, applications that previ-
ously did an appropriateness check to see if they were running with superuser
privilege before executing must now be changed to know that they need not
run with superuser privilege. For applications running with privilege and
executing other programs, there is now a new set of privileges that must be
voluntarily given up before executing another program. These changes can
introduce significant incompatibility for existing applications and make life
more difficult for application developers who may not be aware of differing
security semantics on different systems.

This abstract risk becomes more clear when applied to a practical, real-world
example: many Web service providers use FreeBSD to host customer Web sites.
These providers must protect the integrity and confidentiality of their own files
and services from their customers. They must also protect the files and services of
one customer from (accidental or intentional) access by any other customer. A
provider would like to supply substantial autonomy to customers, allowing them
to install and maintain their own software and to manage their own services such
as Web servers and other content-related daemon programs.

This problem space points strongly in the direction of a partitioning solution.
By putting each customer in a separate partition, customers are isolated from acci-
dental or intentional modification of data or disclosure of process information
from customers in other partitions. Delegation of management functions within
the system must be possible without violating the integrity and privacy protection
between partitions.

FreeBSD-style access control makes it notoriously difficult to compartmental-
ize functionality. While mechanisms such as chroot provide a modest level of

Back Page 124

compartmentalization, this mechanism has serious shortcomings, both in the scope
of its functionality and effectiveness at what it provides. The chroot system call
was first added to provide an alternate build environment for the system. It was
later adapted to isolate anonymous ftp access to the system.

The original intent of chroot was not to ensure security. Even when used to
provide security for anonymous ftp, the set of operations allowed by ftp was
carefully controlled to prevent those that allowed escape from the chroot’ed envi-
ronment.

Three classes of escape from the confines of a chroot-created filesystem were
identified over the years:

1. Recursive chroot escapes

2. Escapes using ..

3. Escapes using fchdir

All these escapes exploited the lack of enforcement of the new root directory.
Tw o changes to chroot were made to detect and thwart these escapes. To pre-

vent the first two escapes, the directory of the first level of chroot experienced by a
process is recorded. Any attempts to traverse backward across this directory are
refused. The third escape using fchdir is prevented by having the chroot system
call fail if the process has any file descriptors open referencing directories.

Even with stronger semantics, the chroot system call is insufficient to provide
complete partitioning. Its compartmentalization does not extend to the process or
networking spaces. Therefore, both observation of and interference with pro-
cesses outside their compartment is possible. To provide a secure virtual machine
environment, FreeBSD added a new ‘‘jail’’ facility built on top of chroot. Pro-
cesses in a jail are provided full access to the files that they may manipulate, pro-
cesses they may influence, and network services they may use. They are denied
access to and visibility of files, processes, and network services outside their jail
[Kamp & Watson, 2000].

Unlike other fine-grained security solutions, a jail does not substantially
increase the policy management requirements for the system administrator. Each
jail is a virtual FreeBSD environment that permits local policy to be independently
managed. The environment within a jail has the same properties as the host sys-
tem. Thus, a jail environment is familiar to the administrator and compatible with
applications [Hope, 2002].

Jail Semantics

Tw o important goals of the jail implementation are to:

1. Retain the semantics of the existing discretionary access-control mechanisms

2. Allow each jail to have its own superuser administrator whose activities are
limited to the processes, files, and network associated with its jail

Section 4.9 Jails 125

Front Page 125

126 Chapter 4 Process Management

The first goal retains compatibility with most applications. The second goal per-
mits the administrator of a FreeBSD machine to partition the host into separate
jails and provide access to the superuser account in each of these jails without los-
ing control of the host environment.

A process in a partition is referred to as being ‘‘in jail.’’ When FreeBSD first
boots, no processes will be jailed. Jails are created when a privileged process calls
the jail system call with arguments of the filesystem into which it should chroot
and the IP address and hostname to be associated with the jail. The process that
creates the jail will be the first and only process placed in the jail. Any future
descendants of the jailed process will be in its jail. A process may never leave a
jail that it created or in which it was created. A process may be in only one jail.
The only way for a new process to enter the jail is by inheriting access to the jail
from another process already in that jail.

Each jail is bound to a single IP address. Processes within the jail may not
make use of any other IP address for outgoing or incoming connections. A jail has
the ability to restrict the set of network services that it chooses to offer at its
address. An application request to bind all IP addresses are redirected to the indi-
vidual address associated of the jail in which the requesting process is running.

