
Stefan Parvu

Client Solutions

stefan.parvu@sun.com

Solaris 10 New Features

Agenda

● What's New ?
● N1 Grid Containers - Zones
● Dynamic Tracing - DTrace
● Predictive Self Healing - SMF
● Java Desktop System - JDS

What's New ?
● N1 Grid Containers - Zones
● Dynamic Tracing - DTrace
● Predictive Self Healing - SMF
● Security - privileges(5)
● A new file system: ZFS
● Desktop: JDS based on Gnome 2.6
● Solaris on Sparc, x86 and AMD Opteron
● Java 1.5
● A new logo !

What's New ?
Janus Linux Compatibility
● A LSB compliant environment, under

Solaris x86, to execute unmodified Linux
binaries

● You can develop Linux applications on
Solaris taking advantage of its
performance, scalability and security,
even your production is RHAS !

● Next-generation lxrun replacement
● lxrun = user-space emulation layer
● Janus = direct support of Linux kernel interfaces

Agenda

● What's New ?
● N1 Grid Containers - Zones
● Dynamic Tracing - DTrace
● Predictive Self Healing - SMF
● Java Desktop System - JDS

N1 Grid Containers - Zones
● A new isolation primitive for Solaris:

secure, flexible, scalable and lightweight
● Isolations: Partitioning/Domains, VMs,

software partitions (Zones, Jails, Linux
Vservers)

● Reduce costs by running multiple
workloads on same system and isolates
applications from each other

● Resource management framework +
Zones = N1 Grid Containers

Zones: Global and Non-Global

global zonewww.myshop.com

NetFS

SunOne
Web server

zone: www

NetFS

J2EE BEA
Weblogic

zone: j2ee

NetFS

Oracle 10g
Database

zone: db

NetFS

Primary Zone States
● Configured: The configuration is done and

committed to stable storage
● Installed: Packages have been installed

under the zone's root file system
● Ready: Virtual platform it is up: logical

network interfaces are plumbed, file
systems are mounted, devices are
created /dev

● Running: User processes are executing in
the zone

Configuring a Zone

Use zonecfg(1M) to start configuring a zone

● zonepath: path in the global zone root directory
under which zone will be installed

● autoboot: to boot or not to boot when the global zone
boots

● pool: resource pool to which zone should be bound
● fs: file system
● net: network device
● device: device
● inherit-pkg-dir: directory inherited from the global

zone

Configuring a Zone
Start configuring a zone under /zone/1

zoneadm list -vc
 ID NAME STATUS PATH
 0 global running /

chmod -R 700 zone
ls -lap /zone
total 6
drwx------ 3 root root 512 Nov 20 22:53 ./
drwxr-xr-x 40 root root 1024 Nov 20 22:53 ../
drwx------ 2 root root 512 Nov 20 22:53 1/

zonecfg -z zone1
zone1: No such zone configured
Use 'create' to begin configuring a new zone.
zonecfg:zone1> create
zonecfg:zone1> set zonepath=/zone/1
zonecfg:zone1> set autoboot=true

Configuring a Zone
zonecfg:zone1> add net
zonecfg:zone1:net> set address=192.168.1.20
zonecfg:zone1:net> set physical=iprb0
zonecfg:zone1:net> end
zonecfg:zone1> info
zonepath: /zone/1
autoboot: true
pool:
inherit-pkg-dir:
 dir: /lib
inherit-pkg-dir:
 dir: /platform
inherit-pkg-dir:
 dir: /sbin
inherit-pkg-dir:
 dir: /usr
net:
 address: 192.168.1.20
 physical: iprb0

zonecfg:zone1>
zonecfg:zone1> verify
zonecfg:zone1> commit
zonecfg:zone1>

Configuring a Zone
Lets check our zone, zone1

zonecfg -z zone1 info
zonepath: /zone/1
autoboot: true
pool:
inherit-pkg-dir:
 dir: /lib
inherit-pkg-dir:
 dir: /platform
inherit-pkg-dir:
 dir: /sbin
inherit-pkg-dir:
 dir: /usr
net:
 address: 192.168.1.20
 physical: iprb0

And now lets check all zones

zoneadm list -vc
 ID NAME STATUS PATH
 0 global running /
 - zone1 configured /zone/1

Installing a Zone
Next, install the zone using zoneadm(1M)
zoneadm -z zone1 install
Preparing to install zone <zone1>.
Creating list of files to copy from the global zone.
Copying <97980> files to the zone.
Initializing zone product registry.
Determining zone package initialization order.
Preparing to initialize <1157> packages on the zone.
Initialized <1157> packages on zone.
Zone <zone1> is initialized.
...
The file </zone/1/root/var/sadm/system/logs/install_log> contains a
log of the zone installation.

zoneadm list -vc
 ID NAME STATUS PATH
 0 global running /
 - zone1 installed /zone/1

