®

(intel

Intel® 965 Express Chipset
Family and Intel® G35 Express
Chipset Graphics Controller PRM

Programmer’s Reference Manual (PRM)

Volume 4: Subsystem and Cores

January 2008

Revision 1.0d

Technical queries: ilg@linux.intel.com

www.intellinuxgraphics.org



Creative Commons License

You are free:

to Share — to copy, distribute,display, and perform the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor (but not in any
way that suggests that they endorse you or your use of the work).

No Derivative Works. You may not alter, transform, or build upon this work.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT
AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY,
OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended
for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from
future changes to them.

The Intel® 965 Express Chipset family and Intel® G35 Express Chipset may contain design defects or errors known as errata
which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

I2C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the I12C bus/protocol and was
developed by Intel. Implementations of the I2C bus/protocol may require licenses from various entities, including Philips
Electronics N.V. and North American Philips Corporation.

Intel and the Intel are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.
Copyright © 2008, Intel Corporation. All rights reserved.


http://creativecommons.org/licenses/by-nd/3.0/us/�

Contents

gl /e T [ 6T o o PP 19
1.1 Notations and CoNVENTIONS ...viiiriiie i s aneranernens 21
1.1.1 Reserved Bits and Software Compatibility .......ccooeviiiiiiiiiiiinnn, 21

1.2 B IC= 1.0 1 o Lo T Y PP 21
SUDSYSTEM OVEIVIEW . eie ittt et e e e e et e e e e e e e e e raensnaeananes 33
2.1 INErOdUCHION .t 33
2.2 S 010 TS3VZS1 <] 0 o T o o] Lo e | PP 33
2.3 Execution UNits (EUS) tiviiiiiiiiiii i ittt vt e e e e s an e e v anenaneenens 34
2.4 Thread DispatChing . ...ciie i e e ane e raneranens 34
2.5 Shared FUNCHIONS ..t e aaneanes 35
2.6 N ST Y= o 1= 36
2.6.1 Message Register File (MRF) ..o 38

2.6.2 Send INSErUCtioN .oovi 38

2.6.3 Creating and Sending @ MESSAge .....uvviiviiiiiiiiiiiiiiii i ierieaneaneas 39

2.6.4 Message Payload Containing a Header..........ccoooviiiiiiiiii i 40

2.6.5 WHEEDACKS et e 40

2.6.6 Message Delivery Ordering RUI€S .....ocviiiiiiiiii i 40

2.6.7 Execution Mask and MeSSages......cvvvviiiiiiiiiiiiiiiieiieieeneeneans 41

2.6.8 End-Of-Thread (EOT) MESSAQE ....cviuiieiiieiiiieieeeeeie e e e aeeaas 41

2.6.9 P OrMaANCE .ttt 42

2.6.10 Message Description SyntaX......ooevviiiiiiiii i e e 43

2.6.11  MESSAGE EFTOrS «uuiiiiiiiiiii it e e s e ran e aaereess 43
[7=T 0] 8 T o 1 T [ 45
3.1 gl e T [ BT o o PP 45
3.2 The Snapshot MechanisSm .......oooiuiiii e 46
3.2.1 Debug Trigger COUNTEIS ...vviieiii i i i e e ane e 47

3.3 Fixed FUNction DebuUg ProCeSS ......ouieiiiiiiiiii e 47
3.3.1 OVEIVIEBW 1ttt e e aes 47

3.3.2 Vertex Shader DebUQg ... ..ooviiiiiii i 48

3.3.3 SVG DEDUG e 49

3.3.3.1 SVG_CTL —Debug Control ......cccviiiiiiiiiiiiiiee 49

3.3.3.2 SVG_RDATA—Debug Return Data ..........ccoevvivviiiiennnnnn. 49

3.3.3.3 SVG_WORK_CTL—Debug Workaround Control .............. 50

3.3.4 VerteX FetCh ..o 50

3.3.4.1 VF_CTL—Debug Control.........ccoiviiiiiiiiiiiiieiee e 51

3.3.4.2 VF_STRG_VAL—Debug Snapshot Trigger Value ............. 52

3.3.4.3 VF_STR_VL_OVR —Debug Start Vertex Location Override52

3.3.4.4 VF_VC_OVR —Debug Vertex Count Override................. 52

3.3.4.5 VF_STR_PSKIP —Debug Starting Primitives Skipped ...... 53

3.3.4.6 VF_MAX_PRIM —Debug Max Primitives ............ccoeevuennn. 53

3.3.4.7 VF_RDATA —Debug Return Data.........ccocevvvviniinnnennnnnn. 53

3.3.5 VerteX Shader. . it 54

3.3.5.1 VS_CTL —Debug Control........ccoiviiiiiiiiiiiiiiieieeee 55

3.3.5.2 VS_STRG_VAL—Debug Snapshot Trigger Value............. 55



3.4

3.3.5.3 VS_RDATA —Debug Return Data.........coccvveviviiiiinnnnnens 56
3.3.6 Geometry Shader.... ..o 56
3.3.6.1 GS_CTL —Debug Control .....cccoviiiiiiiiiiiieee 57
3.3.6.2 GS_STRG_VAL —Debug Snapshot Trigger Value............ 58
3.3.6.3 GS_RDATA —Debug Return Data ........ccoovvivviiiiiiieinnnnn, 58
3.3.7 (@[T 0= PP 59
3.3.7.1 CL_CTL—Debug Control.......c.ccviviiiiiiiiiiiiiiiiieeea 60
3.3.7.2 CL_STRG_VAL—Debug Snapshot Trigger Value ............. 61
3.3.7.3 CL_RDATA—Debug Return Data..........ccoveviviiniinnnnnnnnnn. 61
3.3.8 SEFIPS FaANS et 62
3.3.8.1 SF_CTL —Debug Control........ccoiviiiiiiiiiiiiieee 63
3.3.8.2 SF_STRG_VAL—Debug Snapshot Trigger Value ............. 64
3.3.8.3 SF_MIN_PR_IND—Debug Minimum Primitive Index........ 64
3.3.8.4 SF_MAX_PR_IND—Debug Maximum Primitive Index ...... 64
3.3.8.5 SF_CLIP_RMIN- Debug Clip Rectangle Minimum
CoOrdiNAtES v 65
3.3.8.6  SF_CLIP_RMAX—Debug Clip Rectangle Maximum
CoOrdiNAtES 1.vitii i 65
3.3.8.7 SF_RDATA—Debug Return Data..........ccooeviiiiiiiiinnnnnne. 65
3.3.9 Windower / Intermediate Z........cooiiiiiiiiii 66
3.3.9.1 WIZ_CTL—Debug Control......c.coviiiiiiiiiiiiiieia e 68
3.3.9.2 WIZ_STRG_VAL —Debug Snapshot Trigger Value........... 69
3.3.9.3 WIZ_RDATA—Debug Return Data...........cevvivviinvninnnnnnns 69
3.3.10  Video Front ENd ...eviiiiiii i e 70
3.3.10.1 VFE_CTL—Debug Control .......ccvvviiiiiiiiiiiiiiciee e 70
3.3.10.2 VFE_STRG_VAL—Debug Snapshot Trigger Value............ 70
3.3.10.3 VFE_RDATA—Debug Return Data...........ccoevvivviiiiennnnnn. 71
GG T R I o1 <YYo IS o = 1 1= o PP 71
3.3.11.1 TS_CTL—Debug Control.......cocviiiiiiiiiiiiiiiiee e 72
3.3.11.2 TS_STRG_0-6VAL—Debug Snapshot Trigger R0.6 Value .73
3.3.11.3 TS_STRG_0-7VAL—Debug Snapshot Trigger R0.7 Value .73
3.3.11.4 TS_RDATA—Debug Return Data..........ccoceviviiniiiiiennnnnn. 73
3.3.11.5 Parent Thread Recommendations .........c.ccovviviiinieinnnnn. 74
Shared FUNCHION DEDUQG . ..uviiiii e 75
3.4.1 Thread DispatCher ... e 75
3.4.1.1 TD_CTL—Debug Control......ccccvuiiiieiiiiiiiiiiie e 75
3.4.1.2 TD_CTL2—Debug Control 2 .......ccoiviiiiiiiiiiiiiiieeee 76
3.4.1.3 TD_VF_VS_EMSK—Debug VF/VS Execution Mask........... 77
3.4.1.4 TD_GS_EMSK—Debug GS Execution Mask.................... 77
3.4.1.5 TD_CLIP_EMSK—Debug Clipper Execution Mask............. 77
3.4.1.6 TD_SF_EMSK—Debug SF Execution Mask ..............c...e... 78
3.4.1.7 TD_WIZ_EMSK — Debug WIZ Execution Mask .............. 78
3.4.1.8 TD_0-6_EHTRG_VAL—Debug R0.6 External Halt Trigger
ValUE e e 78
3.4.1.9 TD_0-7_EHTRG_VAL—Debug R0.7 External Halt Trigger
ValUE e 79
3.4.1.10 TD_0-6_EHTRG_MSK—Debug R0.6 External Halt Trigger
MK ettt ettt 79
3.4.1.11 TD_0-7_EHTRG_MSK—Debug R0.7 External Halt Trigger
= =] P 79
3.4.1.12 TD_RDATA—Debug Return Data..........ccovvviviiniiiiinnnnnnn. 80
3.4.1.13 TD_TS_EMSK—Debug TS Execution Mask..................... 80
3.4.2 Math Unit .. e 80
3.4.2.1 MATH_CTL—Math Debug Control..........coceviiiiiiiininnnne. 80

3.4.2.2 MATH_RDATA—Math Debug Return Data...................... 82



3.4.3 INStruction / State CaChB. ittt i e raaas 82
3.4.3.1 ISC_CTL—Instruction / State Debug Control ................. 82
3.4.4 INSEruction L1 CaChe .o et e e e 83
3.4.4.1 ISC_L1CA_CTR—Instruction L1 Cache Debug Control..... 83
3.4.4.2 ISC_L1CA_RDATA—Instruction L1 Cache Debug Return
DAt . e 83
3.4.4.3 ISC_L1CA_BP_ADR1—Instruction L1 Cache Breakpoint
Address 1 Control .....oceiiiiiiiiiiic 84
3.4.4.4 1ISC_L1CA_BP_ADR2—Instruction L1 Cache Breakpoint
Address 2 Control .....cceiiiiiiiiii 84
3.4.4.5 ISC_L1CA_BP_OPC1l—Instruction L1 Cache Breakpoint
Opcode 1 Control...uiceiiiiiii i e e 85
3.4.4.6 ISC_L1CA_BP_OPC2—Instruction L1 Cache Breakpoint
Opcode 2 CoNtrol......eieiiiiiii e 85
3.4.5 Message Arbiter ... 86
3.4.5.1 MA_DEBUG_1—Message Arbiter Debug Control ............. 87
3.4.6 Sl it 88
3.4.6.1 SAMPLER_CTL—Sampler Debug Control .............cccevnvee. 88
3.4.6.2 SAMPLER_RDATA—Sampler Debug Return Data ............ 89
3.4.7 Data PO e e e 89
3.4.7.1 DP_CTL—Data Port Debug Control.........ccvvvievieiininnnen. 89
3.4.7.2 DP_RDATA—Data Port Debug Return Data.................... 90
3.4.8 RENAEr CaChe .o e e 91
3.4.8.1 RC_CTL—RC Debug Control.......ccviiiiiiiiiiiiininennnns 91
3.4.8.2 RC_DEF_CLR—RC Debug Force Default Color................ 91
3.4.8.3 RC_RDATA—RC Debug Return Data.........ccoevvvieinnninnnnn. 92
3.4.9 Unified Return Buffer (URB) ......cciiiiiiiiiiiiii e 92
3.4.9.1 URB_CTL—URB Debug Control.........cccevviiiiniiiniiinnnnnnns 92
3.4.9.2 URB_RDATA—URB Debug Return Data..........c.ccocvvuvnnens 93
3.4.10 Thread SPaWNer (TS) ...ciuiiieieie e reae e aaearaeaeanns 94
3.5 Attention Signaling from EU to HOSE.....ccviiiiiiii e 94
3.5.1 EU_CTL—EU Debug Control ......cccciiiiiniiiiiiiiii e e 95
3.5.2 EU_ATT—EU Debug Attention........cooiiiiiiiii e 95
3.5.3 EU_ATT_DATA—EU Debug Attention Data........cocevvvvviiiiiininnnnnnns 95
3.5.4 EU_ATT_CLR—EU Debug Attention Clear..........covvviiiiiiiiiiinieinnne, 96
3.5.5 EU_RDATA—EU Debug Return Data .......cccveviiiiiiiiiiiiiiiiieeeee 96
3.6 BreaKPOINES vttt e 97
3.6.1 SiNgle SEEPPING . eieii e 97
3.6.2 Modification of Instruction Stream .......cooiiiiiiiiiiiiii e 98
3.7 ST Y= o T e o] P 98
3.7.1.1  Error-Types Visible to the Arb........cooiiiiiiiii 98
3.7.1.2 Non-pipelined S/F Operation..........ccooviiiiiiiiiiiiiniinens 99
= a0 g T = T |1 Y= 101
4.1 Texture Coordinate ProCeSSING ..o.ivviiiiiiiii i reeneas 102
4.1.1 Texture Coordinate Normalization.......ccocoviiiiiiiiiii e 102
4.1.2 Texture Coordinate Computation ..o 102
4.2 Texel Address GENEIratiON .. .uiiiii i i i i e e e rneeaaanes 103
4.2.1 Level of Detail Computation (Mipmapping) .....ccoevveiiiiieiiiiieinnnn. 104
4.2.1.1 Base Level Of Detail (LOD) .....ccvviiieiiieiiiiiieieae e 104
A X0 1 = T =T 105
4.2.1.3 LOD Pre-Clamping ...cooieiiriiiniiieii i i i snnesanennnens 105
4.2.1.4 Min/Mag Determination ........cccoviviiiiiiiiiii s 105
4.2.1.5 LOD Computation Pseudocode ..........ccouvvieiniieinnnnnnnn. 106



4.2.2 Inter-Level Filtering SetUP «.vvvviviiiiiii e 107

4.2.3 Intra-Level Filtering Setup .....ccoveiiiii e 107
4.2.3.1  MAPFILTER _NEAREST ...ttt e 108

4.2.3.2  MAPFILTER_LINEAR ..ottt 108

4.2.3.3  MAPFILTER_ANISOTROPIC ....cviviniiiiiiiiiiiniiee e, 109

4.2.3.4  MAPFILTER_MONO ..ot e eee 110

4.2.4 Texture Address CONtrol.......ovviiiiiii e 112

4.2.4.1 TEXCOORDMODE_WRAP Mode........cocvvviiiniiiiiiiniinnnn, 113

4.2.4.2 TEXCOORDMODE_MIRROR Mode........cooviinininiinininnnn, 113

4.2.4.3 TEXCOORDMODE_MIRROR_ONCE Mode.........ccvvvuvnene. 113

4.2.4.4 TEXCOORDMODE_CLAMP MOde......cevviniienneeinanenenn. 114

4.2.4.5 TEXCOORDMODE_CLAMPBORDER Mode..........cvvvuinnn. 114

4.2.4.6 TEXCOORDMODE_CUBE Mode ......cceviiiniiiiiiiniean, 114

4.3 QL= G 1= o] PP 115
4.3.1 Texel Chroma KeYiNg ..vuviviiie it seneeneeaes 115
4.3.1.1 Chroma Key Testing......cccooeiuiiiniiieiiiiiiiie e 115

4.3.1.2 Chroma Key Effects......cccovviiiiiiiiies 116

4.4 Shadow Prefilter ComMPare ...viii i e 116
4.5 L2 G 11 0=] o o o [ PP 117
4.6 Texel Color Gamma Linearization.......cooviiiiiiiiiiii e 117
4.7 ] 0 118
4.7.1 BINDING _TABLE_STATE ...ttt 118

4.7.2 SURFACE _STATE ..ttt 118
4.7.2.1  FOr MOSt MESSAQGES.....iviiviiiiiiiii i seas 119

4.7.3 SAMPLER _STATE ..ttt ittt e e raenenes 142
4.7.3.1 FOr MOSt MESSageS .. it nee e aeeeeas 142

4.7.4 SAMPLER_BORDER_COLOR_STATE ...ttt 153

4.7.5 3DSTATE_CHROMA_KEY ..ieiitiie it e e e e e e e e 154

4.7.6 3DSTATE_SAMPLER_PALETTE_LOADO ....ovviiiiiiieieieneeeeeeeeens 156

4.8 ST Y= o 1< 157
4.8.1 Initiating MeSSage ..uviiiiiiiii i 157
4.8.1.1 Message DesCriplor...ocvviiii i i e 158

4.8.1.2 Message Header .....ocvvviiiiiiiiiiiiicin e 159

4.8.1.3 Payload Parameter Definition........c.cocviiiiiiiiiiinennnn. 160

4.8.1.4 MeESSAGE TYPES .. vttt aeas 162

4.8.1.5 Parameter TYPeS .oivviiiiiiiii i i aire s rane e enneeas 165

4.8.1.6  SIMD16 Payload .........cccvviiiiiiiiiiiiiii e 166

4.8.1.7 SIMDS8 Payload.........coiuiiiiiiiiiiiiii e 167

4.8.1.8 SIMD4x2 Payload........ccovieiiiiiiiiiiie e 167

4.8.2 Writeback MESSage .. ..viiii i e 168

4.8.2.1  SIMDI16...iiiiiiiiiiiiiiiiiii 168

4.8.2.2  SIMDS .o 169

4.8.2.3  SIMDAX2 .ireiiieiiiie i e 170

1= L= T o 0 o 171
5.1 CaChE AGENES. ittt 171
5.1.1 Render CaChe ..oviviii i 172

5.1.2 Data Cache v 172

5.1.3 Sampler Cache ..o e 172

5.2 YU =Tl 172
5.2.1 Surface State Model... ..o 173

5.2.2 Stateless MOdel ... .oiiiiii i 173

5.3 Write CoOmMMIt oo 173



5.4 Read/Write Ordering . c.iueiieeiriiiii it re e e e eeraeaneas 174
5.5 ACCESSING BUFfEIS L.viviiiiii 174
5.6 Accessing Media SUMaCES ..o e 175
5.6.1 Boundary Behavior.....ccoviiiiiiii i 175