A jail takes advantage of the existing chroot behavior to limit access to the
filesystem name space for jailed processes. When a jail is created, it is bound to a
particular filesystem root. Processes are unable to manipulate files that they can-
not address. Thus, the integrity and confidentiality of files outside the jail filesys-
tem root are protected.

Processes within the jail will find that they are unable to interact or even verify
the existence of processes outside the jail. Processes within the jail are prevented
from delivering signals to processes outside the jail, connecting to processes out-
side the jail with debuggers, or even seeing processes outside the jail with the usual
system monitoring mechanisms. Jails do not prevent, nor are they intended to pre-
vent, the use of covert channels or communications mechanisms via accepted inter-
faces. For example, two processes in different jails may communicate via sockets
over the network. Jails do not attempt to provide scheduling services based on the
partition.

Jailed processes are subject to the normal restrictions present for any pro-
cesses including resource limits and limits placed by the network code, including
firewall rules. By specifying firewall rules for the IP address bound to a jail, it is
possible to place connectivity and bandwidth limitations on that jail, restricting the
services that it may consume or offer.

The jail environment is a subset of the host environment. The jail filesystem
appears as part of the host filesystem and may be directly modified by processes in
the host environment. Processes within the jail appear in the process listing of the
host and may be signalled or debugged.

Processes running without superuser privileges will notice few differences
between a jailed environment or an unjailed environment. Standard system ser-
vices such remote login and mail servers behave normally as do most third-party
applications, including the popular Apache Web server.

Back Page 126

Processes running with superuser privileges will find that many restrictions
apply to the privileged calls they may make. Most of the limitations are designed
to restrict activities that would affect resources outside the jail. These restrictions
include prohibitions against the following:

• Modifying the running kernel by direct access or loading kernel modules

• Mounting and unmounting filesystems

• Creating device nodes

• Modifying kernel run-time parameters such as most sysctl settings

• Changing security-level flags

• Modifying any of the network configuration, interfaces, addresses, and routing-
table entries

• Accessing raw, div ert, or routing sockets. These restrictions prevent access to
facilities that allow spoofing of IP numbers or the generation of disruptive traffic.

• Accessing network resources not associated with the jail. Specifically, an
attempt to bind a reserved port number on all available addresses will result in
binding only the address associated with the jail.

• Administrative actions that would affect the host system such as rebooting

Other privileged activities are permitted as long as they are limited to the scope of
the jail:

• Signalling any process within the jail is permitted.

• Deleting or changing the ownership and mode of any file within the jail is per-
mitted, as long as the file flags permit the requested change.

• The superuser may read a file owned by any UID, as long as it is accessible
through the jail filesystem name space.

• Binding reserved TCP and UDP port numbers on the jail’s IP address is permitted.

These restrictions on superuser access limit the scope of processes running
with superuser privileges, enabling most applications to run unhindered but pre-
venting calls that might allow an application to reach beyond the jail and influence
other processes or systemwide configuration.

Jail Implementation

The implementation of the jail system call is straightforward. A prison data struc-
ture is allocated and populated with the arguments provided. The prison structure
is linked to the process structure of the calling process. The prison structure’s ref-
erence count is set to one, and the chroot system call is called to set the jail’s root.
The prison structure may not be modified once it is created.

Section 4.9 Jails 127

Front Page 127

128 Chapter 4 Process Management

Hooks in the code implementing process creation and destruction maintain
the reference count on the prison structure and free it when the last reference is
released. Any new processes created by a process in a jail will inherit a reference
to the prison structure, which puts the new process in the same jail.

Some changes were needed to restrict process visibility and interaction. The
kernel interfaces that report running processes were modified to report only the
processes in the same jail as the process requesting the process information.
Determining whether one process may send a signal to another is based on UID
and GID values of the sending and receiving processes. With jails, the kernel adds
the requirement that if the sending process is jailed, then the receiving process
must be in the same jail.

Several changes were added to the networking implementation:

• Restricting TCP and UDP access to just one IP number was done almost entirely
in the code that manages protocol control blocks (see Section 13.1). When a
jailed process binds to a socket, the IP number provided by the process will not
be used; instead, the preconfigured IP number of the jail is used.

• The loop-back interface, which has the magic IP number 127.0.0.1, is used by
processes to contact servers on the local machine. When a process running in a
jail connects to the 127.0.0.1 address, the kernel must intercept and redirect the
connection request to the IP address associated with the jail.

• The interfaces through which the network configuration and connection state
may be queried were modified to report only information relevant to the config-
ured IP number of a jailed process.

Device drivers for shared devices such as the pseudo-terminal driver (see
Section 10.1) needed to be changed to enforce that a particular virtual terminal
cannot be accessed from more than one jail at the same time.