Booting a Zone
And then boot and start using the zone:

zoneadm -z zone1 boot
zoneadm list -vc
 ID NAME STATUS PATH
 0 global running /
 1 zone1 running /zone/1

ping 192.168.1.20
192.168.1.20 is alive

zlogin -C zone1

uname -a
SunOS zone1 5.10 s10_72 i86pc i386 i86pc

Zone Security
● A zone has a security boundary around it
● Cannot compromise another zone or

entire system
● Processes running in non-global zones are

not able to affect activity in other zones
● Global zone root user can do and see

everything
● Restrictions: loading/unloading kernel

modules, accessing kernel memory,
details of physical resource are hidden

Process Model in a Zone
● Processes in the same zone interact as

usual
● Processes may not see or interact with

processes in other zone
● Information via proc(4) for processes from

that zone only
● Each active zone contains a process zsched
● The process tree in a zone is rooted at the

zsched
● Global zone is able to see processes in all

zones

File Systems in a Zone
● Virtualized view of the file system

namespace
● The root of the zone is $zonepath/root

and it is part of the configuration
● Processes cannot escape out of a zone
● Private: / , /etc and /var
● Shared: /usr, /lib, /platform and /sbin

read-only loopback mounts, lofs(7FS) from
global zone and /proc /etc/mnttab are
virtualized for each non-global zone

Networking in a Zone
● Single TCP/IP stack for the entire system
● Zones are assigned one or more IPv4/IPv6

addresses
● Zones cannot view another zone's

network traffic but inter-zone traffic is
permitted

● When a zone is booted a logical interface
is plumbed for each of its addresses

● Except for ICMP, raw IP socket access is
not allowed within zone

More information ?

Sun BigAdmin site
http://www.sun.com/bigadmin/content/zones/

Man pages:
getzoneid(3C), getzoneidbyname(3C)
getzonenamebyid(3C)
zcons(7D), zlogin(1)
zoneadm(1M), zonecfg(1M)
zonename(1), zones(5)

Agenda

● What's New ?
● N1 Grid Containers - Zones
● Dynamic Tracing - DTrace
● Predictive Self Healing - SMF
● Java Desktop System - JDS

Dynamic Tracing - DTrace
● A new power tool for real-time analysis

and debug. System and process centric
● Hard to debug transient problems with:

truss(1), pstack(1), prstat(1)
● Only mdb(1) designed for systemic

problems but only for postmortem
analysis

● Designed for live production systems: a
totally safe way to inspect live data on
production systems

Dynamic Tracing - DTrace
● Safe and comprehensive: over 30.000

data monitoring points, inspect kernel
and user space level

● Reduced costs: solutions usually found in
minutes or hours not days or months.

● Flexibility: DTrace lets you create your
own custom programs to dynamically
instrument the system

● No need to instrument your applications,
no need to stop or restart them

Concepts
● Probe: it is a point of instrumentation,

made available by a provider, which has
a name

- defined as (provider: module: function: name)
E.g.: syscall::read:entry

● Provider: a methodology for
instrumenting the system. Makes
available all know probes e.g. syscall,
lockstat, fbt

Concepts
● Consumer: a process which interacts

with DTrace, dtrace(1) for instance
● D Language: a simple dynamically

interpreted language what dtrace uses.
It is like a C language with some
constructs similar with awk(1)

- Supports ANSI C operators, support for strings
- D expressions based on built-in variables: pid,
execname, timestamp, curthread

Concepts
● D Language:

- Actions: are taken when a probe fires. You can use
trace() which records the result of trace into a
specific buffer. Actions are indicated by following a
probe specification with “{ action }”
E.g:
dtrace -n BEGIN'{trace(“Im here”); exit(0)}'

- Predicates: allow actions to only be taken when
certain conditions are met. A predicate has this
form : “/predicate/”
E.g:
dtrace -n syscall:::entry'/execname==”mozilla-bin”/{...}'

Hello World
BEGIN
{
trace("hello, world");
exit(0);
}

Call it from a script:
dtrace -s hello.d
dtrace: script 'hello.d' matched 1 probe
CPU ID FUNCTION:NAME
 0 1 :BEGIN hello, world

or from command line:
dtrace -q -n BEGIN'{ trace("Hello world"); exit(0) }'
Hello world
#

Behind DTrace
● Compilation: D programs are compiled

into a safe intermediate form that is used
for execution when your probes fire which
is validated by
DTrace.