5.7 Accessing Render TargelS . ..ooiiiiiiiiii e 176
5.7.1 SINGIE SOUMCE 1.ttt e e anees 176

5.7.2 Dual Source [DeVCL-B] ..iiiiiiiiiiiiii e 176

5.7.3 Replicate Data .....oovviiiiii i 177

5.7.4 Multiple Render Targets (MRT) ..viiieiiiiiiiiii i 177

5.8 Flushing the Render Cache ... 177
5.9 5] = | = 177
5.9.1 BINDING _TABLE _STATE .. et e e e erer e aee e 177

5.9.2 SURFACE _STATE ..ttt 177

oI O T =77 T 1= 178
5.10.1 Global Definitions ......cvviiiiiiiiiiiiiii 178
5.10.1.1 Message DesCriptor...ccovveiiiiiiiiiiiiiiiiiii i raaeeaes 179

5.10.1.2 Message Header .......ooeiuiiiiiiiiiiien e 180

5.10.1.3 Write Commit Writeback Message ............coevvvvininnnnnn. 181

5.10.2 OWord Block Read/Write .....c.oviiiiiiiiiiiiniiii e, 181
5.10.2.1 Message DesCriptor...ccovveiiiiiiiiiiiiiiiiiiirineraneeaes 182

5.10.2.2 Message Payload (Write).....cooeieiiiiiiiiiiiii e 183

5.10.2.3 Writeback Message (Read) ........ccovviiiiiiiiiiiiiinninnnnnns 183

5.10.3 OWord Dual Block Read/WIite cocvviiiiiiiiiiiiiiiiiiiiiiiisnesssinnnnnnns 184
5.10.3.1 Message DesCriptor...ccovveiiiiiiiiiiiiiiiiiiiineraaeeaes 184

5.10.3.2 Message Payload ......ccoiiiiiiiiiiiiiii e 185

5.10.3.3 Additional Message Payload (Write) ........ocvvvviiiininnnnnn. 185

5.10.3.4 Writeback Message (Read) ........covvvviiiiiiiiiiiiiiiiniennne, 186

5.10.4 Media BloCk REad/ Wit iiiiiiiiiiiiiiiiiii it iiiiiiaeessiannnnes 186
5.10.4.1 Message Descriptor.......ccvveviiiiiiiiiiiiii e 188

5.10.4.2 Message Header ......oovviiiiiiiiiiiiiii e 189

5.10.4.3 Message Payload (Write)....covviviiiiiiiiiiiii i 191

5.10.4.4 Writeback Message (Read) ........cccvvvviiviiiiiiiiiiiinninnnnnns 191

5.10.5 DWord Scattered Read/WHite ....ccoviiiiiiiiiiiiciccci e 192
5.10.5.1 Message Descriptor.....c.ccvveiiiiiiiiiiiiiiii e 193

5.10.5.2 Message Payload .......cooeeiiiiiiiiiiii i 193

5.10.5.3 Additional Message Payload (Write) .......vovvvviivininnnnnns 194

5.10.5.4 Writeback Message (Read) .......ccceiviviiiiniiiiiniiiinninnns 195

5.10.6 Render Target WHte ...c.oiviiiiiii e 196
5.10.6.1 Subspan/Pixel to Slot Mapping.......cccvvevviiviiiiiiniennnn. 197

5.10.6.2 Message DesCriptor...ccuvveiiiiiiiiiiiiiiii i raaeeaes 197

5.10.6.3 Message Header .......ooeiiiiieiiiiiiieiie e 198

5.10.6.4 Stencil and Antialias Alpha Payload ..............c.coevvnnnnnt. 200

5.10.6.5 Color Payload: SIMDS8 Single Source........c.cevvvvvvnennne. 203

5.10.6.6 Color Payload: SIMD16 Replicated Data .................... 204

5.10.6.7 Color Payload: SIMDS8 Dual Source [DevCL-B]............ 205

5.10.6.8 Depth Payload........cooiiiiiiiiiii e 206

5.10.6.9 Message Sequencing SUMMaAIY ...cciveviiererineerrnneessnnees 207

5.10.7 Flush Render Cache .....coiviiiiiiiiii i e e 209
5.10.7.1 Message Descriptor.....c.ccvveviiiiiiiiiiiiii e 209

5.10.7.2 Message Payload ........cccoviviiiiiiiiiii 209

Extended Math ..o e 211
6.1 ST Y= o < 212
6.1.1 Initiating Me@SSage ..uviiiiiiiiii 212



10

6.1.1.1 Message DesCriptor....ccuviiiiiiiiiiii i 212

6.1.1.2 Scalar and Vector Mode ........c.cooeiviiiiiiiiiiiiiiieeeeae 213

6.1.1.3 Message Payload ........coocviiiiiiiiii 215

6.1.2 Writeback MESSage .. v i e 216

6.2 (=T o o] g 0 1= o ol P 217
6.3 FUNCEION REfEIENCE ..ttt e e raeenees 218
6.3.1 TNV e 218

6.3.2 LOG ittt e 218

6.3.3 E X P 219

6.3.4 1] ] 2 PP 221

6.3.5 2 P 222

6.3.6 PO Lt 222

6.3.7 SN Lttt 224

6.3.8 O 1P 225

6.3.9 SINCOS ettt 226

6.3.10  INT DIV ciiiiiiiiiiiiiiiiii e 227
MESSAGE GALEWAY .euuuineitiiiiiiii it e 230
7.1 T To T < 230
7.1.1 Message DesCriPlOr v i e 231

7.1.2 OpenGateway MESSAgE ...uvuiiiiiiiiiiiiiiiirsi i aaaeaas 231

7.1.2.1  Message Payload ........ccoviiiiiiiiii 232

7.1.2.2  Writeback MeSSage ......c.ccviviiiiiiiiiiii e 233

7.1.3 CloseGateway MEeSSAge .vviviiiriiiiiiii i aaeaas 233

7.1.3.1  Message Payload .......ccooiiiiiiiiii 233

7.1.3.2  Writeback MeSSage ......coviuiiiiiiiiiii e 234

7.1.4 FOrwardMsg MESSAgE ... .iuviiriiiiiiiii it eeas 234
7.1.4.1 Message Payload .......ccoviiiiiiiiiiiiii e 235

7.1.4.2  Writeback Message to Requester Thread .................... 236

7.1.4.3  Writeback Message to Recipient Thread...................... 236

7.1.5 GetTimeStamp MeSSagE . ..vviiii i e 237

7.1.5.1 Message Payload .......ccoiviiiiiiiiiiiiiii e 237

7.1.5.2  Writeback Message to Requester Thread .................... 238

Unified Return Buffer (URB).....c.oiuiiiiiiii e e e e e e e e 240
8.1 L= B 2= P 240
8.2 URB ACCESS 1 utiiitiiiiiti i 240
8.3 5] = | (= 241
8.4 oY= T < 241
8.4.1 EXECULION MaSK ...eieii i e 241

8.4.2 Message DeSCriptor ...uvvvviiii i 242

8.4.3 L o o T 245

8.4.3.1 URB_WRITE Message Header..........oovvviiiiiiininniinnnnnns 245

8.4.3.2 URB_WRITE Message Payload...........cccoieiviiiiniinennnne. 246

8.4.3.3  Writeback Message for URB Entry Allocate.................. 250

EXECULION UNIt IS A Lo e e e e e e e 252
9.1 INErOdUCEION e 252
9.1.1 Objective and SCOPE ....oiviiiiiii 252

9.1.2 Terms and ACIONYMS . uuuuiiitt ittt et eaae it eanseanesaneaansanneaaneanneans 252

9.1.3 Formats and ConVeNntioNS .....covviiiiiiiiiei e aes 255

O D= |t T I 0T 258
10.1 Fundamental Data Ty PeS . cuiieiiiiiiiiii i e e e e e e s 258



11

10.2  NUMENCal Data Ty DS vttt ittt i i e a e aaeaas 259
10.2.1 Unsigned INtegEers ...couiiiii i s 260
10.2.2  Signed INtEgers .ot e e 260
10.2.3 Single Precision Floating-Point Numbers .........c.covvviiiiiivininnnnnns 261
10.2.4 Packed Signed Half-Byte Integer Vector.........ccoviiiiiiiiiiiinnnnnn. 261
10.2.5 Packed 8-bit Restricted Float Vector.........cccovvviiiiiiiiiiiiiiiieees 262
10.3  Floating POINE MOAES .. uviviiiii i e e e e e e e enes 264
10.3.1 IEEE Floating POINt MOde ......civiiiiiiiiiiiir e 264
10.3.1.1 Partial Listing of Honored IEEE-754 Rules................... 264
10.3.1.2 Complete Listing of Deviations or Additional Requirements
VS. IEEE-754 .. 265
10.3.1.3 Comparison of Floating Point Numbers....................... 266
10.3.1.4 Min/Max of Floating Point Numbers...........cccvvvviveinnen. 268
10.3.2 Alternative Floating Point Mode .......ccovviiiiiiiiiiic e 272
O S Vo TSI @0} o V7= =] [ o 274
10.4.1  Float t0 INtEGEI . ittt e aees 274
10.4.2 Integer to Integer with Same or Higher Precision ....................... 274
10.4.3 Integer to Integer with Lower Precision ........ccoovviiiiiiiiininnnnnnns 275
10.4.4 Integer to FIoat....coiiiiiiiiii i e 275
EXecUtion ENVIFONMIENE .. .uiiiii e e 276
I R O Y = V1= 276
11.2  Primary Usage MoOdelS.....coiiiiiiiiiiiiii it e e e e s 277
11.2.1 AOS and SOA Data StruCtUreS.......ccviiiiiiiiiiiiii e 277
11.2.2 SIMD4 Mode of Operation.....cccvieiiiiiiiiiiiiie i aaeaas 278
11.2.3 SIMD4x2 Mode of Operation .....ccviiiiiiiiiiii i i i 279
11.2.4 SIMD16 Mode of Operation ........oovieiuiiiieiiiiei e 281
11.2.5 SIMDS8 Mode of Operation.......ccviiiiiiiiiiiiiii e 282
11.3 Registers and Register REGIONS.....uuiiiiiiiiiiiiiii e eeeaes 283
11.3.1 Register Files ...t e 283
11.3.2  GRF REGISTEIS iuviiiiiiiiiii i e 283
11.3.3 MRF REQGISTEIS ..ttt e 284
11.3.4 ARF REQISEIS vttt e 286
11.3.4.1  OVEIVIEW ceiitiiiiiiiii e e e et e e e e aeanenes 286
11.3.4.2 Access Granularity .....ooeviiiiiiiiiciiice e 287
11.3.4.3 Null Register...ccciiiiiiiiiiiii e 287
11.3.4.4 Address Register.......coiviiiiiiiiiiiii e 288
11.3.4.5 Accumulator Registers.......ccooviviiiiiiiiiiiiieieeaa 291
11.3.4.6 Flag Register.......ccoiviiiiiiiiiiiiii 294
11.3.4.7 Mask Registers .....ccvoiiiiiiiiiiiiiii i 295
11.3.4.8 Mask Stack Register.......ccoiiiiiiiiiiiii e, 297
11.3.4.9 Mask Stack Depth Register........c.coviviiiiiiiiiiiiinennne, 299
11.3.4.10 State Registers.......coviviiiiiiiiiii 302
11.3.4.11 Control Register .....ccviiiiiiiiiiiiiii e 304
11.3.4.12 Notification RegiSters ........coovveiiiiiiiiiiieeeen, 312
11.3.4.13 IP ReGISter...citiiiiiii e 314
11.3.5 Immediate ..coooiriiiiiiiii 315
11.3.6 Region Parameters ......coviiiiiiiiii e 316
11.3.7 Region Addressing MOdes ........ccouviiiniiiieiiiieiie e 321
11.3.7.1 Direct Register Addressing ........coovviiiiiiiiiiiniiinnennns. 322
11.3.7.2 Register-indirect Register Addressing with a 1x1 Index
REGION 1.t 323
11.3.7.3 Register-indirect Register Addressing with a Vx1 Index
REGION 1.t 324



12

13

10

11.3.7.4 Register-indirect Register Addressing with a VxH Index

REGION 1.ttt 325

11.3.8  ACCESS MOAES .viiuiiiiteiite ittt r e ra e aan e aeanneanneans 326

11.3.9 EXeCUtion Data Ty P . iiiiiei i it i s riee s e snne e nnneenas 327
11.3.10 Register Region Restrictions.......covviiiiiiiiiiiiii e 327
11.3.10.1 EX@MPIES ovieieiiiieiiiiie et 330

11.3.10.2 Different RaQW MOVES ....cviviiiiiiiiiiiiiininierneeneaanens 332

11.3.11 Destination Operand Description......c.ccccvviiiiiiiiiiiiciiei e 332
11.3.11.1 Destination Region Parameters ..........covevviiiiiiiinnnnnnns 332

11.4  SIMD EXeCUtion CONTIrOl...iisiiiri i v s a e s raernneaaneenneans 333
11.4.1  PrediCalion v e 333

11.4.2  NO Predication .. 334

11.4.3 Predication with Horizontal Combination ..........ccccovviiiiiiiiinnnns 335

11.4.4 Predication with Vertical Combination.............coovviviiiiiiiiiiinnnnn, 336

11.5 InStruction CoOmPreSSiON ...c.iiei it es 337
11.5.1 Motivation and Expected USage .......ccvviiiiiiiiiiiiiiiiii i eiaens 337

11.5.2  Hardware Behavior.....c.oviiiiiiiiiiiii s e nees 338

11.5.3 Rules and ReStriCtioNS.....oceiiiiiiiiiii e 340

11.5.4 Usage EXamIPles....cuoiriiiiiii et 341

3 O S T = o T o ) I o1 /== [ 344
11.7 Creating Conditional FIags ....couviiiiiiiiiii i s e e naea s 345
11.8 Destination Hazard .......coviieiiieiii i s e s ane e ane e neanneans 348
11.9  NON-Present OPErands ..co.iueeiuie ittt et eae e eeraeeaareeeaanes 348
11.10 INStruction PrefelCh ..o e 349
o= 0 o o] 1= 350
12,1 INErOodUCHION v e 350
12.2  Exception-Related Architectural Registers ........cccvviiiiiiiiiiii e 350
12.3 System ROULINE.. ..o e 351
12.3.1 General Flow of the System Routing.........c.coviiiiiiiiiiiiiiiiiieeas 351

12.3.2 Invoking the System ROULINE .....covviiiiiiiiiiii e 352

12.3.3 Returning to the Application Thread .........ccoiiiiiiiiiiiie 353

12.3.4  SYStEM-IP (SIP) iuuiiiiiiiiiii it e a 353

12.3.5 System Routine Register Space .......ccovviiiiiiiiiii i i 353

12.3.6 System-Scratch Memory SPace ......ccvviiiiiiiiiiiiii i 354

12.3.7 Conditional Instructions Within System Routines........................ 355

12.3.8 Messages in System ROULINES.......ccoviiiiiiiiiiii e 355

12.3.9  Use Of 'NODDCII .. e e e s 355

12.4  EXceplion DesCriplionS ....cviieiiiiiiiii i 357
12.4.1  'lllegal’ OPCOAE. . ittt e 357

12.4.2  Undefined OpPCOde. .. vttt e e e i 357

12.4.3 MaskStack Overflow / Underflow .......cooiiiiiiiiiiiiiiiiiiiii i 357

12.4.4 Software EXCePUiON ... .coviiiiiiiiiiiiiii e 358

12.4.5 BreaKpoint .ouoiiiii i e 358

12.4.6  External Halt ..ooiiiiiiii e 358

12.5 Events Which Do Not Generate EXCeptions .........coviiiiiiiiiiiiiiiiiiiieieeaees 359
12.6  System Handler EXample.....o.ooeiie e 360
INStrUCtiON Set SUMMIAIY ..t i e e re e e e aneeaannes 364
13.1 Instruction Set CharacteristiCs.......vviviiiiiiiiiii e 364
13.1.1 SIMD Instructions and SIMD Width ........ccoviiiiiiiiiii e 364