The simplest but most tedious change was to audit the entire kernel for places
that allowed the superuser extra privilege. Only about 35 of the 300 checks in
FreeBSD 5.2 were opened to jailed processes running with superuser privileges.
Since the default is that jailed superusers do not receive privilege, new code or
drivers are automatically jail-aware: They will refuse jailed superusers privilege.

Jail Limitations

As it stands, the jail code provides a strict subset of system resources to the jail
environment, based on access to processes, files, network resources, and privi-
leged services. Making the jail environment appear to be a fully functional
FreeBSD system allows maximum application support and the ability to offer a
wide range of services within a jail environment. However, there are limitations in
the current implementation. Removing these limitations will enhance the ability
to offer services in a jail environment. Three areas that deserve greater attention
are the set of available network resources, management of scheduling resources,
and support for orderly jail shutdown.

Back Page 128

Currently, only a single IP version 4 address may be allocated to each jail, and
all communication from the jail is limited to that IP address. It would be desirable
to support multiple addresses or possibly different address families for each jail.
Access to raw sockets is currently prohibited, as the current implementation of
raw sockets allows access to raw IP packets associated with all interfaces. Limit-
ing the scope of the raw socket would allow its safe use within a jail, thus allowing
the use of ping and other network debugging and evaluation tools.

Another area of great interest to the current users of the jail code is the ability
to limit the effect of one jail on the CPU resources available for other jails. Specif-
ically, they require that the system have ways to allocate scheduling resources
among the groups of processes in each of the jails. Work in the area of lottery
scheduling might be leveraged to allow some degree of partitioning between jail
environments [Petrou & Milford, 1997].

Management of jail environments is currently somewhat ad hoc. Creating and
starting jails is a well-documented procedure, but jail shutdown requires the iden-
tification and killing of all the processes running within the jail. One approach to
cleaning up this interface would be to assign a unique jail-identifier at jail creation
time. A new jailkill system call would permit the direction of signals to specific
jail-identifiers, allowing for the effective termination of all processes in the jail.
FreeBSD makes use of an init process to bring the system up during the boot pro-
cess and to assist in shutdown (see Section 14.6). A similarly operating process,
jailinit, running in each jail would present a central location for delivering man-
agement requests to its jail from the host environment or from within the jail. The
jailinit process would coordinate the clean shutdown of the jail before resorting to
terminating processes, in the same style as the host environment shutting down
before killing all processes and halting the kernel.

4.10 Process Debugging

FreeBSD provides a simplistic facility for controlling and debugging the execu-
tion of a process. This facility, accessed through the ptrace system call, permits
a parent process to control a child process’s execution by manipulating user- and
kernel-mode execution state. In particular, with ptrace, a parent process can do
the following operations on a child process:

• Attach to an existing process to begin debugging it

• Read and write address space and registers

• Intercept signals posted to the process

• Single step and continue the execution of the process

• Terminate the execution of the process

The ptrace call is used almost exclusively by program debuggers, such as gdb.

Section 4.10 Process Debugging 129

Front Page 129

130 Chapter 4 Process Management

When a process is being traced, any signals posted to that process cause it to
enter the STOPPED state. The parent process is notified with a SIGCHLD signal
and may interrogate the status of the child with the wait4 system call. On most
machines, trace traps, generated when a process is single stepped, and breakpoint
faults, caused by a process executing a breakpoint instruction, are translated by
FreeBSD into SIGTRAP signals. Because signals posted to a traced process cause
it to stop and result in the parent being notified, a program’s execution can be con-
trolled easily.

To start a program that is to be debugged, the debugger first creates a child
process with a fork system call. After the fork, the child process uses a ptrace call
that causes the process to be flagged as traced by setting the P_TRACED bit in the
p_flag field of the process structure. The child process then sets the trace trap bit
in the process’s processor status word and calls execve to load the image of the
program that is to be debugged. Setting this bit ensures that the first instruction
executed by the child process after the new image is loaded will result in a hard-
ware trace trap, which is translated by the system into a SIGTRAP signal. Because
the parent process is notified about all signals to the child, it can intercept the sig-
nal and gain control over the program before it executes a single instruction.

Alternatively, the debugger may take over an existing process by attaching to
it. A successful attach request causes the process to enter the STOPPED state and
to have its P_TRACED bit set in the p_flag field of its process structure. The
debugger can then begin operating on the process in the same way as it would
with a process that it had explicitly started.