Behind DTrace
● Programming mistake: DTrace will report

your error to you, disable your
instrumentation

● Execution environment: DTrace also
handles any run-time errors: dividing by
zero, dereferencing invalid memory, and
so on, and reports them to you

● Safe: you can never construct a bad script
that would cause DTrace to damage the
Solaris kernel or one of the processes
running on your system

A simple case
Listing all probes offered by different providers:
dtrace -l | more
 ID PROVIDER MODULE FUNCTION NAME
 1 dtrace BEGIN
 2 dtrace END
 3 dtrace ERROR
 4 syscall nosys entry
 5 syscall nosys return
 6 syscall rexit entry
 7 syscall rexit return
 8 syscall forkall entry
 9 syscall forkall return
 10 syscall read entry
 11 syscall read return
 12 syscall write entry
 13 syscall write return
 14 syscall open entry
 15 syscall open return
 ...

A simple case
Count all probes offered by all providers:

dtrace -l | wc -l
 39270

Count all probes offered by the syscall provider:
dtrace -l -P syscall | wc -l
 451

Count all probes offered by the ufs module:
dtrace -l -m ufs | wc -l
 900

How to enable a proble: run dtrace without -l
dtrace -q -n BEGIN'{trace("Hello World");}'
Hello World

A simple case
What's happening on my system:
dtrace -n syscall:::entry

Which applications are using these system calls
dtrace -n syscall:::entry'{trace(execname)}'

We want to aggreagate on each application name:
dtrace -n syscall:::entry'{@[execname] = count()}'
^C

ssh 3243
metacity 3270
wnck-applet 4040
search 9072
mv 9316
awk 15630
Xorg 16239
sort 26578
sh 41929
tar 151067

A simple case
What “tar” is doing on my system ?
dtrace -n syscall:::entry'/execname==”tar”/{@[probefunc] = count
()}'
dtrace: description 'syscall:::entry' matched 228 probes
^C

 waitsys 13
 exece 13
 vfork 13
 sigpending 13
 lstat64 14
 ...
 brk 196
 write 201
 mmap 210
 lseek 420
 llseek 6862
 read 7967

A simple case
We will try to find out what process is and get its pid
dtrace -n syscall:::entry'/execname=="tar"/{@[pid] = count()}'
dtrace: description 'syscall:::entry' matched 228 probes
^C

 3898 5
 3873 5
 3893 5
 3878 5
 3857 145
 3917 206
 3862 558
 3882 559

 3877 565
 3902 566
 3912 567
 3907 568

A simple case
We know now: that there are many “tar” processes
running, but what file(s) and who is the user ?
dtrace -s /usr/demo/dtrace/iosnoop.d
 DEVICE FILE RW
 sd1 /export/home/stefan/archivelibs.tar W
 sd1 <none> R
 sd1 <none> W
 sd1 /var/tmp/stmAAAzJa43n.00000001 W
 sd1 /export/home/stefan/archivelibs.tar W
 sd1 /var/tmp/stmAAAyNaG4n.00000001 W
 sd1 /export/home/stefan/archivelibs.tar W

dtrace -s /usr/demo/dtrace/whoio.d
^C
 DEVICE APP PID BYTES
 sd1 tar 12393 12288
 sd1 tar 12413 12288
 sd1 tar 12358 16384
 sd1 tar 12388 16384

...

A simple case
We found the filename, the process name and we
know that there are many tar processes running from
time to time. But why !?
ptree `pgrep tar`
7 /lib/svc/bin/svc.startd
 233 /usr/lib/saf/sac -t 300
 249 /usr/lib/saf/ttymon
 330 /usr/lib/saf/ttymon -g -d /dev/console -l console -T sun-
color -m ldterm,ttcomp
511 /lib/svc/bin/svc.startd
 609 /usr/lib/saf/sac -t 300
 612 /usr/lib/saf/ttymon
 617 /usr/lib/saf/ttymon -g -d /dev/console -l console -T sun-
color -m ldterm,ttcomp
2170 /usr/bin/gnome-terminal
 2191 ksh
 6221 /bin/ksh -p ./search
 16107 tar uvf /export/home/stefan/archivelibs.tar ./
iconv/amd64/UTF-32LE%UTF-8.so

Solution: A simple case
One of developers was working to one script, called
search:
...
while true
do
 ...
 for file in $(find /usr/lib/iconv -type f -name *.so)
 do
 tar cvf ${HOME}/archivelibs.tar $file 2>&1 > /dev/null
 done
 ...
done

So, that's why dtrace was reporting us lots of tar
processes running. The developer fixed the code as:

Solution: A simple case

...
while true
do
 ...
 tar cvf ${HOME}/archivelibs.tar $(find /usr/lib/iconv -type f -name
*.so) 2>&1 > /dev/null
 ...
done

At the end: using DTrace we were able to
detect a slow and bad written application,
to see what this was executing and to
report and fix the problem !

More information ?