13.1.2 Instruction Operands and Register Regions .........ccccoviiiiiiniinnnnns 364

13.1.3  Instruction EXeCULiON .. c.viiiiiiiiiii e 365



14

13.2 Instruction Maching FOrmats ....c.viiiiiiiiiiii e 366
13.2.1  Common Instruction Fields .......ccoiiiiiiiii e 368
13.2.2 Instruction Operation Doubleword (DWO0).......coviiiiiiiiiiiiiiniinnnnns 374
13.2.3 Instruction Destination Doubleword (DW1) ....cccviiiiiiiiiiiiiiiiiinnnns 379
13.2.4 Instruction Source-0 Doubleword (DW2).....ccoovieiiiiiiiiiieiieinnnes 383
13.2.5 Instruction Source-1 Doubleword (DW3).....ccooviviiiiiiiiiiiiiniienens 387
3G J0C S @ ] o Too Yo =30 =] o Tolo Ta [ 1 T AN 393
13.3.1 Move and Logic INStructions.......cooviiiiiiiii e 393
13.3.2  Flow Control INStructionS......oovviiiiiiiie e 395
13.3.3 Miscellaneous INStruCtionS ......ciivviiiiiii i i i i e 396
13.3.4 Parallel Arithmetic INStructions.......coovviiiiiiiii e 397
13.3.5 Vector Arithmetic InStructions.......cccvviviiiiiiiiii e 398
13.3.6  Special INStructions ....oiiiiiiiii i e 399
13.4  Native Instruction BNF ... e e aaeens 400
13.4.1  INSEruCtion GrOUPS....ciiiiiei i it i e s ae s e e ranee e aannenanns 400
13.4.2 Destination Register .....cooviiiiiiiii 401
13.4.3 S0OUICE REGISLEI 1.uiiuiiiiiiiiii i 402
13.4.4 Address REGISEeIS.....iiiiiiiii i 403
13.4.5 Register Files and Register Numbers ..........cooiiiiiiiiiiiiiiiininens 403
13.4.6 Relative Location and Stack Control .........coooviiiiiiiiiiiiiiii s 404
13.4.7  REGIONS tuiiuiiiiiiiiiiit i raes 404
G NV o = 405
13.4.9  WHEE MaSK .eviiiiiiii i e e 405
13.4.10 Swizzle Control ..o 405
13.4.11 Immediate Values .....ciiiiiiiii i e 405
13.4.12 Predication and Modifiers.......cviiiiiiiiiiiiii i e rnaeas 406
13.4.13 Instruction OptioNS . cviiii et e 407
13.5 Deprecated FEatUres. ... oot 408
13.5.1 Defeatured INStruCtioNS......ccviiiiiii e 408
13.5.2  OtRerS i 408
INStruCtion Set REfEIENCE ... it s aaneanns 410
10 R e T o Y= o1 o ] =T 410
14.1.1 Pseudo Code FOrmat.....cciiiiiiiiiiiiii i e 410
14.1.2 General Macros and Definitions .......ccviviiiiiiiiiiii e 410
14.1.3 Mask Stack Operations.......c.coviiiiiiiiiiiii e 411
14.2  Instruction DesCriplion cuviiiiii i e e e e e 414
14.2.1  add — Addition ..ociieii 415
14.2.2  and — Logical AnNd....c.oiiiiiiiii i e 417
14.2.3 asr - Arithmetic Shift Right.......cccoiiiiii 419
14.2.4 @V — AVEIAQE .uiiuiiniiiiiiiii it 421
14.2.5 break — Break ..o e 422
14.2.6  CMP = COMIPAIE tiiiiriiiiie s et eaeee s aa e sanee s aaneesanneessannesaannenanns 425
14.2.7 cmpn —Compare NaN ..ot i e e 427
14.2.8 cONt — CoNtINUE .. .viiii e aee s 429
1A T o (o T I o T 431
14.2.10 dp2 — DOt ProducCt 2....ccviiiiiiiiiiiiii e ae e 432
14.2.11 dp3 — Dot Product 3. e 434
14.2.12 dp4 — DOt ProducCt 4.....coeieiiiiiie e 436
14.2.13 dph —-Dot Product HOMOgENEOUS ......c.viviiiiiiiiiiiiie e aaeees 438
14.2.14 €lSe — ElS@. vt e 440
14.2.15 endif — ENd-If oo e 442
14.2.16 frC — FraCtion oo 444
14.2.17 halt — Halt..ooooii 446

11



15

12

L < T | e 448
14.2.19 Jff = FaSt-If . e e 450
14.2.20 jmpi—Jump IndeXxed .......ccooiiiiiiiiiii 452
I 1 T IR T 454
14.2.22 1zd - Leading Zero Detection......ccooviiiiiiiiiiiiic e 456
14.2.23 mac - Multiply Accumulate .......coooiiiiiiii 458
14.2.24 mach - Multiply Accumulate High ... 459
14.2.25 MOV = MOVE 11ttt 461
14.2.26 mrest — Mask ReSTOre ....coviiviiiiiiiiiiii e 462
14.2.27 mMSAVEe — MaSK SaVe ....iiiiiitiiii i 463
14.2.28 mMul = MUIEIPIY ..o 464
14.2.29 nop — NO OpPeration ..ouicveiiii i e e e eas 467
14.2.30 NOt — LOGIC NOE .o e 468
G B oY el 1o T T o 470
14.2.32 pop — Mask Stack POP .....ccciiiiiiiiii i 472
14.2.33 push — Mask Stack PUuSh .......ccciiiiiiiii e 473
14.2.34 rndd — ROUNA DOWN ...viiiiiiiii i e se s e e ee e e e snesneeneenes 474
14.2.35 rndu = ROUNA UP ..iiiiiiiiiiiii e e e 476
14.2.36 rnde — ROUNA tO EVEN ...viiiiiiiiii i n e nnneanneans 478
14.2.37 rndz — ROUNd t0 ZEI0....iviiiiiiiiiiiii i 480
14.2.38 sad2 - Sum of Absolute Difference 2.......ccocviviiiiiiiiiiiiiiiiinenns 482
14.2.39 sada2 - Sum of Absolute Difference Accumulate 2 ..................... 484
14.2.40 S€l = SelECE viiiiiii i e e s 486
14.2.41 send — Send MESSAGE ....viiriiiiiiiiii i e 488
14.2.42 shl = Shift Left..ooieiiiiii i e 496
14.2.43 shr = Shift Right....ccouiii e 497
14.2.44 wait — Wait Notification .......coooeviiiii e 498
14.2.45 While = Whil@ . e e 500
14.2.46 XOI = LOGIC XOI 1iuutiiiiiiiiitiiiiesits e sias s saassaassaassnssaassnssansns 502
= W e Te =T a0 0 1 T [ 10T o = 504
15.1  AsSembler Pragmas ..ciiieiiii i 504
15.1.1  DecClaralions ..cieieie i e 504
15.1.2 Defaults and Defines.....cciviiiiiiiiiii i 505
15.1.3 Example Pragma USAges ......cciiiriiniiniiiiiiiiiienieanianeinesneansanenss 506
15.1.4 Assembly Programming Guidelinge..........coviiiiiiiiiiiiiiiiii i 507
T A U L=t T [l = ] L= PP 509
15.2.1 Vector Immediate.......cvviiiiiiiiiiii 509
15.2.1.1 Supporting Pixel Shader Indexing...........ooevvvinvininnnnn. 509

15.2.1.2 Supporting OpenGL Vertex Shader Instruction SWZ..... 510

15.2.2 Destination Mask for DP4 and Destination Dependency Control .... 511
15.2.3 Null Register as the Destination.........ccovviiiiiiiiiiiiiicc e 512
15.2.4 Use of LINE INSTruCtion ..oovvieiiiiiiiiii e e e 513
15.2.5 Mask for SEND INStruction......coiiiiiiiiiiiiiiiii e eeee e 515
15.2.5.1 Channel Enables for Extended Math Unit .................... 515

15.2.5.2 Channel Enables for Scratch Memory ..........c.ccoeviveinnen. 517

15.2.6  Flow Control INStructionS......viviiiiiii e ees 520
15.2.7  EXecUtion Masking.....c.oeiuiieiiiiieiiie et e e e 521
15.2.7.1 BrancChing .....cccooiiiiiiiiii e 521

15.2.7.2 Fast-Ifi e 521

15.2.7.3 Cascade Branching.......ccoviiiiiiiiiiiiiiii i iineeens 522

15.2.7.4 Compound Branches .........ccooiiiiiiiiii e 522

15.2.7.5 LOOPING iutiieiiiiiiiiiie it reas 523

15.2.7.6 Indexed JUMP iiiiiiiiiiii i eee e 526






14

Figure 2-1. Data Flow Associated With Messages .........ccocvvviiiiiiiiiiiiii 37
Figure 4-1. Normalized vs. Unnormalized Texture Coordinates...........cocvevieininennne. 102
Figure 4-2. Cube Map Coordinate Computation Example .......cccoviiiiiiiiiiiiiiiiiinnnnns 103
Figure 4-3. Bilinear Filter Sampling.....cccviiiiiiiiiii e 109
Figure 4-4. Sampling Using MAPFILTER_MONO......cciiiiiiiiiiiiiiiirreie e ieeans 111
Figure 4-5. Texture Wrap vs. Mirror Addressing Mode..........covviiiiiiiiiiiiiiiiieeen, 113
Figure 4-6. Texture Clamp MO ....cviiiiiiiiiiii e reenens 114
Figure 10-1. Fundamental data types.....cccviiiiiiiiii e 258
Figure 10-2. Integer numerical data types ......ccoviiiiiiiiiiii i 259
Figure 10-3. Floating point numerical data types ......c.cocoiiiiiiiiii e, 259

Figure 10-4. Converting a Packed Half-byte Vector to a 128-bit Signed Integer Vector261
Figure 10-5. Conversion from a Restricted 8-bit Float to a Single-Precision Float... 262
Figure 10-6. Converting a Packed Restricted Float Vector to a 128-bit Float Vector 264

Figure 11-1. AOS and SOA data StrUCLUIES .......cciviiiiiiiiii s 277
Figure 11-2. A SIMD4 EXa@MPIE 1uiiriiiiiiii it it e e s e e e e aeeereanens 279
Figure 11-3. SIMD4x2 Examples with Different Emasks ......c.ccoeviiiiiiiiiiiiiinnens 280
Figure 11-4. A SIMD4x2 Example with a Constant Vector Shared by Two Program

1o 1= 280
Figure 11-5. A SIMD16 EXampPle....ciuiiiiiiiiiiii et e e aes 281
Figure 11-6. Another SIMD16 Example with an AOS Shared Constant................... 282
Figure 11-7. Format of the Mask Stack Register ........coviiiiiiiiiiiiiiiiiienieans 299
Figure 11-8. Format of the Mask Stack Depth Register .......ccovvviiiiiiiiiiiiiiiciiennen, 301
Figure 11-9. Conventional SIMD Instruction SequencCe.........ccooviviiiiiiiiiiiiiiiieens 317
Figure 11-10. GEN4 SIMD Instruction Sequence for the Same Program................. 318

Figure 11-11. An example of a register region (r4.1<16;8,2>:w) with 16 elements 320
Figure 11-12. A 16-element register region with interleaved rows (r5.0<1;8,2>:w) 320

Figure 11-13. A region description example in direct register addressing............... 322
Figure 11-14. A region description example in direct register addressing with <src0>
as a vector of replicated scalars .......ccoooviiiiiii 323
Figure 11-15. An example illustrating register-indirect register addressing mode with a
DG A [T 1= /=T o o P 324
Figure 11-16. An example illustrating register-indirect-register addressing mode with a
VX1 indeX region (SFCO) ..cuueeiie et e e e e e e e e e aaeeananeeaeas 325
Figure 11-17. An example illustrating register-indirect register addressing mode with a
VXH iNdeX region (SFCO) . ..uueeinie it e e e e e e e e e e eaaenaeeeas 326
Figure 11-18. Generation of predication Mask ..........c.cooviiiiiiiii e, 334
Figure 11-19. Direct addressed vector operands in a compressed instruction ......... 341

Figure 11-20. A packed-word operand in a dword SIMD16 compressed instruction . 342
Figure 11-21. Dword and word (or byte) scalar source in a compressed instruction. 343
Figure 11-22. Indirect-addressed source/destination operand in a compressed
1] o 6 ot of [0 o P 343
Figure 15-1. Pixel Shader example using vector immediate..........c.cocoviiiiiiiennn. 510



Tables

Table 1-1. Supported ChipSetS .....uieiiiiii e e 19
LI Lo (R R B o o] gl - 11T PP 44
Table 8-1. URB_TRANSPOSE Payload .......ccociiiiiiiiiiiiiie i e e e 249
Table 8-2.URB_TRANSPOSE URB Destination Layout ........c.cocveveiiiiiiiniiinininiininnns 250
Table 10-1. Formats and ranges of numerical data types ........ccooviiiiiiiiiiiiiinnnns 260
Table 10-2. Example of restricted 8-bit float numbers .........ccoooviiiiiiiiiiin 263
Table 10-3. Results of “"Greater-Than” Comparison —= CMP.G.........cccoevviiiiiinennnn. 266
Table 10-4. Results of “Less-Than” Comparison = CMP.L......ccooviiiiiiiiiiiiiicieenne, 267
Table 10-5. Results of "Equal-To” Comparison — CMP.E.........cccoiiiiiiiiiiiiiiiieens 267
Table 10-6. Results of “Not-Equal-To” Comparison = CMP.NE .........c.cooviiiiiiininnnens 267
Table 10-7. Results of “Less-Than Or Equal-To” Comparison - CMP.LE.................. 268
Table 10-8. Results of “"Greater-Than or Equal-To” Comparison - CMP.GE ............. 268
Table 10-9. Results of “"Greater-Than” Comparison-NaN — CMPN.G................euees 269
Table 10-10. Results of “"Less-Than” Comparison-NaN — CMPN.L ...........coovieinininens 270
Table 10-11. Results of "Equal-To” Comparison-NaN — CMPN.E.............cc.cviennne. 270
Table 10-12. Results of "Not-Equal-To” Comparison-NaN — CMPN.NE................... 270
Table 10-13. Results of “Less-Than Or Equal-To” Comparison-NaN — CMPN.LE....... 271
Table 10-14. Results of “Greater-Than or Equal-To” Comparison-NaN - CMPN.GE.. 271
Table 10-15. Supported Legacy Float Mode and Impacted Units.........coovvvvinvinennnns 272
Table 10-16. Dismissed legacy behaviors........cooiviiiiiii i e 273
Table 11-1. Summary of GRF Registers .......ccoiiiiiiiiiiiii e 284
Table 11-2. GRF Registers Available in Device Hardware..........ccoooiieiiiiiiiiiininnns 284
Table 11-3. Summary of MRF ReGISTerS . ....c.viviiiiiiiiii i e 285
Table 11-4. MRF Registers Available in Device Hardware..........cooviviiiiiiiiieenne, 285
Table 11-5. Summary of Architecture Registers.........cvviiiiiiiiiiiiias 286
Table 11-6. Register and Subregister Numbers for Address Register.................... 288
Table 11-7. Address Register Fields ......ooviiiiiiiiiii e e 289
Table 11-8. Register and Subregister Numbers for Accumulate Register-............... 291
Table 11-9. Accumulator Channel PrecisSion......c.ocoviiiiiiiii e 293
Table 11-10. Register and Subregister Numbers for Flag Register .............c.cevntns 295
Table 11-11. Flag Register Fields.....ccoiiiiiiiiiiiiii i e e e 295
Table 11-12. Register and Subregister Numbers for Mask Register....................... 296
Table 11-13. Mask Register Fields ......cooiiiiiiiiii e 296
Table 11-14. Register and Subregister Numbers for Mask Stack Register............... 298
Table 11-15. Mask Stack Register Fields.......cuviiiiiiiiiiiiiiiiiiiiis e naenaenaans 298
Table 11-16. Overflow/Underflow Exception Trigger Value.........c.cccvviiiiiiiiiniinnnnn, 300
Table 11-17. Register and Subregister Numbers for Mask Stack Depth Register ..... 301
Table 11-18. Mask Stack Depth Register Fields..........cooiiiiiiiiiiiiiieees 301
Table 11-19. Register and Subregister Numbers for State Register...............cvuvns 302
Table 11-20. State Register Fields .....covviiiiiii i e 303
Table 11-21. Register and Subregister Numbers for Control Register .................... 305
Table 11-22. Control Register Fields ........ooeiuiiiiiii e 305
Table 11-23. Register and Subregister Numbers for Notification Register............... 312
Table 11-24. Fields of Notification Register NO......c..cviiiiiiiiiii i e 313
Table 11-25. Fields of Notification Register nl........ccoiiiiiiiiiii s 313
Table 11-26. Format of the Notification Register........c.ocoiiiiiiiiis 313
Table 11-27. Register and Subregister Numbers for IP Register ...........ccoovvvvininnns 314
Table 11-28. IP Register Fields. ......o.vuiuiiiiiiiiiii e 314



16

ntel)