An alternative to the ptrace system call is the /proc filesystem. The function-
ality provided by the /proc filesystem is the same as that provided by ptrace; it
differs only in its interface. The /proc filesystem implements a view of the system
process table inside the filesystem and is so named because it is normally mounted
on /proc. It provides a two-level view of process space. At the highest level, pro-
cesses themselves are named, according to their process IDs. There is also a spe-
cial node called curproc that always refers to the process making the lookup
request.

Each node is a directory that contains the following entries:

ctl A write-only file that supports a variety of control operations. Control
commands are written as strings to the ctl file. The control commands are:

attach Stops the target process and arranges for the sending process to
become the debug control process.

detach Continue execution of the target process and remove it from con-
trol by the debug process (that need not be the sending process).

run Continue running the target process until a signal is delivered, a
breakpoint is hit, or the target process exits.

step Single step the target process, with no signal delivery.

Back Page 130

wait Wait for the target process to come to a steady state ready for
debugging. The target process must be in this state before any
of the other commands are allowed.

The string can also be the name of a signal, lowercase and without the
SIG prefix, in which case that signal is delivered to the process.

dbregs Set the debug registers as defined by the machine architecture.

etype The type of the executable referenced by the file entry.

file A reference to the vnode from which the process text was read. This
entry can be used to gain access to the symbol table for the process or to
start another copy of the process.

fpregs The floating point registers as defined by the machine architecture. It is
only implemented on machines that have distinct general purpose and
floating point register sets.

map A map of the process’s virtual memory.

mem The complete virtual memory image of the process. Only those addresses
that exist in the process can be accessed. Reads and writes to this file
modify the process. Writes to the text segment remain private to the pro-
cess. Because the address space of another process can be accessed with
read and write system calls, a debugger can access a process being
debugged with much greater efficiency than it can with the ptrace system
call. The pages of interest in the process being debugged are mapped into
the kernel address space. The data requested by the debugger can then be
copied directly from the kernel to the debugger’s address space.

regs Allows read and write access to the register set of the process.

rlimit A read-only file containing the process current and maximum limits.

status The process status. This file is read-only and returns a single line con-
taining multiple space-separated fields that include the command name,
the process id, the parent process id, the process group id, the session id,
the controlling terminal (if any), a list of the process flags, the process
start time, user and system times, the wait channel message, and the pro-
cess credentials.

Each node is owned by the process’s user and belongs to that user’s primary
group, except for the mem node, which belongs to the kmem group.

In a normal debugging environment, where the target does a fork followed by
an exec by the debugger, the debugger should fork and the child should stop itself
(with a self-inflicted SIGSTOP, for example). The parent should issue a wait and
then an attach command via the appropriate ctl file. The child process will receive
a SIGTRAP immediately after the call to exec.

Section 4.10 Process Debugging 131

Front Page 131

132 Chapter 4 Process Management

Exercises

4.1 For each state listed in Table 4.1, list the system queues on which a process
in that state might be found.

4.2 Why is the performance of the context-switching mechanism critical to the
performance of a highly multiprogrammed system?

4.3 What effect would increasing the time quantum have on the system’s inter-
active response and total throughput?

4.4 What effect would reducing the number of run queues from 64 to 32 have
on the scheduling overhead and on system performance?

4.5 Give three reasons for the system to select a new process to run.

4.6 Describe the three types of scheduling policies provided by FreeBSD.

4.7 What type of jobs does the time-share scheduling policy favor? Propose an
algorithm for identifying these favored jobs.

4.8 When and how does thread scheduling interact with memory-management
facilities?

4.9 After a process has exited, it may enter the state of being a ZOMBIE before
disappearing from the system entirely. What is the purpose of the ZOMBIE
state? What event causes a process to exit from ZOMBIE?

4.10 Suppose that the data structures shown in Figure 4.2 do not exist. Instead,
assume that each process entry has only its own PID and the PID of its par-
ent. Compare the costs in space and time to support each of the following
operations:

a. Creation of a new process

b. Lookup of the process’s parent

c. Lookup of all of a process’s siblings

d. Lookup of all of a process’s descendants

e. Destruction of a process

4.11 What are the differences between a mutex and a lock-manager lock?

4.12 Give an example of where a mutex lock should be used. Give an example
of where a lock-manager lock should be used.

4.13 A process blocked without setting the PCATCH flag may never be awak-
ened by a signal. Describe two problems a noninterruptible sleep may
cause if a disk becomes unavailable while the system is running.

4.14 Describe the limitations a jail puts on the filesystem name space, network
access, and processes running in the jail.