Sun BigAdmin site
http://www.sun.com/bigadmin/content/dtrace/

Man pages:
dtrace(1M), dtrace(7D)
libdtrace(3LIB)

Agenda

● What's New ?
● N1 Grid Containers - Zones
● Dynamic Tracing - DTrace
● Predictive Self Healing - SMF
● Java Desktop System - JDS

Predictive Self Healing - SMF
● New approach to service availability

● Error detection & aggregation, auto recovery
● Reduced downtime

● Components proactively offlined before failure
● Automatic service restart
● Diagnosis & mitigation in milliseconds, not hours

● Reduced complexity
● Simplified error reporting
● All system & service interdependencies recorded and

correlated
● Reduced costs

● Reduced system downtime, increased utilization

Predictive Self Healing - SMF

● User-friendly error messages
with impact and action statements

● All events are managed and
coordinated through a single
fault manager service

App

CPUCPU

UFS

MD

SD

PCI

Fault
Manager

SUNW-MSG-ID: SFV440-8000-A6, TYPE: Fault, VER: 1, SEVERITY: Major
EVENT-TIME: Thu Feb 26 18:08:26 PST 2004
PLATFORM: SUNW,Sun-Fire-V440, CSN: -, HOSTNAME: mix
SOURCE: cpumem-diagnosis, REV: 0.1
EVENT-ID: 322fe6d5-fe14-6a73-b802-cc6c30b2afcd
DESC: The number of errors associated with this CPU has exceeded acceptable levels.

Refer to http://sun.com/msg/SFv440-8000-A6
for more information.

AUTO-RESPONSE: An attempt will be made to remove the affected CPU from service.
IMPACT: Performance of this system may be affected.
REC-ACTION: Schedule a repair procedure to replace affected CPU.

Predictive Self Healing - SMF
The Service Management Facility smf(5)
provides a new infrastructure enlarging the
traditional UNIX start-up scripts, init run
levels and configuration files:

● An infrastructure to start and restart services
automatically

● A mechanism to formalize relationships between
services

● A repository for storage of service startup behavior and
configuration information

Predictive Self Healing - SMF
Components:

– svcs(1) service status listings, diagnosis
– svcadm(1M) administrative actions
– svccfg(1M) general property manipulation
– svcprop(1) property reporting
inetd(1M)specific support:
– inetadm(1M) administrative property mods
– inetconv(1M) conversion of legacy inetd.conf
private commands:
– lsvcrun(1) run legacy rc*.d scripts
– mfstscan(1) detect updated manifests

Predictive Self Healing - SMF
svcs(1) in action

list active instances, sorted by state and time
show dependencies (-d)
show member processes (-p) and additional info (-v)

$ svcs
STATE STIME FMRI
legacy_run Nov_25 lrc:/etc/rc3_d/S84appserv
legacy_run Nov_25 lrc:/etc/rc3_d/S84patchserver
legacy_run Nov_25 lrc:/etc/rc3_d/S90samba
online Nov_25 svc:/system/fmd:default
online Nov_25 svc:/platform/i86pc/kdmconfig:default
online Nov_25 svc:/system/console-login:default
online Nov_25 svc:/milestone/multi-user:default
online Nov_25 svc:/milestone/multi-user-server:default
online Nov_25 svc:/system/zones:default
offline Nov_25 svc:/application/print/ipp-listener:default
offline Nov_25 svc:/application/print/rfc1179:default

Predictive Self Healing - SMF
$ svcs -p /network/ssh:default
STATE STIME FMRI
online Nov_25 svc:/network/ssh:default
 Nov_25 124 sshd
$ svcs -d /network/ssh:default
STATE STIME FMRI
online Nov_25 svc:/network/loopback:default
online Nov_25 svc:/system/filesystem/usr:default
online Nov_25 svc:/system/cryptosvc:default

$ svcs -v /network/ssh:default
STATE NSTATE STIME CTID FMRI
online - Nov_25 27 svc:/network/ssh:default
$ svcs -x
svc:/application/print/server:default (LP Print Service)
 State: disabled since Thu Nov 25 19:36:15 2004
Reason: Disabled by an administrator.
 See: http://sun.com/msg/SMF-8000-05
 See: lpsched(1M)
Impact: 2 dependent services are not running. (Use -v for list.)

More information ?

Sun BigAdmin site
http://www.sun.com/bigadmin/content/selfheal/

Man pages:
smf(5)
svcs(1),svcadm(1M)
svccfg(1M), svcprop(1)
inetadm(1M), inetconv(1M)

Agenda

● What's New ?
● N1 Grid Containers - Zones
● Dynamic Tracing - DTrace
● Predictive Self Healing - SMF
● Java Desktop System - JDS

Java Desktop System - JDS
●Open
●Cost Effective
●Reliable
●Secure

More information ?

Sun BigAdmin site
http://wwws.sun.com/software/javadesktopsystem/

Man pages:
evolution(1)
jds-help(1), gnome-*(1)

Thank You !

Stefan Parvu

Client Solutions

stefan.parvu@sun.com