Table 11-29. Execution size in device hardware.........ccoovviviiiiiiniiniie 330
Table 11-30. Indirect source addressing support available in device hardware........ 330
Table 13-1. GRF instruction execution parameters in device hardware .................. 364
Table 13-2. GEN4 InsStruction FOrMat......ocviviiiiiiiiiisiiein s e ee e nnens 367
Table 13-3. Definitions of Common Instruction Fields .........coovviiiiiiiiiiiiin 368
Table 13-4. Definitions of Fields in Operation Doubleword (DWO) .........ccovvivieinanns 374
Table 13-5. Instruction Destination Doubleword ...........coooiiiiiiiiiiees 379
Table 13-6. Destination Register Region in Direct + Align16 mode ............ccvvvvnnnns 381
Table 13-7. Destination Register Region in Direct+Alignl mode.........c..cvvvvinennne. 381
Table 13-8. Destination Register Region in Indirect+Align16 mode.............cooevuees 382
Table 13-9. Destination Register Region in Indirect+Alignl mode..............ccovvuenens 382
Table 13-10. Instruction Source-0 Doubleword in Direct+Align16 mode................ 383
Table 13-11. Instruction Source-0 Doubleword in Direct+Alignl mode.................. 384
Table 13-12. Instruction Source-0 Doubleword in Indirect+Align16 mode.............. 385
Table 13-13. Instruction Source-0 Doubleword in Indirect+Alignl mode ............... 386
Table 13-14. Instruction Source-1 Doubleword in Direct + Align16 mode .............. 387
Table 13-15. Instruction Source-1 Doubleword in Direct + Alignl mode................ 388
Table 13-16. Instruction Source-1 Doubleword in Indirect+Align16 mode.............. 389
Table 13-17. Instruction Source-1 Doubleword in Indirect+Alignl mode .............. 390
Table 13-18. GEN4 Compacted Instruction Format.........ccovooiiiiiiiiiiiiiiin i 391
Table 13-19. Definitions of Fields in the Compact Instruction.............ccoviiiiinnnnne. 391
Table 13-20. Move and Logic INStrUCEIONS .....viviieiii e 394
Table 13-21. Flow Control INStruCtionS . ..vivviiiii i e 395
Table 13-22. Miscellaneous INSTrUCTIONS ...o.viviiiiiiii e 396
Table 13-23. Parallel Arithmetic INStructions .........c.covviiiiiiiiii 397
Table 13-24. Vector Arithmetic INStruCtions .......ocoiiiiiiiii e 398
Table 13-25. Special INSTrUCLIONS ... .iuiieiiie e e e e eaeens 399
Table 14-1. Floating point addition of A (column) and B (row) in IEEE mode.......... 416
Table 14-2. Floating point addition of A (column) and B (row) in ALT mode............ 416
Table 14-3. Floating point fraction computation in IEEE mode..............cooviiiininnnns 445
Table 14-4. Floating point fraction computation in ALT mode........cccvivieiiiiiininnnens 445
Table 14-5. Floating point multiplication of A (column) and B (row) in IEEE mode .. 465
Table 14-6. Floating point multiplication of A (column) and B (row) in ALT mode.... 465
Table 14-7. Floating point round-down in IEEE mode...........covviiiiiiiiiiiiieens 475
Table 14-8. Floating point round-down in ALT MOde.........ooeiuiiiiiiiiiiiiiieieanenens 475
Table 14-9. Floating point round-up in IEEE mode .......ccviiiiiiiiiiiiiiiieieaas 477
Table 14-10. Floating point round-up in ALT MOde.....ccvviiiiiiiiiii i i cee e 477
Table 14-11. Floating point round-to-even in IEEE mode..........coovvviiiiiiiiiiiiiininnnns 479
Table 14-12. Floating point round-to-even in ALT mode........ccoeiviiiiiiiiiiiiieinienns 479
Table 14-13. Floating point round-to-zero in IEEE mode ........ccoovviiiiiiiiiiiiieinns 481
Table 14-14. Floating point round-to-zero in ALT mode.......ccvviiiiiiiiiiiiiiieeae 481
Table 14-15. Message Descriptor Definition ........cooiiiiiiii s 492
Table 14-16. Sideband Signals Associated with Each Message Sent to the Shared

LU T o o] P 493



Revision History

Document Revision Description Revision Date
Number Number
4 1.0d Initial release. January 2008

88

17






1

intel)

Introduction

This Programmer’s Reference Manual (PRM) describes the architectural behavior and
programming environment of the Intel® 965 Express Chipset family and Intel® G35
Express Chipset GMCH graphics devices (see Table 1-1). The GMCH’s Graphics
Controller (GC) contains an extensive set of registers and instructions for
configuration, 2D, 3D, and Video systems. The PRM describes the register, instruction,
and memory interfaces and the device behaviors as controlled and observed through
those interfaces. The PRM also describes the registers and instructions and provides
detailed bit/field descriptions.

Note: The term “Gen4” is used throughout the PRM to refer to the Generation 4 family of
graphics devices. The devices listed in Table 1-1 are Gen4 devices.

Table 1-1. Supported Chipsets

Chipset Family Name Device Name Device Tag
Intel® Q965 Chipset 82Q965 GMCH [DevBW]
Intel® Q963 Chipset 82Q963 GMCH
Intel® G965 Chipset 82G965 GMCH
Intel® G35 Chipset 82G35 GMCH [DevBW-E]
Intel® GM965 Chipset GM965 GMCH [DevCL]
Intel® GME965 Chipset GME965 GMCH

NOTES:

1. Unless otherwise specified, the information in this document applies to all of the devices
mentioned in Table 1-1. For Information that does not apply to all devices, the Device
Tag is used.

2.  Throughout the PRM, references to “All” in a project field refters to all devices in

Table 1-1.

3.  Throughout the PRM, references to [DevBW] apply to both [DevBW] and [DevBW-E].
[DevBW-E] is referenced specifically for information that is [DevBW-E] only.

4.  Stepping info is sometimes appended to the device tag (e.g., [DevBW-C]). Information
without any device tagging is applicable to all devices/steppings.

The PRM is intended for hardware, software, and firmware designers who seek to
implement or use the graphic functions of the 965 Express Chipset family and G35
Express Chipset. Familiarity with 2D and 3D graphics programming is assumed.
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The Programmer’s Reference Manual is organized into four volumes:

e PRM, Volume 1: Graphics Core
Volume 1 covers the overall Graphics Processing Unit (GPU) without much detail
on 3D, Media, or the core subsystem. Topics include the command streamer,
context switching, and memory access (including tiling). The Memory Data
Formats can also be found in this volume.

The volume also contains a chapter on the Graphics Processing Engine (GPE). The
GPE is a collective term for 3D, Media, the subsystem, and the parts of the
memory interface that are used by these units. Display, blitter and their memory
interfaces are not included in the GPE.

¢ PRM, Volume 2; 3D/Media
Volume 2 covers the 3D and Media pipelines in detail. This volume is where details
for all of the “fixed functions” are covered, including commands processed by the
pipelines, fixed-function state structures, and a definition of the inputs (payloads)
and outputs of the threads spawned by these units.

This volume also covers the single Media Fixed Function, VLD. It describes how to
initiate generic threads using the thread spawner (TS). It is generic threads which
will be used for doing the majority of media functions. Programmable kernels will
handle the algorithms for media functions such IDCT, Motion Compensation, and
even Motion Estimation (used for encoding MPEG streams).

¢ PRM, Volume 3: Display Registers
Volume 3 describes the control registers for the display. The overlay registers and
VGA registers are also cover in this volume.

e PRM, Volume 4: Subsystem and Cores
Volume 4 describes the GMCH programmable cores, or EUs, and the “shared
functions”, which are shared by more than one EU and perform functions such as
I/0 and complex math functions.

The shared functions consist of the sampler, extended math unit, data port (the
interface to memory for 3D and media), Unified Return Buffer (URB), and the
Message Gateway which is used by EU threads to signal each other. The EUs use
messages to send data to and receive data from the subsystem; the messages are
described along with the shared functions, although the generic message send EU
instruction is described with the rest of the instructions in the Instruction Set
Architecture (ISA) chapters.

This latter part of this volume describes the GMCH core, or EU, and the associated
instructions that are used to program it. The instruction descriptions make up
what is referred to as an Instruction Set Architecture, or ISA. The ISA describes
all of the instructions that the GMCH core can execute, along with the registers
that are used to store local data.

Note: The chipset PCI Configuration registers are not part of this PRM.
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1.1.1

1.2

intel)

Notations and Conventions

Reserved Bits and Software Compatibility

In many register, instruction and memory layout descriptions, certain bits are marked
as “Reserved”. When bits are marked as reserved, it is essential for compatibility with
future devices that software treat these bits as having a future, though unknown,
effect. The behavior of reserved bits should be regarded as not only undefined, but
unpredictable. Software should follow these guidelines in dealing with reserved bits:

Do not depend on the states of any reserved bits when testing values of registers that
contain such bits. Mask out the reserved bits before testing. Do not depend on the
states of any reserved bits when storing to instruction or to a register.

When loading a register or formatting an instruction, always load the reserved bits

with the values indicated in the documentation, if any, or reload them with the values
previously read from the register.

Terminology

Term Abbr. Definition

3D Pipeline — One of the two pipelines supported in the GPE. The 3D
pipeline is a set of fixed-function units arranged in a
pipelined fashion, which process 3D-related commands
by spawning EU threads. Typically this processing
includes rendering primitives. See 3D Pipeline.

Application IP AIP Application Instruction Pointer. This is part of the
control registers for exception handling for a thread.
Upon an exception, hardware moves the current IP into
this register and then jumps to SIP.

Architectural ARF A collection of architecturally visible registers for a
Register File thread such as address registers, accumulator, flags,
notification registers, IP, null, etc. ARF should not be
mistaken as just the address registers.

Array of Cores — Refers to a group of Gen4 EUs, which are physically
organized in two or more rows. The fact that the EUs
are arranged in an array is (to a great extent)
transparent to CPU software or EU kernels.

Binding Table — Memory-resident list of pointers to surface state blocks
(also in memory).

Binding Table BTP Pointer to a binding table, specified as an offset from the
Pointer Surface State Base Address register.

Bypass Mode - Mode where a given fixed function unit is disabled and
forwards data down the pipeline unchanged. Not
supported by all FF units.

Byte B A numerical data type of 8 bits, B represents a signed
byte integer.
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Term

Abbr.

Definition

Child Thread

A branch-node or a leaf-node thread that is created by
another thread. It is a kind of thread associated with the
media fixed function pipeline. A child thread is originated
from a thread (the parent) executing on an EU and
forwarded to the Thread Dispatcher by the TS unit. A
child thread may or may not have child threads
depending on whether it is a branch-node or a leaf-node
thread. All pre-allocated resources such as URB and
scratch memory for a child thread are managed by its
parent thread.

Clip Space

A 4-dimensional coordinate system within which a
clipping frustum is defined. Object positions are
projected from Clip Space to NDC space via
“perspecitive divide” by the W coordinate, and then
viewport mapped into Screen Space

Clipper

3D fixed function unit that removes invisible portions of
the drawing sequence by discarding (culling) primitives
or by “replacing” primitives with one or more primitives
that replicate only the visible portion of the original
primitive.

Color Calculator

CcC

Part of the Data Port shared function, the color
calculator performs fixed-function pixel operations (e.g.,
blending) prior to writing a result pixel into the render
cache.

Command

Directive fetched from a ring buffer in memory by the
Command Streamer and routed down a pipeline.
Should not be confused with instructions which are
fetched by the instruction cache subsystem and
executed on an EU.

Command Streamer

CS or CSI

Functional unit of the Graphics Processing Engine that
fetches commands, parses them and routes them to the
appropriate pipeline.

Constant URB Entry

CURBE

A UE that contains “constant” data for use by various
stages of the pipeline.

Control Register

CR

The read-write registers are used for thread mode
control and exception handling for a thread.

Data Port

DP

Shared function unit that performs a majority of the
memory access types on behalf of Gen4 programs. The
Data Port contains the render cache and the constant
cache and performs all memory accesses requested by
Gen4 programs except those performed by the Sampler.
See DataPort.

Degenerate Object

Object that is invisible due to coincident vertices or
because does not intersect any sample points (usually
due to being tiny or a very thin sliver).

Destination

Describes an output or write operand.

Destination Size

The number of data elements in the destination of a
Gen4 SIMD instruction.
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Term

Abbr.

Definition

Destination Width

The size of each of (possibly) many elements of the
destination of a Gen4 SIMD instruction.

Double Quad word
(DQword)

DQ

A fundamental data type, DQ represents 16 bytes.

Double word
(DWord)

D or DW

A fundamental data type, D or DW represents 4 bytes.

Drawing Rectangle

A screen-space rectangle within which 3D primitives are
rendered. An objects screen-space positions are relative
to the Drawing Rectangle origin. See Strips and Fans.

End of Block

EOB

A 1-bit flag in the non-zero DCT coefficient data
structure indicating the end of an 8x8 block in a DCT
coefficient data buffer.

End Of Thread

EOT

a message sideband signal on the Output message bus
signifying that the message requester thread is
terminated. A thread must have at least one SEND
instruction with the EOT bit in the message descriptor
field set in order to properly terminate.

Exception

Type of (normally rare) interruption to EU execution of a
thread’s instructions. An exception occurrence causes
the EU thread to begin executing the System Routine
which is designed to handle exceptions.

Execution Channel

Gen4 EU instructions typically operate on multiple data
values in parallel (i.e., in "SIMD” fashion). The data is
processed in parallel “execution channels” (e.g., a
SIMDS instruction uses 8 execution channels to perform
8 operations in parallel).

Execution Size

ExecSize

Execution Size indicates the number of data elements
processed by a GEN4 SIMD instruction. It is one of the
GEN4 instruction fields and can be changed per
instruction.

Execution Unit

EU

Execution Unit. An EU is a multi-threaded processor
within the GEN4 multi-processor system. Each EU is a
fully-capable processor containing instruction fetch and
decode, register files, source operand swizzle and SIMD
ALU, etc. An EU is also referred to as a GEN4 Core.

Execution Unit
Identifier

EUID

The 4-bit field within a thread state register (SR0) that
identifies the row and column location of the EU a
thread is located. A thread can be uniquely identified by
the EUID and TID.

Execution Width

ExecWidth

The width of each of several data elements that may be
processed by a single Gen4 SIMD instruction.

Extended Math Unit

EM

A Shared Function that performs more complex math
operations on behalf of several EUs.

FF Unit

A Fixed-Function Unit is the hardware component of a
3D Pipeline Stage. A FF Unit typically has a unique FF
ID associated with it.
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Term

Abbr.

Definition

Fixed Function

FF

Function of the pipeline that is performed by dedicated
(vs. programmable) hardware.

Fixed Function ID

FFID

Unique identifier for a fixed function unit.

FLT_MAX

fmax

The magnitude of the maximum representable single
precision floating number according to IEEE-754
standard. FLT_MAX has an exponent of OxFE and a
mantissa of all one’s.

Gateway

GW

See Message Gateway.

GEN4 Core

Alternative name for an EU in the GEN4 multi-processor
system.

General Register
File

GRF

Large read/write register file shared by all the EUs for
operand sources and destinations. This is the most
commonly used read-write register space organized as
an array of 256-bit registers for a thread.

General State Base
Address

The Graphics Address of a block of memory-resident
“state data”, which includes state blocks, scratch space,
constant buffers and kernel programs. The contents of
this memory block are referenced via offsets from the
contents of the General State Base Address register.
See Graphics Processing Engine.

Geometry Shader

GS

Fixed-function unit between the vertex shader and the
clipper that (if enabled) dispatches “geometry shader”
threads on its input primitives. Application-supplied
geometry shaders normally expand each input primitive
into several output primitives in order to perform 3D
modeling algorithms such as fur/fins. See Geometry
Shader.

Graphics Address

The GPE virtual address of some memory-resident
object. This virtual address gets mapped by a GTT or
PGTT to a physical memory address. Note that many
memory-resident objects are referenced not with
Graphics Addresses, but instead with offsets from a
“base address register”.

Graphics Processing
Engine

GPE

Collective name for the Subsystem, the 3D and Media
pipelines, and the Command Streamer.

Guardband

GB

Region that may be clipped against to make sure objects
do not exceed the limitations of the renderer’s
coordinate space.

Horizontal Stride

HorzStride

The distance in element-sized units between adjacent
elements of a Gen4 region-based GRF access.

Immediate floating
point vector

VF

A numerical data type of 32 bits, an immediate floating
point vector of type VF contains 4 floating point
elements with 8-bit each. The 8-bit floating point
element contains a sign field, a 3-bit exponent field and
a 4-bit mantissa field. It may be used to specify the type
of an immediate operand in an instruction.
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Term Abbr. Definition

Immediate integer \% A numerical data type of 32 bits, an immediate integer

vector vector of type V contains 8 signed integer elements with
4-bit each. The 4-bit integer element is in 2’s
complement form. It may be used to specify the type of
an immediate operand in an instruction.

Index Buffer 1B Buffer in memory containing vertex indices.

Instance — In the context of the VF unit, an instance is one of a
sequence of sets of similar primitive data. Each set has
identical vertex data but may have unique instance data
that differentiates it from other sets in the sequence.

Instruction — Data in memory directing an EU operation. Instructions
are fetched from memory, stored in a cache and
executed on one or more Gen4 cores. Not to be
confused with commands which are fetched and parsed
by the command streamer and dispatched down the 3D
or Media pipeline.

Instruction Pointer IP The address (really an offset) of the instruction currently
being fetched by an EU. Each EU has its own IP.

Instruction Set ISA The GEN4 ISA describes the instructions supported by a

Architecture GEN4 EU.

Instruction State ISC On-chip memory that holds recently-used instructions

Cache and state variable values.

Interface Descriptor | — Media analog of a State Descriptor.

Intermediate Z 1z Completion of the Z (depth) test at the front end of the
Windower/Masker unit when certain conditions are met
(no alpha, no pixel-shader computed Z values, etc.)

Inverse Discrete IDCT the stage in the video decoding pipe between IQ and MC

Cosine Transform

Inverse 1Q A stage in the video decoding pipe between IS and

Quantization IDCT.

Inverse Scan IS A stage in the video decoding pipe between VLD and IQ.
In this stage, a sequence of none-zero DCT coefficients
are converted into a block (e.g. an 8x8 block) of
coefficients. VFE unit has fixed functions to support IS
for MPEG-2.

Jitter — Just-in-time compiler.

Kernel — A sequence of Gen4 instructions that is logically part of
the driver or generated by the jitter. Differentiated from
a Shader which is an application supplied program that
is translated by the jitter to Gen4 instructions.

Least Significant Bit | LSB Least Significant Bit

MathBox

See Extended Math Unit

Media

Term for operations such as video decode and encode
that are normally performed by the Media pipeline.

25



26

Term Abbr. Definition

Media Pipeline — Fixed function stages dedicated to media and “generic”
processing, sometimes referred to as the generic
pipeline.

Message - Messages are data packages transmitted from a thread
to another thread, another shared function or another
fixed function. Message passing is the primary
communication mechanism of GEN4 architecture.

Message Gateway — Shared function that enables thread-to-thread message
communication/synchronization used solely by the Media
pipeline.

Message Register MRF Write-only registers used by EUs to assemble messages

File prior to sending and as the operand of a send
instruction.

Most Significant Bit MSB Most Significant Bit

Motion MC Part of the video decoding pipe.

Compensation

Motion Picture MPEG MPEG is the international standard body

Expert Group JTC1/SC29/WG11 under ISO/IEC that has defined audio
and video compression standards such as MPEG-1,
MPEG-2, and MPEG-4, etc.