Back Page 132

*4.15 In FreeBSD, the signal SIGTSTP is delivered to a process when a user types
a ‘‘suspend character.’’ Why would a process want to catch this signal
before it is stopped?

*4.16 Before the FreeBSD signal mechanism was added, signal handlers to catch
the SIGTSTP signal were written as

catchstop()

{

prepare to stop;

signal(SIGTSTP, SIG_DFL);

kill(getpid(), SIGTSTP);

signal(SIGTSTP, catchstop);

}

This code causes an infinite loop in FreeBSD. Why does it do so? How
should the code be rewritten?

*4.17 The process-priority calculations and accounting statistics are all based on
sampled data. Describe hardware support that would permit more accurate
statistics and priority calculations.

*4.18 Why are signals a poor interprocess-communication facility?

**4.19 A kernel-stack-invalid trap occurs when an invalid value for the kernel-
mode stack pointer is detected by the hardware. How might the system
gracefully terminate a process that receives such a trap while executing on
its kernel-run-time stack?

**4.20 Describe alternatives to the test-and-set instruction that would allow you to
build a synchronization mechanism for a multiprocessor FreeBSD system.

**4.21 A lightweight process is a thread of execution that operates within the con-
text of a normal FreeBSD process. Multiple lightweight processes may
exist in a single FreeBSD process and share memory, but each is able to do
blocking operations, such as system calls. Describe how lightweight pro-
cesses might be implemented entirely in user mode.

References
Aral et al., 1989.

Z. Aral, J. Bloom, T. Doeppner, I. Gertner, A. Langerman, & G. Schaffer,
‘‘Variable Weight Processes with Flexible Shared Resources,’’ USENIX
Association Conference Proceedings, pp. 405–412, January 1989.

Ferrin & Langridge, 1980.
T. E. Ferrin & R. Langridge, ‘‘Interactive Computer Graphics with the
UNIX Time-Sharing System,’’ Computer Graphics, vol. 13, pp. 320–331,
1980.

References 133

Front Page 133

134 Chapter 4 Process Management

Hope, 2002.
P. Hope, ‘‘Using Jails in FreeBSD for Fun and Profit,’’ ;login: The USENIX
Association Newsletter, vol. 27, no. 3, pp. 48–55, available from
http://www.usenix.org/publications/login/2002-06/pdfs/hope.pdf, USENIX
Association, Berkeley, CA, June 2002.

Joy, 1994.
W. N. Joy, ‘‘An Introduction to the C Shell,’’ in 4.4BSD User’s
Supplementary Documents, pp. 4:1–46, O’Reilly & Associates, Inc.,
Sebastopol, CA, 1994.

Kamp & Watson, 2000.
P. Kamp & R. Watson, ‘‘Jails: Confining the Omnipotent Root,’’
Proceedings of the Second International System Administration and
Networking Conference (SANE), available from http://docs.freebsd.org/
44doc/papers/jail/, May 2000.

P1003.1e, 1998.
P1003.1e, Unpublished Draft Standard for Information Technology—
Portable Operating System Interface (POSIX)—Part 1: System Application
Program Interface—Amendment: Protection, Audit and Control Interfaces
[C Language] IEEE Standard 1003.1e Draft 17 Editor Casey Schaufler,
Institute of Electrical and Electronic Engineers, Piscataway, NJ, 1998.

Petrou & Milford, 1997.
D. Petrou & J. Milford, Proportional-Share Scheduling: Implementation
and Evaluation in a Widely-Deployed Operating System, available from
http://www.cs.cmu.edu/˜dpetrou/papers/freebsd_lottery_writeup98.ps and
http://www.cs.cmu.edu/˜dpetrou/code/freebsd_lottery_code.tar.gz, 1997.

Ritchie, 1988.
D. M. Ritchie, ‘‘Multi-Processor UNIX,’’ private communication, April 25,
1988.

Roberson, 2003.
J. Roberson, ‘‘ULE: A Modern Scheduler For FreeBSD,’’ Proceedings of
BSDCon 2003, September 2003.

Sanderson et al., 1986.
T. Sanderson, S. Ho, N. Heijden, E. Jabs, & J. L. Green, ‘‘Near-Realtime
Data Transmission During the ICE-Comet Giacobini-Zinner Encounter,’’
ESA Bulletin, vol. 45, no. 21, 1986.

Schimmel, 1994.
C. Schimmel, UNIX Systems for Modern Architectures, Symmetric
Multiprocessing, and Caching for Kernel Programmers, Addison-Wesley,
Reading, MA, 1994.

Back Page 134