Motion Vector Field MVFS A four-bit field selecting reference fields for the motion

Selection vectors of the current macroblock.

Multi Render MRT Multiple independent surfaces that may be the target of

Targets a sequence of 3D or Media commands that use the same
surface state.

Normalized Device NDC Clip Space Coordinates that have been divided by the

Coordinates Clip Space “W” component.

Object — A single triangle, line or point.

Parent Thread — A thread corresponding to a root-node or a branch-node
in thread generation hierarchy. A parent thread may be
a root thread or a child thread depending on its position
in the thread generation hierarchy.

Pipeline Stage — A abstracted element of the 3D pipeline, providing
functions performed by a combination of the
corresponding hardware FF unit and the threads
spawned by that FF unit.

Pipelined State PSP Pointers to state blocks in memory that are passed

Pointers down the pipeline.

Pixel Shader PS Shader that is supplied by the application, translated by
the jitter and is dispatched to the EU by the Windower
(conceptually) once per pixel.

Point - A drawing object characterized only by position
coordinates and width.

Primitive — Synonym for object: triangle, rectangle, line or point.
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Term Abbr. Definition

Primitive Topology — A composite primitive such as a triangle strip, or line
list. Also includes the objects triangle, line and point as
degenerate cases.

Provoking Vertex - The vertex of a primitive topology from which vertex
attributes that are constant across the primitive are
taken.

Quad Quad word QQ A fundamental data type, QQ represents 32 bytes.

(QQword)

Quad Word QwW A fundamental data type, QW represents 8 bytes.

(QWord)

Rasterization

Conversion of an object represented by vertices into the
set of pixels that make up the object.

Region-based
addressing

Collective term for the register addressing modes
available in the EU instruction set that permit
discontiguous register data to be fetched and used as a
single operand.

Render Cache

RC

Cache in which pixel color and depth information is
written prior to being written to memory, and where
prior pixel destination attributes are read in preparation
for blending and Z test.

Render Target

RT

A destination surface in memory where render results
are written.

Render Target Array
Index

Selector of which of several render targets the current
operation is targeting.

Root Thread

A root-node thread. A thread corresponds to a root-node
in a thread generation hierarchy. It is a kind of thread
associated with the media fixed function pipeline. A root
thread is originated from the VFE unit and forwarded to
the Thread Dispatcher by the TS unit. A root thread may
or may not have child threads. A root thread may have
scratch memory managed by TS. A root thread with
children has its URB resource managed by the VFE.

Sampler

Shared function that samples textures and reads data
from buffers on behalf of EU programs.

Scratch Space

Memory allocated to the subsystem that is used by EU
threads for data storage that exceeds their register
allocation, persistent storage, storage of mask stack
entries beyond the first 16, etc.

Shader

A Gen4 program that is supplied by the application in
an high level shader language, and translated to Gen4
instructions by the jitter.

Shared Function

SF

Function unit that is shared by EUs. EUs send messages
to shared functions; they consume the data and may
return a result. The Sampler, Data Port and Extended
Math unit are all shared functions.
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Term

Abbr.

Definition

Shared Function ID

SFID

Unique identifier used by kernels and shaders to target
shared functions and to identify their returned
messages.

Single Instruction
Multiple Data

SIMD

The term SIMD can be used to describe the kind of
parallel processing architecture that exploits data
parallelism at instruction level. It can also be used to
describe the instructions in such architecture.

Source

Describes an input or read operand

Spawn

To initiate a thread for execution on an EU. Done by the
thread spawner as well as most FF units in the 3D
pipeline.

Sprite Point

Point object using full range texture coordinates. Points
that are not sprite points use the texture coordinates of
the point’s center across the entire point object.

State Descriptor

Blocks in memory that describe the state associated
with a particular FF, including its associated kernel
pointer, kernel resource allowances, and a pointer to its
surface state.

State Register

SR

The read-only registers containing the state information
of the current thread, including the EUID/TID,
Dispatcher Mask, and System IP.

State Variable

SV

An individual state element that can be varied to change
the way given primitives are rendered or media objects
processed. On Gen4 state variables persist only in
memory and are cached as needed by
rendering/processing operations except for a small
amount of non-pipelined state.

Stream Output

A term for writing the output of a FF unit directly to a
memory buffer instead of, or in addition to, the output
passing to the next FF unit in the pipeline. Currently
only supported for the Geometry Shader (GS) FF unit.

Strips and Fans

SF

Fixed function unit whose main function is to decompose
primitive topologies such as strips and fans into
primitives or objects.

Sub-Register

Subfield of a SIMD register. A SIMD register is an
aligned fixed size register for a register file or a register
type. For example, a GRF register, r2, is 256-bit wide,
256-bit aligned register. A sub-register, r2.3:d, is the
fourth dword of GRF register r2.

Subsystem — The Gen4 name given to the resources shared by the FF
units, including shared functions and EUs.
Surface — A rendering operand or destination, including textures,

buffers, and render targets.

Surface State

State associated with a render surface including

Surface State Base
Pointer

Base address used when referencing binding table and
surface state data.
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Synchronized Root — A root thread that is dispatched by TS upon a ‘dispatch

Thread root thread’ message.

System IP SIP There is one global System IP register for all the
threads. From a thread’s point of view, this is a virtual
read-only register. Upon an exception, hardware
performs some bookkeeping and then jumps to SIP.

System Routine — Sequence of Gen4 instructions that handles exceptions.
SIP is programmed to point to this routine, and all
threads encountering an exception will call it.

Thread - An instance of a kernel program executed on an EU. The
life cycle for a thread starts from the executing the first
instruction after being dispatched from Thread
Dispatcher to an EU to the execution of the last
instruction — a send instruction with EOT that signals the
thread termination. Threads in GEN4 system may be
independent from each other or communicate with each
other through Message Gateway share function.

Thread Dispatcher TD Functional unit that arbitrates thread initiation requests
from Fixed Functions units and instantiates the threads
on EUs.

Thread Identifier TID The field within a thread state register (SR0O) that
identifies which thread slots on an EU a thread occupies.
A thread can be uniquely identified by the EUID and
TID.

Thread Payload - Prior to a thread starting execution, some amount of
data will be pre-loaded in to the thread’s GRF (starting
at r0). This data is typically a combination of control
information provided by the spawning entity (FF Unit)
and data read from the URB.

Thread Spawner TS The second and the last fixed function stage of the
media pipeline that initiates new threads on behalf of
generic/media processing.

Topology — See Primitive Topology.

Unified Return URB The on-chip memory managed/shared by GEN4 Fixed

Buffer Functions in order for a thread to return data that will be
consumed either by a Fixed Function or other threads.

Unsigned Byte uB A numerical data type of 8 bits.

integer

Unsigned Double ub A numerical data type of 32 bits. It may be used to

Word integer specify the type of an operand in an instruction.

Unsigned Word uw A numerical data type of 16 bits. It may be used to

integer specify the type of an operand in an instruction.

Unsynchronized — A root thread that is automatically dispatched by TS.

Root Thread

URB Dereference — See URB Reference

URB Entry UE URB Entry: A logical entity stored in the URB (such as a

vertex), referenced via a URB Handle.
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Definition

URB Entry
Allocation Size

Number of URB entries allocated to a Fixed Function
unit.

URB Fence

Fence

Virtual, movable boundaries between the URB regions
owned by each FF unit.

URB Handle

A unique identifier for a URB entry that is passed down a
pipeline.

URB Reference

For the most part, data is passed down the fixed
function pipeline in an indirect fashion. The data is
typically stored in the URB and accessed via a URB
handle. When a pipeline stage passes the handle of a
URB data entry to a downstream stage, it is said to
make a URB reference. Note that there may be several
references to the same URB data entry in the pipeline at
any given time. When a downstream stage accesses the
URB data entry via a URB handle, it is said to
“dereference” the URB data entry. When there are no
longer any references to a URB data entry within the
pipeline, the URB storage can be reclaimed.

Variable Length
Decode

VLD

The first stage of the video decoding pipe that consists
mainly of bit-wide operations. GEN4 supports hardware
VLD acceleration in the VFE fixed function stage.

Vertex Buffer

VB

Buffer in memory containing vertex attributes.

Vertex Cache

vC

Cache of Vertex URB Entry (VUE) handles tagged with
vertex indices. See the VS chapter for details on this
cache.

Vertex Fetcher

VF

The first FF unit in the 3D pipeline responsible for
fetching vertex data from memory. Sometimes referred
to as the Vertex Formatter.

Vertex Header

Vertex data required for every vertex appearing at the
beginning of a Vertex URB Entry.

Vertex ID

Unique ID for each vertex that can optionally be
included in vertex attribute data sent down the pipeline
and used by kernel/shader threads.

Vertex Index

Offset (in vertex-sized units) of a given vertex in a
vertex buffer. Available in the VF and VS units for
debugging purposes. Not unique per vertex instance.

Vertex Sequence
Number

Unique ID for each vertex sent down the south bus that
may be used to identify vertices for debugging
purposes.

Vertex Shader

VS

An API-supplied program that calculates vertex
attributes. Also refers to the FF unit that dispatches
threads to “shade” (calculate attributes for) vertices.

Vertex URB Entry

VUE

A URB entry that contains data for a specific vertex.

Vertical Stride

VertStride

The distance in element-sized units between 2
vertically-adjacent elements of a Gen4 region-based
GRF access.
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Video Front End VFE The first fixed function in the GEN4 generic pipeline;
performs fixed-function media operations.

Viewport VP Post-clipped geometry is mapped to a rectangular region
of the bound rendertarget(s). This rectangular region is
called a viewport. Typically, the viewport is set to the
full extent of the rendertarget(s), but any subregion can
be used as well.

Windower 1Z Wiz Term for Windower/Masker that encapsulates its early
(“intermediate”) depth test function.

Windower/Masker WM Fixed function triangle/line rasterizer.

Word w A numerical data type of 16 bits, W represents a signed

word integer.

88
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Subsystem Overview

2.1

2.2

Introduction

The Gen4 subsystem consists of an array of execution units (EUs, sometimes referred
to as an arrray of cores) along with a set of shared functions outside the EUs that the
EUs leverage for I/O and for complex computations. Programmers access the Gen4
Subsystem via the 3D or Media pipelines.

EUs are general-purpose programmable cores that support a rich instruction set that
has been optimized to support various 3D API shader languages as well as media
functions (primarily video) processing.

Shared functions are hardware units which serve to provide specialized supplemental
functionality for the EUs. A shared function is implemented where the demand for a
given specialized function is insufficient to justify the costs on a per-EU basis. Instead
a single instantiation of that specialized function is implemented as a stand-alone
entity outside the EUs and shared amongst the EUs.

Invocation of the shared functionality is performed via a communication mechanism
call a “message”. A message is a small, self-contained packet of information created
by a kernel and directed to specific shared function. The message is defined by
sequential series of MRF registers which hold message operands, a destination shared
function ID, a function-specific encoding of the desired operation to be performed, and
a destination GRF register to which any writeback response is to be directed.
Messages are dispatched to the shared function under software control via the ‘send’
instruction. This instruction identifies the contents of the message and the GRF
register location(s) to direct any response.

The message construction and delivery mechanisms are general in their definition and
capable of supporting a wide variety of shared functions.

Subsystem Topology

The subsystem is organized as an array of EUs, and a set of functions that are shared
among all of the EUs. (The EU array is further divided into rows with each row having
its own first level instruction cache and Extended Math shared function, though this
aspect of the implemented topology is not exposed to software). The Sampler,
DataPort, URB and Message Gateway functions are shared among the entire array of
EUs.
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Execution Units (EUS)

Each EU is a vector machine capable of performing a given operation on as many as
16 pieces of data of the same type in parallel (though not necessarily on the same
instant in time). In addition, each EU can support a number of execution contexts
called threads that are used to avoid stalling the EU during a high-latency operation
(external to the EU) by providing an opportunity for the EU to switch to a completely
different workload with minimal latency while waiting for the high-latency operation to
complete.

For example, if a program executing on an EU requires a texture read by the sampling
engine, the EU may not necessarily idle while the data is fetched from memory,
arranged, filtered and returned to the EU. Instead the EU will likely switch execution
to another (unrelated) thread associated with that EU. If that thread encounters a
stall, the EU may switch to yet another thread and so on. Once the Sampler result
arrives back at the EU, the EU can switch back to the original thread and use the
returned data as it continues execution of that thread.

The fact that there are multiple EU cores each with multiple threads can generally be
ignored by software. There are some exceptions to this rule: e.g., for

e debugging (see Debugging)
¢ thread-to-thread communication (see Message Gateway, Media)

e synchronization of thread output to memory buffers (see Geometry Shader).
In contrast, the internal SIMD aspects of the EU are very much exposed to software.

This volume will not deal with the details of the EUs. See the Gen4 Core volume for
details such as EU registers and instruction set.

Thread Dispatching

When the 3D and Media pipelines send requests for thread initiation to the
Subsystem, the thread Dispatcher receives the requests. The dispatcher performs
such tasks as arbitrating between concurrent requests, assigning requested threads to
hardware threads on EUs, allocating register space in each EU among multiple
threads, and initializing a thread’s registers with data from the fixed functions and
from the URB. This operation is largely transparent to software.

To aid in debug, the thread dispatcher can be programmed by software to limit the
number of EUs utilized from the maximum available in hardware down to as little as a
single EU. It can also be programmed (independently from the number of EUs being
utilized) to limit the number of threads that an EU will run concurrently down to as
few as one. These features should not be required for normal use but will come in
handy for debug. See the Debugging chapter for more information.



2.5

Shared Functions

In general, a shared function has the ability to receive messages at its input, perform
some specialized amount of work for each, and if required, generate output back to
the message’s originating execution unit (Message Gateway may generate output to a
target execution unit specified by the message).

To uniquely identify shared functions, each is assigned a unique 4-bit identifier code
called its ‘Function ID’. This ID is specified in the ‘send’ instruction’s 32b <desc> field
of each message. Gen4 Function ID assignments are listed in the Graphics Processing
Engine chapter of this specification.

Each shared function may support one or more related operations within itself. For
example an Extended Math shared function may support operations such as
reciprocal, sine, cosine, and/or others. These are generically referred to as sub-
functions. The communication method as to which sub-function is desired is typically
contained in the 16b ‘function-control’ field of the ‘send’ instruction <desc> field.
Alternatively, a function may choose to define sub-function encodings in-band within
message payload, or in the case of a single function shared-function, the function
code may be implied. The architecture, in no way interprets the sub-function code and
the actual implementation choice is left to the function itself.

The Shared Function units included in the Subsystem are as follows (refer to the
chapters devoted to each of these functions):

o Extended Math function

e Sampling Engine function

o DataPort function

¢ Message Gateway function
e Unified Return Buffer (URB)
e Thread Spawner (TS)

e Null function

The Extended Math function acts as an extension of the math functions already
available inside the EUs. Certain functions such as inverse, square root,
exponentiation, etc., require significant hardware resources to implement and are
used infrequently enough that it is inefficient to implement them separately in each
EU. The EUs therefore send the operands for these operations along with the
operation to be performed to the Extended Math function which computes and returns
the result to the requesting EU.

The Sampling Engine acts a (read-only) I/O port on behalf of the EUs, translating
texture coordinates (and/or structure references) to memory addresses, reading
texels and/or other data from memory, and in the case of texels, combining and
filtering them according to programmed state. The resulting pixel and/or other data
are then returned to the requesting EU.

The Data Port function acts as another I/O port on behalf of the EUs. It is both a
read and a write port, and the only way for the Graphics Processing Engine to write
results (e.g., images) back to memory. The Data Port contains the render and depth
caches which receive the newly rendered pixels and write them out to memory when
necessary. They also permit previously rendered objects to be read back efficiently by
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the Graphics Processing Engine in order to blend them with other rendered objects
and test for visibility of newly rendered objects. Finally, the Data Port also provides
read access constant buffers (arrays of constants in memory.)

The Message Gateway allows a thread to communicate (send a message to) another
thread. A key is used to connect the sender and receiver threads, and a simple
gateway protocol is used to send messages. This is primarily intended for media
where a parent/child thread model is sometimes used and requires parent and child
threads to synchronize and efficiently share information. It is not intended to be used
by 3D graphics rendering threads.

The Unified Return Buffer (URB) is a single set of registers that EU threads use to
return result data for future fixed functions and their threads to make use of.
Individual entries in the buffer are “owned” by a given fixed function but a mechanism
is provided where other fixed functions (those that follow) can read the data placed
there by another fixed function. The buffer is considered a “Shared Function” since
EUs need to be able to write result data to it using messages. In general, EU threads
write their final results either to memory via the Data Port or to the URB for re-use by
subsequent EU threads or certain 3D pipeline fixed-function units (CLIP, GS).

The Thread Spawner (TS) is a Shared Function that acts as a conduit for dispatching
kernel-software-generated threads, one thread can request another thread to be
dispatched by sending a request to the TS. TS is unique as it is also a Fixed Function
in the media pipeline for dispatching threads originated from Video Front End fixed
function.

The Null shared function is supported to allow the broadcast of certain information
(e.g, End Of Thread) without invoking any other operation or response.

Messages

Communication between the EUs and the shared functions and between the fixed
function pipelines (which are not considered part of the “Subsystem”) and the EUs is
accomplished via packets of information called messages. Message transmission is
requested via the ‘send’ instruction. Refer to the ‘send’ instruction definition in the
ISA Reference chapter for details.

The information transmitted in a message falls into two categories:

¢ Message Payload data sourced from some number of registers (from 1 to 15
registers) in the Message Register File (MRF). The contents of the payload are
dependent on the target function and specific function (et al.), and may contain a
header portion and/or data portion.

e Associated (“sideband”) information provided by:

— Message Descriptor specified with the ‘send’ instruction. Included in the
message descriptor is control and routing information such as the target
function ID, message payload length, response length, etc.

— Additional information provided by the ‘send’ instruction, e.g., the starting
destination register number, the execution mask (EMASK), etc.

— A small subset of Thread State, such as the Thread ID, EUID, etc.



The software view of messages is shown in Figure 2-1. There are four basic phases to
a message’s lifetime as illustrated below:

1.Creation

2.Delivery

3.Processing

4.Writeback

The thread assembles the message payload into the
Message Register File (MRF). This is done by a series of one
or more instruction which specify a MRF register as the
destination.

The thread issues the message for delivery via the ‘send’
instruction. The ‘send’ instruction specifies the MRF register
which is the first of a sequential register series which makes
the data payload, the length of the message payload within
the MRF, the destination shared function ID (SFID), and
where in the GRF any response is to be directed. The
messaging subsystem will enqueue the message for delivery
and eventually route the message to the specified shared
function.

The shared function receives the message and services it
accordingly, as defined by the shared function definition.

If called for, the shared function delivers an integral number
of registers of data to the thread’s GRF in response to the

Figure 2-1. Data Flow Associated With Messages
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Message Register File (MRF)

Each thread has a dedicated MRF which is logically identical to the GRF: 256 bits wide
per register, with word-wide addressability. There are 16 MRF registers, referred to as
"m0”.."m15”. From a software perspective, the MRF is write-only and thus may only
be used as a destination specifier. Limited register-region specifications are allowed so
long as the region is contained within a single MRF register.

Each register of the MRF has an associated in-flight status, indicating the contents of
the register is needed as part of a pending message, but has yet to be transmitted by
the hardware. This bit is set at the time the message is enqueued for delivery via the
‘send’ instruction. Should a subsequent write to an in-flight register be attempted, the
execution unit will temporarily suspend the thread’s execution until the register’s in-
flight status is cleared (i.e., the message has been transmitted).

Register m0 is reserved for System Routine (exception handling and debug) purposes,
thus normal threads should construct their messages in m1..m15. The thread is free
to start a message payload at any MRF register location, even to the point of having
multiple messages under construction at the same time in non-overlapping spaces in
the MRF. Further multiple messages over non-overlapping MRF space can be
enqueued awaiting transmission at the same time. Regardless of actual hardware
implementation, the thread should not assume that MRF addresses above m15 wrap
to legal MRF registers.

Send Instruction

Messages are sent programmatically by the thread through the ‘send’ instruction. This
instruction enqueues a message for delivery and marks as in-flight all MRF registers
used for the message payload. It also allows for an optional implied move of one GRF
register to a MRF register prior to the message being issued. This implied move allows
for a higher message performance, eliminating the explicit ‘mov’ that would normally
be required to move RO to the lead MRF register of the message (as required by many
message definitions).

A typical ‘send’ instruction is exemplified here (please see the ISA for a full instruction
description). This example performs an implicit move from r0 to m3, then issues a
message to the Extended Math unit, with a payload of 1 register starting at m3, and
expecting 1 register in reply to be placed in r5.

send (16) r5 m3 rO 0x01110001
The execution unit guarantees that any prior instruction which wrote to a MRF register

is guaranteed to have retired, and its result written to the destination MRF register in
time for message transmission.
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Creating and Sending a Message

A code snippet is listed below, showing a 4-register message (m3 to m6) whose
response is directed to r30. Note that message construction does not have to occur in
MRF register order.

mul (8) mé r20 rlo

mov (8) mé r21

add (8) m5 r29 r28

send (8) r30 m3 r0 <desc>

Once a ‘send’ instruction is issued, the MRF registers used for its payload are marked
as ‘in-flight’. These registers remain in this state until the message is actually
transmitted to the shared function and the register contents are no longer need. Any
subsequent write to a MRF register which is in-flight results in a dependency and a
thread switch until such time that the in-flight condition is cleared. An example is
shown below in which the attempt to re-use m6 may result in a thread switch until
message 1 is transmitted.

// --- message 1 ---

mul (8) mé r20 rlo

mov (8) mé r21

add (8) m5 r29 r28

send (8) 130 m3 ro <desc>

// --- message 2 ---

mov (8) mé rl5 // thread switch until the

// previous msg is sent and
// mé in-flight is cleared.

MRF registers of one message may be reused for a subsequent message without
restriction. The in-flight check mechanism prevents a MRF register staged as part of a
pending message from being altered while awaiting transmission. Further, a thread
may rely on the contents of a MRF register being unaltered after message
transmission. This allows the thread to quickly issue an identical or slightly altered
message using the same MRF register set without having to re-construct the entire
payload.

Although more than one message may be enqueued at any point in time, care must
be taken by the programmer to ensure that each message’s destination GRF register
region, if any, does no over lap with that of another enqueued message. This
condition is not checked by HW. Due to varying latencies between two messages, and
out-of-order, non-contiguous writeback cycles in the current implementation, the
outcome in the GRF is indeterminate; It may be the result from the first message, or
the result from the second message, or a mixture of data from both.
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Message Payload Containing a Header

For most shared functions, the first register of the message payload contains the
header payload of the message (or simply the message header). It contains the
debug fields (fixed at DW6 and DW?7) and state fields (such as binding table pointer,
sampler state pointer, etc.) following a consistent format structure. Consequently, the
rest of the message payload is referred to as the data payload.

Messages to Extended Math do not have a header and only contain data payload.
Those messages may be referred to as header-less messages. Messages to Gateway
combine the header and data payloads in a single message register.

Writebacks

Some messages generate return data as dictated by the ‘function-control’ (opcode)
field of the ‘send’ instruction (part of the <desc> field). The Gen4 execution unit and
message passing infrastructure do not interpret this field in any way to determine if
writeback data is to be expected. Instead explicit fields in the ‘send’ instruction to the
execution unit the starting GRF register and count of returning data. The execution
unit uses this information to set in-flight bits on those registers to prevent execution
of any instruction which uses them as an operand until the register(s) is(are)
eventually written in response to the message. If a message is not expected to return
data, the ‘send’ instruction’s writeback destination specifier (<post_dest>) must be
set to ‘null” and the response length field of <desc> must be 0 (see ‘send’ instruction
for more details).

The writeback data, if called for, arrives as a series of register writes to the GRF at the
location specified by the starting GRF register and length as specified in the ‘send’
instruction. As each register is written back to the GREF, its in-flight flag is cleared and
it becomes available for use as an instruction operand. If a thread was suspended
pending return of that register, the dependency is lifted and the thread is allowed to
continue execution (assuming no other dependency for that thread remains
outstanding).

Message Delivery Ordering Rules

All messages between a thread and an individual shared function are delivered in the
ordered they were sent. Messages to different shared functions originating from a
single thread may arrive at their respective shared functions out of order.

The writebacks of various messages from the shared functions may return in any
order. Further individual destination registers resulting from a single message may
return out of order, potentially allowing execution to continue before the entire
response has returned (depending on the dependency chain inherent in the thread).
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Execution Mask and Messages

The Gen4 Architecture defines an Execution Mask (EMask) for each instruction issued.
This 16b bit-field identifies which SIMD computation channels are enabled for that
instruction. Since the ‘send’ instruction is inherently scalar, the EMask is ignored as
far as instruction dispatch is concerned. Further the execution size has no impact on
the size of the ‘send' instruction’s implicit move (it is always 1 register regardless of
specified execution size).

The 16b EMask is forwarded with the message to the destination shared function to
indicate which SIMD channels were enabled at the time of the ‘send’. A shared
function may interpret or ignore this field as dictated by the functionality it exposes.
For instance, the Extended Math shared function observes this field and performs the
specified operation only on the operands with enabled channels, while the DataPort
writes to the render cache ignore this field completely, instead using the pixel mask
included in-band in the message payload to indicate which channels carry valid data.

End-Of-Thread (EOT) Message

The final instruction of all threads must be a ‘send’ instruction which signals ‘End-Of-
Thread’ (EOT). An EOT message is one in which the EOT bit is set in the ‘send’
instruction’s 32b <desc> field. When issuing instructions, the EU looks for an EOT
message, and when issued, shuts down the thread from further execution and
considers the thread completed.

Only a subset of the shared functions can be specified as the target function of an EOT
message, as shown in the table below.

Target Shared Functions Target Shared Functions

supporting EOT messages not supporting EOT messages
Null, DataPortWrite, URB, MessageGateway, DataPortRead, Sampler
ThreadSpawner

Both the fixed-functions and the thread dispatcher require EOT notification at the
completion of each thread. The thread dispatcher and fixed functions in the 3D
pipeline obtain EOT notification by snooping all message transmissions, regardless of
the explicit destination, looking for messages which signal end-of-thread. The Thread
Spawner in the media pipeline does not snoop for EOT. As it is also a shared function,
all threads generated by Thread Spawner must send a message to Thread Spawner to
explicity signal end-of-thread.

The thread dispatcher, upon detecting an end-of-thread message, updates its
accounting of resource usage by that thread, and is free to issue a new thread to take
the place of the ended thread. Fixed functions require end-of-thread notification to
maintain accounting as to which threads it issued have completed and which remain
outstanding, and their associated resources such as URB handles.

Unlike the thread dispatcher, fixed-functions discriminate end-of-thread messages,
only acting upon those from threads which they originated, as indicated by the 4b
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fixed-function ID present in RO of end-of-thread message payload. This 4b field is
attached to the thread at new-thread dispatch time and is placed in its designated
field in the RO contents delivered to the GRF. Thus to satisfy the inclusion of the fixed-
function ID, the typical end-of-thread message generally supplies RO from the GRF as
the first register of an end-of-thread message.

As an optimization, an end-of-thread message may be overload upon another
“productive” message, saving the cost in execution and bandwidth of a dedicated end-
of-thread message. Outside of the end-of-thread message, most threads issue a
message just prior to their termination (for instance, a Dataport write to the
framebuffer) so the overloaded end-of-thread is the common case. The requirement is
that the message contains RO from the GRF (to supply the fixed-function ID), and that
destination shared function be either (a) the URB; (b) the Read or Write Dataport; or,
(c) the Gateway, as these functions reside on the O-Bus. In the case where the last
real message of a thread is to some other shared function, the thread must issue a
separate message for the purposes of signaling end-of-thread to the “null” shared
function.

Performance

The Gen4 Architecture imposes no requirement as to a shared function’s latency or
throughput. Due to this as well as factors such as message queuing, shared bus
arbitration, implementation choices in bus bandwidth, and instantaneous demand for
that function, the latency in delivering and obtaining a response to a message is non-
deterministic. It is expected that a Gen4 implementation has some notion of fairness
in transmission and servicing of messages so as to keep latency outliers to a
minimum.

Other factors to consider with regard to performance:

¢ A thread may choose to have multiple messages under construction in non-
overlapping registers the MRF at the same time.

e Multiple messages are allowed to be enqueued for transmission at the same time,
so long as their MRF payload registers do not overlap.

e Messages may rely on the MRF registers being maintained across a send message,
thus constructing subsequent messages overlaid on portions of a previous
message,

e Software prefetching techniques may be beneficial for long latency data fetches
(i.e., issue a load early in the thread for data that is required late in the thread).
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Message Description Syntax

All message formats are defined in terms of DWords (32 bits). The message registers
in all cases are 256 bits wide, or 8 DWords. The registers and DWords within the
registers are named as follows, where n is the register number, and d is the DWord
number from 0 to 7, from the least significant DWord at bits [31:0] within the 256-bit
register to the most significant DWord at bits [255:224], respectively. For writeback
messages, the register number indicates the offset from the specified starting
destination register.

Dispatch Messages: Rn.d

Dispatch messages are sent by the fixed functions to dispatch threads. See the fixed
function chapters in the 3D and Media volume.

SEND Instruction Messages: Mn.d

These are the messages initiated by the thread via the SEND instruction to access
shared functions. See the chapters on the shared functions later in this volume.

Writeback Messages: Wn.d

These messages return data from the shared function to the GRF where it can be
accessed by thread that initiated the message.

The bits within each DWord are given in the second column in each table.

Message Errors

Messages are constructed via software, and not all possible bit encodings are legal,
thus there is the possibility that a message may be sent containing one or more errors
in its descriptor or payload contents. There are two points of error detection in the
message passing system: (@) the message delivery subsystem is capable of detecting
bad FunctionIDs and some cases of bad message lengths; (b) the shared functions
contain various error detection mechanisms which identify bad sub-function codes,
bad message lengths, and other misc errors. The error detection capabilities are
specific to each shared function. The execution unit hardware itself does not perform
message validation prior to transmission.

In both cases, information regarding the erroneous message is captured and made
visible through MMIO registers, and the driver notified via an interrupt mechanism

(see the Debugging chapter for details). The set of possible errors is listed in

Table 2-1 with the associated outcome. Please see the chapters on debug and error
handling for detailed information.
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Table 2-1.

Error Cases

Error

Outcome

Bad Shared Function ID

The message is discarded before reaching any shared function.
If the message specified a destination, those registers will be
marked as in-flight, and any future usage by the thread of
those registers will cause a dependency which will never clear,
resulting in a hung thread and eventual time-out.

Unknown opcode

Incorrect message length

The destination shared function detects unknown opcodes (as
specified in the ‘send’ instructions <desc> field), and known
opcodes where the message payload is either too long or too
short, and threats these cases as errors. When detected, the
shared function latches and makes available via MMIO registers
the following information: the EU and thread ID which sent the
message, the length of the message and expected response,
and any relevant portions of the first register (R0) of the
message payload. The shared function alerts the driver of an
erroneous message through and interrupt mechanism (details
tbd), then continues normal operation with the subsequent
message.

Bad message contents in
payload

Detection of bad data is an implementation decision of the
shared function. Not all fields may be checked by the shared
function, so an erroneous payload may return bogus data or no
data at all. If an erroneous value is detected by the shared
function, it is free to discard the message and continue with the
subsequent message. If the thread was expecting a response,
the destination registers specified in the associated ‘send’
instruction are never cleared potentially resulting in a hung
thread and time-out.

Incorrect response length

Case: too few registers specified - the thread may proceed with
execution prior to all the data returning from the shared
function, resulting in the thread operating on bad data in the
GRF.

Case: too many registers specified - the message response
does not clear all the registers of the destination. In this case, if
the thread references any of the residual registers, it may hand
and result in an eventual time-out.

Improper use of End-Of-
Thread (EOT)

Any ‘send’ instruction which specifies EOT must have a ‘null’
destination register. The EU enforces this and, if detected, will
not issue the ‘send’ instruction, resulting in a hung thread and
an eventual time-out.

The ‘send’ instruction specifies that EOT is only recognized if
the <desc> field of the instruction is an immediate. Should a
thread attempt to end a thread using a <desc> sourced from a
register, the EOT bit will not be recognized. In this case, the
thread will continue to execute beyond the intended end of
thread, resulting in a wide range of error conditions.

Two outstanding messages
using overlapping GRF
destinations ranges

This is not checked by HW. Due to varying latencies between
two messages, and out-of-order, non-contiguous writeback
cycles, the outcome in the GRF is indeterminate; may be the
result from the first message, or the result from the second
message, or a combination of both.




Debugging

3.1

Introduction

The Gen4 Architecture includes dedicated logic to facilitate debug of the system. Each
fixed function unit contains logic to allow trapping data associated with a specific
element (vertex, polygon, pixel, etc.). This logic will be enabled and controlled via
debug registers in MMIO space.

Most units output a debug tag along with the vertices they output. These tags contain
the FFID of the unit, a thread ID that increments with each thread dispatched by the
unit (if the unit dispatches threads), and a vertex sequence number that uniquely
identifies each output. These sequence numbers are thread-relative for units whose
outputs are generated by threads. These debug tags are available to the next enabled
unit as optional trap data.

In addition, a mechanism is provided to allow setting breakpoints in selected threads
as they are executing in the core. The breakpoints can be set at an instruction level
or via an MMIO register using a physical thread address or on a certain opcode. When
a breakpoint is encountered, the execution unit will switch to a system routine that
can be used to write out internal data (GRF, MRF, thread state).

The trapping of data associated with a specific element can be used to enable the
breakpoint mechanism such that only the thread associated with the trapped element
will switch to the system routine at the breakpoint; other threads executing the same
instructions on different elements will not have the breakpoint enabled. Alternatively,
breakpoints can be enabled for all threads initiated by a given FF unit. A global flag is
also available that will cause all threads (from all FF units) to have breakpoints
enabled.

The Shared Functions will also have some debug controls, such as running in a non-
pipelined mode of operation.

These debug features are described in more detail below.
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3.2 The Snapshot Mechanism
All of the fixed function units (and some of the shared function units) have “snapshot”
debugging capability. Each fixed function has a debug control register with
(nominally) 5 control bits that are associated with the function, plus a trigger value
register, and a debug data register where the captured “snapshot” can be read.
Size in Name Description
Bits

1 Snapshot Enable Enables the FF unit to capture trap data based on a match with the
Debug Snapshot Trigger Value.

8 Snapshot Output Mux Select Controls which DW of trap data is visible. The number of valid
values for this field varies by FF unit and is generally much less
than the 256 maximum allowed by the field. Note that all data
defined in this field is latched - the value in this field only
determines which DW is currently visible in

1 Snapshot Complete This bit is set to 1 by hardware when a snapshot compare
succeeds. This bit should be set to 0 via MMIO write after reading
the desired snapshot return values in order to enable another
snapshot to occur.

1 Thread Snapshot Enable When set, debug will be enabled on the thread that is associated
with the trapped element.

1 Snapshot All Threads When set, debug will be enabled for all threads generated by this
Fixed Function Unit. Setting this bit means Thread Snapshot
Enable is effectively ignored.

N Debug Snapshot Trigger Value The value in this field is compared with a corresponding value
associated with each “element” processed by the FF unit. In most
cases the value associated with each element is an incrementing
“thread ID” but in some cases it is some other value associated
with an element processed by the FF unit.

32 Debug Data Once a snapshot has been triggered by a successful compare, the

DW of data indicated by Snapshot Output Mux Select can be
read here.
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Some of the fixed/shared functions have additional fields that can be used to further
qualify the snapshot comparison. See the following sections on each FF unit for unit-
specific control capabilities.
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3.2.1 Debug Trigger Counters

Fixed function units contain various counters whose values can be compared against
the Debug Snapshot Trigger Value of the unit, captured by the next enabled unit in
the pipeline, or used within the unit to eliminate some elements from processing in
order to minimize test cases.

Fixed Function Unit Available Counters

VF Vertex Sequence Number

Primitive Topology Number (for test minimization only)

'S Thread ID
GS Thread ID
Clipper Thread ID
SF Thread ID

Primitive Sequence Number

WM Thread ID

Primitive Sequence Number (same as the one in SF)

These counters are reset to 0 by a issuing an MI_FLUSH with the Global Snapshot
Counter Reset bit set. They count up continuously until they are reset again (or
until they roll over.) It is recommended that these counters be reset no less often
than once per frame to avoid rollover.

The counters are controlled by a global debug enable which is set from a Command
Stream MMIO register (see Memory Interface Registers chapter). The counters will
only increment if the global debug enable is set.

The SVG unit will qualify the debug enable signals to all fixed function and shared
funciton units with the global debug enable (as described in each of the following

sections).
3.3 Fixed Function Debug Process
3.3.1 Overview

Each fixed function unit has a unique (4-bit) code as a unit identifier defined. Each
unit will generate an incrementing output identifier for each output it generates. For
each thread dispatched by a fixed function unit, an incrementing thread ID will be
generated and passed along to the execution units.

In order to make effective use of the debug logic, a failing test case should be

repeatable. Once a repeatable failure is created, the debug mechanisms described in
this chapter can be used to facilitate debug.
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The first step of debug is to identify the screen coordinates of a failing pixel (x,y
location). This pixel location is placed in WIZ — Debug Snapshot Trigger Value. The
Windower snapshot is then enabled using WIZ - Debug Control.

The driver then needs to monitor WIZ — Debug Control bit 31 to determine when the
snapshot operation has been completed. When this bit becomes set by the hardware,
the driver can then read back data that was captured by the snapshot operation. This
data is read from WIZ - Debug Return Data. The selection of which data to read is
made using the snapshot select field of WIZ — Debug Control.

If bit 1 of WIZ — Debug Control is set, the snapshot flag will be passed to the Thread
Dispatcher. If breakpoints are enabled (see Thread Dispatcher), a breakpoint will be
enabled for the Pixel Shader thread that generated the pixel of interest. Various types
of breakpoints can be programmed (see Attention Signaling from EU to Host).

If the pixel computations seem correct, or the corruption covers an entire polygon, the
Primitive Sequence Number read back from the Windower snapshot can be used to
snapshot computations in the SF unit.

By enabling the SF snapshot (SF — Debug Control), and setting the snapshot ID (SF -
Debug Snapshot Trigger Value) to the count of the primitive of interest, a snapshot
will occur in the SF unit when that primitive is processed.

The mechanism for determining that the snapshot is complete is the same as
described for the Windower above. Various data can be read using the snapshot
select for SF. Enabling the thread snapshot will allow breakpoints to be used to debug
the Setup kernel that generated the coefficient data for the selected primitive.

If the corruption seems to be related to one of the input vertices to SF, the snapshot
select can be used to read back the debug ID of the input vertices that create the
primitive. This debug data can then be used in the unit that sourced the vertex to the
SF (identified by the FF ID of the vertex debug field).

If the source of the vertex data is the Clipper, the thread ID field of the debug ID can
be used to program a Clipper snapshot (see Clipper). The Clipper Thread can be
debugged by enabling the thread snapshot. The input vertices to the clipper can be
examined and used to trace the input further upstream to the Geometry Shader or
Vertex Shader.

Similar debug controls are used to snapshot Geometry Shader (see Geometry Shader)
and Vertex Shader (see Vertex Shader) outputs.

Vertex Shader Debug

Vertex Shader debug is somewhat unique. Some additional steps are required to
identify the Vertex Shader thread for a specific vertex output. Each output vertex has
a unique sequence number, however multiple outputs can map to the same vertex
shader thread. This is due to the fact that this unit has a vertex cache. A vertex can
be shaded once then used multiple times.

Given a reproducible test case, one can identify the thread that shaded a given vertex.
Assuming an errant vertex has been discovered in GS, the vertex sequence number
from the previous enabled FF can be determined from the GS snapshot. The
associated FFID captured in GS will indicate that the vertex came either from the VS
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unit or (when VS is in bypass mode) directly from the VF unit. If the vertex came
from the VF unit then the VS is not involved.

If VS is the identified unit, the test must now be rerun with the VF snapshot trigger
value programmed to that vertex sequence number. The snapshot obtained from that
test run yields the thread ID of the thread that shaded that vertex, regardless of
whether the vertex cache is enabled.

The test must now be rerun once more with the VS snapshot trigger value set to the
thread ID of the offending thread, which can now be debugged.

SVG Debug

The State Variable unit contains base addresses which nearly all 3D/Media accesses
are offset from. These registers allow the base addresses to be captured for
inspection. The base addresses will be latched if they change while Global Debug
Enable in the INSTPM register is set. This way the base addresses for the context
being debugged can be read here anytime, even if another context is currently
executing.

SVG_CTL —Debug Control

Address Offset: 07400h-7403h
Default Value: 00000000h
Access: Read/Write
Size: 32 bits

Bit

Descriptions

31:16

Reserved : MBZ

15:8

Debug Output Mux Select. Controls which 32 bits of the debug data are returned

auPhbhwWNHO

6 - 255 = Documented in an SVG specific document outside of the PRM.

return General State Base Address for the context which has debug enabled

return Surface State Base Address for the context which has debug enabled

return Indirect Object Base Address for the context which has debug enabled

return General State Access Upper Bound for the context which has debug enabled

return Indirect Indirect Object Access Upper Bound for the context which has debug enabled
return System Instruction Pointer for the context which has debug enabled

7:0

Reserved : MBZ

3.3.3.2

SVG_RDATA—Debug Return Data
Address Offset: 07404h-7407h
Default Value: UUUU UUUUh
Access: Read-Only
Size: 32 bits

Bit

Descriptions

31:0

SVG Debug Data. Returns data based on debug output mux select
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3.3.3.3 SVG_WORK_CTL—Debug Workaround Control
Address Offset: 07408h-740Bh
Default Value: 00000000h
Access: Read/Write
Size: 32 bits
Bit Descriptions
31:5 Reserved : MBZ
4 Reserved.
[DevBW-A,B]
DAP Stateless Access ECO:
"0” -Indicates Stateless Accesses disallowed
“1” - Inicates Stateless accesses allowed
3:2 Reserved : MBZ
1 Disable WI1Z Panic Dispatch
If set, disables the BO BW modification which forces the WI1Z to dispatch partial payloads
for certain non-promoted cases
0 = normal operation (force partial dispatch for potential depth cache deadlock cases)
1 = don't perform deadlock check for non-promotable cases
0 YUV 4:2:2 Chrominace Mode. This field controls whether the chrominance for odd pixels is
computed by an interpolation between the adjacent even pixels, or a replication from the pixel to the
left.
Programming Notes:
e the texture caches must be invalidated after switching the state of this bit
0 = Replication
1: Interpolation
3.3.4 Vertex Fetch

50

The Vertex Fetch unit will output the VF FFID and a vertex index with each vertex it
outputs. The VF will have the ability to snapshot any given output vertex index or a
vertex sequence number. When a snapshot compare succeeds, the VF will latch a
number of internal signals which can be examined by setting the VF Snapshot
Output Mux Select appropriately and examining the VF Debug Return Data
register. The thread ID of the VS thread that shades the vertex can also be captured
here; VS will be effectively bypassed for a given vertex if its shaded results are
already available in the vertex cache.

The VF will also have the ability to process only a selected range of primitive
topologies (3DPRIM commands) and a selected range of vertices for those primitives.
This will allow a test to be minimized for debug purposes.




3.34.1 VF_CTL—Debug Control
Address Offset: 7500h-7503h
Default Value: 00000000h
Access: Read/Write
Size: 32 bits

Bit Descriptions

31 Snapshot Complete. This bit will be set to 1 by hardware when a snapshot compare occurs. After
reading the desired snapshot return values, the driver should reset this bit to 0.

30:16 Reserved : MBZ
15:8 Snapshot Output Mux Select. Controls which 32 bits of the trap data are returned
0 = return thread ID of vertex shader dispatch (Snapshot Type should be set to 0)
1 = Internal VF debug data (Snapshot Type should be set to 1) Defined in a VF-specific document
outside the PRM
7:5 Reserved : MBZ

4 Snapshot Type. Controls whether the Debug Snapshot Trigger Value is compared against a 24-
bit vertex sequence number or a vertex index (up to 32 bits).

0 = 24-bit Trigger Value is compared against the vertex sequence number (used to obtain thread ID)
1 = 32-bit Trigger Value is compared against the vertex index (used for all other VF debug
snapshots)

3 Skip Initial Primitives. If set, the number of primitives (3DPRIM commands) programmed in the
Debug Starting Primitives Skipped register will be parsed by the command streamer and then
immediately discarded by the Vertex Fetch unit before any processing is done (qualified in SVG with
global debug enable)

2 Max Primitives Limit Enable. If set, primitives (3DPRIM commands) beyond the number
programmed in the Debug Max Primitives register will be parsed by the command streamer and
then immediately discarded by the Vertex Fetch unit before any processing is done (qualified in SVG
with global debug enable).

1 Vertex Range Limit Enable. If set, parameters in 3DPRIM commands will be overridden such that
only vertices within a range specified by Start Vertex Location Override and Vertex Count Per
Instance Override will be fetched and processed (qualified in SVG with global debug enable).

0 Snapshot Enable. This bit is set to enable the fixed function snapshot logic in the VF (qualified in
SVG with global debug enable).
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3.3.4.2 VF_STRG_VAL—Debug Snapshot Trigger Value

Address Offset: 7504h-7507h
Default Value: 00000000h
Access: Read/Write
Size: 32 bits
Bit Descriptions
31:0

Vertex Sequence Number or Vertex Index. When Snapshot Type is 0, bits 23:0 of this field will
be compared to the sequence number of the current vertex being processed; bits 31:24 MBZ. When
Snapshot Type is 1, this field will be compared to the index of the current vertex being processed.
Bits 31:16 and bits 31:8 MBZ for Word and Byte indices, respectively.

When a match occurs, signals within the FF unit will be latched for read back using the VF Debug
Return Data register and the Snapshot Mux Select field of VF Debug Control.

3.3.4.3 VF_STR_VL_OVR —Debug Start Vertex Location Override

Address Offset: 7508h-750Bh
Default Value: 00000000h
Access: Read/Write
Size: 32 bits
Bit Descriptions
31:0 Start Vertex Location Override. Overrides the Start Vertex Location of all primitives when
Vertex Range Limit is enabled.
3.3.4.4 VF_VC_ OVR —Debug Vertex Count Override
Address Offset: 750Ch-750Fh
Default Value: 00000000h
Access: Read/Write
Size: 32 bits
Bit Descriptions
31:0 Vertex Count Per Instance Override. Overrides the Vertex Count Per Instance of all primitives
when Vertex Range Limit is enabled.
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3.3.4.5 VF_STR_PSKIP —Debug Starting Primitives Skipped

Address Offset: 7510h-7513h
Default Value: 00000000h
Access: Read/Write
Size: 32 bits
Bit Descriptions
23:0 Starting Primitives Skipped. If Skip Initial Primitives is enabled, this field specifies the number

of primitives (3DPRIM commands) that should be skipped prior to beginning normal primitive
processing.

3.3.4.6 VF_MAX_PRIM —Debug Max Primitives

Address Offset: 7514h-7517h
Default Value: 00000000h
Access: Read/Write
Size: 32 bits
Bit Descriptions
31:24 Reserved. MBZ
23:0 Max Primitives. If Max Primitive Limit Enable is set, this field specifies the maximum number of

primitives (3DPRIM commands) that will be processed normally after which all succeeding primitives
will be skipped. Note that primitives skipped due to enabling Skip Initial Primitives are still counted
toward this limit.

3.3.4.7 VF_RDATA —Debug Return Data

Address Offset: 7518h-751Bh
Default Value: UUUU Uuuuh
Access: Read-Only
Size: 32 bits
Bit Descriptions
31:0 Vertex Fetch Debug Data. Returns data captured by the compare on snapshot ID (based on

snapshot output mux select)
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Vertex Shader

The Vertex Shader (VS) will output a unique identifier with each vertex it outputs.
The four MSBs of this field will be the VS FFID code and the next 24 bits will be the
unique vertex sequence ID.

VS will assign a unique ID to each thread dispatched. The MSB of R0.7 holds the
snapshot flag. Following the snapshot flag will be 31 reserved bits. The thread ID will
be passed to the thread dispatcher as part of the r0.6 header debug data.

RO.7
SS Flag Reserved
1 bit 31 bits
RO.6
Reserved for SW Debug Thread ID
8 bits 24 bits

VS will have snapshot logic which will generate a compare flag based on a match to a
specific thread ID. As VS issues that thread to be dispatched, it will pass along the

snapshot flag to the Thread Dispatcher (TD).




3.3.5.1 VS_CTL —Debug Control
Address Offset: 7600h-7603h
Default Value: 00000000h
Access: Read/Write
Size: 32 bits
Bit Descriptions

31 Snapshot Complete. This bit will be set to 1 by hardware when a snapshot compare occurs. After

reading the desired snapshot return values, the driver should reset this bit to 0.

30:16 Reserved : MBZ

15:8 Snapshot Output Mux Select. Controls which 32 bits of the trap data are returned. Vertex 0 and
vertex 1 refer to the 2 vertices dispatched to a VS thread. No FFID is included in VS snapshot data
since the only possible sourcing unit is VF (which cannot be bypassed.)
0 = Vertex 0 Index
1 = Vertex 1 Index
2 = Valid vertex count (Range 1-2)
3 = VS Kernel Pointer
4 - 255 = = Defined in a Vertex Shader specific document outside the PRM

7:3 Reserved : MBZ

2 Snapshot All Threads. If set, the snapshot flag will be set for all threads generated by this Fixed
Function Unit (Overrides Snapshot Enable bit). If set, the data for the last thread executed will be
captured in the FF unit. (qualified in SVG with global debug enable).

1 Thread Snapshot Enable. This bit is set to enable passing the snapshot flag into the geometry
shader thread dispatch. If Snapshot All Threads is also set, the snapshot flag will be passed into the
thread dispatch for every thread. (qualified in SVG with global debug enable).

0 Snapshot Enable. This bit is set to enable the fixed function snapshot logic in the VS (qualified in
SVG with global debug enable).

3.3.5.2 VS STRG_VAL—Debug Snapshot Trigger Value
Address Offset: 7604h-7607h
Default Value: 00000000h
Access: Read/Write
Size: 32 bits
Bit Descriptions
31:24 Reserved : MBZ
23:0 Thread ID Compare Value. This field will be used by the FF logic to compare to the current thread

being dispatched. When a match occurs, a snapshot flag will be generated and optionally passed
into the thread dispatch. Various signals within the FF unit will also be latched for read back via
MMIO registers.
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3.3.5.3 VS _RDATA —Debug Return Data

Address Offset: 7608h-760Bh
Default Value: UuUuUuU Uuuuh
Access: Read-Only
Size: 32 bits

Bit Descriptions

31:0 VS Debug Data. Returns data captured by the compare on snapshot ID (based on snapshot output

mux select)

3.3.6
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Each output vertex will be tagged with a unique identifier. This identifier will consist
of a 4-bit Fixed Function Unit ID, a 24-bit thread ID and an 8-bit relative vertex ID
(VS only needs a 1-bit relative vertex ID, but this is a generic identifier field). The 1-
bit thread relative ID should be generated by the VS fixed function logic in the output
path.

Geometry Shader

The Geometry Shader (GS) will output a unique identifier with each vertex it outputs.
The four MSBs of this field will be the GS FFID code, the next 24 bits will be the
unique thread ID, and the 10 LSBs will be the thread relative vertex output (created
at the output of the GS). If the GS is disabled, it will output zero for the thread
relative vertex.

The thread ID will also be passed to the thread dispatcher in the r0.6 header. .

RO.7
SS Flag Reserved
1 bit 31 bits
RO.6
Reserved for SW Debug Thread ID
8 bits 24 bits

The GS will have snapshot logic which will generate a compare flag based on a match
to a specific thread ID. As the GS issues that thread to be dispatched, it will pass
along the snapshot flag to the Thread Dispatcher (TD).




3.3.6.1 GS_CTL —Debug Control
Address Offset: 7900h-7903h
Default Value: 00000000h
Access: Read/Write
Size: 32 bits
Bit Descriptions
31 Snapshot Complete. This bit will be set to 1 by hardware when a snapshot compare occurs. After
reading the desired snapshot return values, the driver should reset this bit to 0.
30:16 Reserved : MBZ
15:8 Snapshot Output Mux Select. Selects what data will be accessed in GS Debug Data:
0 = input vertex 0 FF ID in bits 31:28, Vertex 0 Sequence Number in bits 23:0
1 = reserved
2 = input vertex 1 FF ID in bits 31:28, Vertex 1 Sequence Number in bits 23:0
3 = reserved
4 = input vertex 2 FF ID in bits 31:28, Vertex 2 Sequence Number in bits 23:0
5 = reserved
6 = input vertex 3 FF ID in bits 31:28, Vertex 3 Sequence Number in bits 23:0
7 = reserved
8 = input vertex 4 FF ID in bits 31:28, Vertex 4 Sequence Number in bits 23:0
9 = reserved
10 = input vertex 5 FF ID in bits 31:28, Vertex 5 Sequence Number in bits 23:0
11 = reserved
12 = valid input vertex count (range 1-6)
13 = GS Kernel Pointer
14 - 255 = = Defined in a Geometry Shader-specific document outside the PRM
7:3 Reserved : MBZ

2 Snapshot All Threads. If set, the snapshot flag will be set for all threads generated by this Fixed
Function Unit (Overrides Snapshot Enable bit). If set, the data for the last thread executed will be
captured in the FF unit (qualified in SVG with global debug enable).

1 Thread Snapshot Enable. This bit is set to enable passing the snapshot flag into the geometry
shader thread dispatch. If Snapshot All Threads is also set, the snapshot flag will be passed into the
thread dispatch for every thread (qualified in SVG with global debug enable).

0 Snapshot Enable. This bit is set to enable the fixed function snapshot logic in the GS (qualified in
SVG with global debug enable).
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3.3.6.2 GS_STRG_VAL —Debug Snapshot Trigger Value
Address Offset: 7904h-7907h
Default Value: 00000000h
Access: Read/Write
Size: 32 bits
Bit Descriptions
31:28 Reserved : MBZ
27:0 Snapshot ID. This field will be used by the FF logic to compare to the current thread being
dispatched. When a match occurs, a snapshot flag will be generated and passed into the thread
dispatch. Various signals within the FF unit will also be latched for read back via MMIO registers.
3.3.6.3 GS_RDATA —Debug Return Data
Address Offset: 7908h-790Bh
Default Value: UuUuUuU Uuuuh
Access: Read-Only
Size: 32 bits
Bit Descriptions
31:0 GS Debug Data. Returns data captured by the compare on snapshot ID (based on snapshot output
mux select)
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Clipper

The Clipper will output a unique identifier with each vertex it outputs. The four MSBs
of this field will be the Clipper FFID, the next 24 bits will be the thread ID, and the
LSBs will be a sequential count of output vertices (incremented by the clipper fixed
function output logic).

The thread ID will also be passed through to the Thread Dispatcher as part of the r0
header.

RO.7
SS Flag Reserved
1 bit 31 bits
RO.6
Reserved for SW Debug Thread ID
8 bits 24 bits

The Clipper will have snapshot logic which will generate a compare flag based on a
match to a specific thread ID. As the Clipper issues that thread to be dispatched, it
will pass along the snapshot flag to the Thread Dispatcher (TD).

The Clipper will also have the capability to snapshot vertices that are not clipped, but
passed through from the up stream units, so that fixed function clip logic can be
debugged (like clip test results).
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3.3.7.1 CL_CTL—Debug Control
Address Offset: 7A00h-7A03h
Default Value: 00000000h
Access: Read/Write
Size: 32 bits
Bit Descriptions

31 Snapshot Complete. This bit will be set to 1 by hardware when a snapshot compare occurs. After
reading the desired snapshot return values, the driver should reset this bit to 0.

30 Reserved. MBZ

29:16 Reserved : MBZ
15:8 Snapshot Output Mux Select. Selects what data will be accessed in Clipper Debug Data:
0 = Input Vertex 0 FF ID in bits 31:28, Thread ID (Vertex Sequence Number for VF/VS) in bits
23:0 (Sequence Number for VF/VS)
1 = Input Vertex 0 Relative Vertex Count (0 if GS is disabled)
2 = Input Vertex 1 FF ID in bits 31:28, Thread ID (Vertex Sequence Number for VF/VS) in bits
23:0
3 = Input Vertex 1 Relative Vertex Count (0 if GS is disabled)
4 = Input Vertex 2 FF ID in bits 31:28, Thread ID (Vertex Sequence Number for VF/VS) in bits
23:0
5 = Input Vertex 2 Relative Vertex Count (0 if GS is disabled)
6 = Valid Vertex Count (Range 1-3)
7 = Clipper Kernel Pointer
8 - 255 = = Defined in a Clipper specific document outside the PRM
7:3 Reserved : MBZ

2 Snapshot All Threads. If set, the snapshot flag will be set for all threads generated by this Fixed
Function Unit (Overrides Snapshot Enable bit). If set, the data for the last thread executed will be
captured in the FF unit (qualified in SVG with global debug enable).

1 Thread Snapshot Enable. This bit is set to enable passing the snapshot flag into the geometry
shader thread dispatch. If Snapshot All Threads is also set, the snapshot flag will be passed into the
thread dispatch for every thread (qualified in SVG with global debug enable).

0 Snapshot Enable. This bit is set to enable the fixed function snapshot logic in the Clipper (qualified
in SVG with global debug enable).
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3.3.7.2 CL_STRG_VAL—Debug Snapshot Trigger Value
Address Offset: 7A04h-7A07h
Default Value: 00000000h
Access: Read/Write
Size: 32 bits
Bit Descriptions
31:28 Reserved : MBZ
27:0 Snapshot ID. This field will be used by the FF logic to compare to the current thread being
dispatched. When a match occurs, a snapshot flag will be generated and passed into the thread
dispatch. Various signals within the FF unit will also be latched for read back via MMIO registers.
3.3.7.3 CL_RDATA—Debug Return Data
Address Offset: 7A08h-7A0Bh
Default Value: UuUuUuU Uuuuh
Access: Read-Only
Size: 32 bits
Bit Descriptions
31:0 Clipper Debug Data. Returns data captured by the compare on snapshot ID (based on snapshot
output mux select)
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3.3.8
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Strips Fans

SF will generate a unique primitive sequence number for each incoming primitive.
This ID will be passed along to the setup kernel in the thread ID field, and also passed
along to the Windower. This same primitive sequence number will be used as a
thread ID for each setup thread that is dispatched.

RO.7
SS Flag Reserved
1 bit 31 bits
RO.6
Reserved for SW Debug Thread 1D
8 bits 24 bits

SF can cull some polygons (backface, degenerate) so not every input will generate an
output to the Windower. The primitive count will be incremented for all primitives,
including the ones that are culled.

The SF will have the ability to snapshot any given primitive number. Based on the
snapshot compare the SF will output to an MMIO register the vertex ids of the
incoming vertices that created the primitive.

As the SF issues the thread for that primitive to be dispatched, it will pass along the
snapshot flag to the Thread Dispatcher (TD).

To facilitate debug, the SF will contain logic to only process primitives within a certain
range (specified through MMIO).

To support test minimization, a user clipping rectangle can be specified via MMIO
registers. When enabled, the SF will only process polygons which fall inside the
specified clip region.

The snapshot flag will be passed along to the Windower.



3.3.8.1

SF_CTL —Debug Control

Address Offset: 7B00h-7B03h
Default Value: 00000000h
Access: Read/Write
Size: 32 bits

Bit

Descriptions

31

Snapshot Complete. This bit will be set to 1 by hardware when a snapshot compare occurs. After
reading the desired snapshot return values, the driver should reset this bit to 0.

30

Cull All. When set to 1 SF drops all incoming primitives

29:16

Reserved : MBZ

15:8

Snapshot Output Mux Select
Controls which 32 bits of the trap data are returned

0 = Input Vertex O FF ID in bits 31:28, Thread ID (Vertex Sequence Number for VF/VS) in bits
23:0

1 = Input Vertex 0 Relative Vertex Count (0 if GS is disabled)

2 = Input Vertex 1 FF ID in bits 31:28, Thread ID (Vertex Sequence Number for VF/VS) in bits
23:0

3 = Input Vertex 0 Relative Vertex Count (0 if GS is disabled)

4 = Input Vertex 2 FF ID in bits 31:28, Thread ID (Vertex Sequence Number for VF/VS) in bits
23:0

5 = Input Vertex 0 Relative Vertex Count (0 if GS is disabled)
6 = Vertex count (range 1-3)
7 = SF Kernel Pointer

8 - 255 = = Defined in an SF-specific document outside the PRM

7:5

Reserved : MBZ

Min /7 Max Primitive Range Enable

If set, primitives outside the specified min / max range are culled (qualified in SVG with global
debug enable)

Debug Clip Rectangle Enable

If set, the drawing rectangle is overloaded with the specified debug clip rectangle (qualified in SVG
with global debug enable)

Snapshot All Threads. If set, the snapshot flag will be set for all threads generated by this Fixed
Function Unit (Overrides Snapshot Enable bit). If set, the data for the last thread executed will be
captured in the FF unit (qualified in SVG with global debug enable).

Thread Snapshot Enable. This bit is set to enable passing the snapshot flag into the geometry
shader thread dispatch. If Snapshot All Threads is also set, the snapshot flag will be passed into the
thread dispatch for every thread (qualified in SVG with global debug enable).

Snapshot Enable

This bit is set to enable the fixed function snapshot logic in the SF (qualified in SVG with global debug
enable).
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3.3.8.2 SF_STRG_VAL—Debug Snapshot Trigger Value
Address Offset: 7B04h-7B07h
Default Value: 00000000h
Access: Read/Write
Size: 32 bits
Bit Descriptions
31:28 Reserved : MBZ
27:0 Snapshot ID. This field will be used by the FF logic to compare to the current thread being
dispatched. When a match occurs, a snapshot flag will be generated and passed into the thread
dispatch. Various signals within the FF unit will also be latched for read back via MMIO registers.
3.3.8.3 SF_MIN_PR__IND—Debug Minimum Primitive Index
Address Offset: 7B08h-7B0Bh
Default Value: 00000000h
Access: Read/Write
Size: 32 bits
Bit Descriptions
31:28 Reserved : MBZ
27:0 Minimum Primitive Index. Sets the lower bound on primitives to be processed (if Min / Max
primitive range is enabled).
3.3.8.4 SF_MAX_PR_IND—Debug Maximum Primitive Index
Address Offset: 7B0Ch-7B0Fh
Default Value: 00000000h
Access: Read/Write
Size: 32 bits
Bit Descriptions
31:28 Reserved : MBZ
27:0 Maximum Primitive Index. Sets the upper bound on primitives to be processed (if Min / Max
primitive range is enabled).

64




intel)

3.3.8.5 SF_CLIP_RMIN-— Debug Clip Rectangle Minimum Coordinates

Address Offset: 7B10h-7B13h
Default Value: 00000000h
Access: Read/Write
Size: 32 bits

Bit Descriptions

31:16 Debug Clip Rectangle Minimum Y. Sets the lower Y bound on pixels to be processed (if debug clip
rectangle is enabled).

15:0 Debug Clip Rectangle Minimum X. Sets the lower X bound on pixels to be processed (if debug clip
rectangle is enabled).

3.3.8.6 SF_CLIP_RMAX—Debug Clip Rectangle Maximum Coordinates

Address Offset: 7B14h-7B17h
Default Value: 00000000h
Access: Read/Write
Size: 32 bits

Bit Descriptions

31:16 Debug Clip Rectangle Maximum Y. Sets the upper Y bound on pixels to be processed (if debug
clip rectangle is enabled).

15:0 Debug Clip Rectangle Maximum X. Sets the upper X bound on pixels to be processed (if debug
clip rectangle is enabled).

3.3.8.7 SF_RDATA—Debug Return Data

Address Offset: 7B18h-7B1Bh
Default Value: UUUU UUUUh
Access: Read-Only
Size: 32 bits

Bit Descriptions

31:0 SF Debug Data. Returns data captured by the compare on snapshot ID (based on snapshot output
mux select)
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3.3.9
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Windower / Intermediate Z

The Windower Mask Unit (WM) will generate multiple dispatches per polygon. Each
payload that is dispatched has subspan position information which is carried along
with the payload. The Windower will generate an incrementing thread ID for each
payload dispatched.

RO.7
SS Flag Reserved Primitive Sequence
Number
1 bit 7 bits 24 bits
RO.6
Reserved for SW Debug Thread ID
8 bits 24 bits

The thread number issued by the WM will be a primitive relative count. Two debug
fields will be sent through the payload dispatch, a primitive sequence number and an
incrementing thread ID. The WM will have the ability to snapshot a subspan of any
input primitive according to the subspan’s XY coordinates. Based on the snapshot, the
WM will output to an MMIO register the thread ID that contained that subspan.

A snapshot can now be taken using the thread ID of the subspan of interest. This
snapshot flag can be sent to the thread dispatcher.

A count field can be supplied via MMIO which will cause the WM snapshot to be
generated only on the n'" occurrence of that subspan. The WM will count how many
times the selected subspan occurs. The subspan count can be read by setting
Snapshot Output Mux Select to “"Subspan Instance Count”).

If the upstream snapshot flag is set, the Windower will only snapshot subspans that
belong to the primitive identified in the SF snapshot compare.
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The following pseudo code describes the Windower snapshot behavior.

if (Enable Subspan Instance Compare) {
snapshot compare match = subspan x,y match && subspan instance
count match

} else {

shapshot compare match = subspan x,y match
}

if (snapshot all threads) {

local snapshot flag = 1
} else if (snapshot enable) {

local snapshot flag = snapshot compare match
}

ifT (Use Upstream Snapshot) {
final snapshot flag = upstream snapshot flag && local snapshot
flag

} else {
final snapshot flag = local snapshot flag

}

if {Thread Snapshot Enable) [

snhapshot flag to payload = final snapshot flag
} else {

shapshot flag to payload = 0

}
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3.3.9.1 WI1Z_CTL—Debug Control
Address Offset: 7C00h-7C03h
Default Value: 00000000h
Access: Read/Write
Size: 32 bits
Bit Descriptions
31 Snapshot Complete. This bit will be set to 1 by hardware when a snapshot compare occurs. After
reading the desired snapshot return values, the driver should reset this bit to 0.
30:29 Reserved : MBZ
28:26 Reserved. MBZ
25 Reserved. MBZ
24 Reserved. MBZ
23:16 Subspan Instance Number. If Subspan Instance Compare is enabled, identifies which
occurrence of a subspan to trap on. Format:U8
Range:1 - 255
15:8 Snapshot Output Mux Select. Controls which 32 bits of the trap data are returned
0 = Windower Kernel Pointer
1 = Subspan Instance Count
2 = Primitive Sequence Number from SF
3 - 255 = = Defined in a Windower-specific document outside the PRM

7 Reserved : MBZ

6 Single Subspan Dispatch. When set, WIZ will only dispatch one subspan per payload for non-
promoted or computed IZ cases. For the A stepping of BW this bit should always be set to 1.

5 Ignore Color Scoreboard Stalls. When set, WIZ will ignore pixel dispatch scoreboard blocking
conditions and continue to dispatch new subspans.

4 Enable Subspan Instance Compare. When set, the WIZ snapshot will trap on the nth occurrence
of the selected subspan, where n is the value entered as the Subspan Instance Number above (bits
23:16). If this bit is clear the first occurrence of the selected subspan will be trapped

3 Use Upstream Snapshot Flag. This bit is set to enable trapping data in the Windower based on a
snapshot flag passed downstream from the SF unit. If set, the downstream snapshot flag from SF
and the subspan X, Y comparison must succeed in order for the current subspan to be trapped. If
this bit is clear the snapshot flag passed down from SF is ignored and any matching subspan will be
trapped (subject to instance number if Enable Subspan Instance Compare is set.).

2 Snapshot All Threads. If set, the snapshot flag will be set for all threads generated by this Fixed
Function Unit (Overrides Snapshot Enable bit). If set, the data for the last thread executed will be
captured in the FF unit (qualified in SVG with global debug enable).

1 Thread Snapshot Enable. This bit is set to enable passing the snapshot flag into the pixel shader
thread dispatch. If Snapshot All Threads is also set, the snapshot flag will be passed into the thread
dispatch for every thread (qualified in SVG with global debug enable).

0 Snapshot Enable. This bit is set to enable the fixed function snapshot logic in the WIZ (qualified in
SVG with global debug enable).
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3.3.9.2 WI1Z_ _STRG_VAL —Debug Snapshot Trigger Value

Address Offset: 7C04h-7C07h
Default Value: 00000000h
Access: Read/Write
Size: 32 bits

Bit Descriptions

31:16 Pixel Y Compare Value. This field controls which pixel Y value to trap on. This value must match
the current subspan Y in order for it to be trapped (Isb of the compare value is ignored by hw).

15:0 Pixel X Compare Value. This field controls which pixel X value to trap on. This value must match
the current subspan X in order for it to be trapped (Isb of the compare value is ignored by hw).

3.3.9.3 WI1Z RDATA—Debug Return Data

Address Offset: 7C08h-7C0Bh
Default Value: UuUuUuU Uuuuh
Access: Read-Only
Size: 32 bits

Bit Descriptions

31:0 WI1Z Debug Data. Returns data captured by the compare on snapshot subspan x, y (based on
snapshot output mux select).
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3.3.10 Video Front End
VFE passes down a unique 32 bit debug identifier to TS with each kernel it generates.
This 32-bit field will be passed into the thread as in DW6 of RO header. Contents
within the debug identifier as well as the mechanism to generate the field can be
found in the Media chapter.
3.3.10.1 VFE_CTL—Debug Control
Address Offset: 7D00h-7D03h
Default Value: 00000000h
Access: Read/Write
Size: 32 bits
Bit Descriptions
31 Snapshot Complete. This bit will be set to 1 by hardware when a snapshot compare occurs. After
debugging the errant thread, the driver should reset this bit to 0.
30:16 Reserved : MBZ
15:8 Snapshot Output Mux Select. Controls which 32 bits of the trap data are returned
0 - 255 = = Defined in a VFE-specific document outside the PRM
7:1 Reserved : MBZ
0 Snapshot Enable. This bit is set to enable the fixed function snapshot logic in the VFE (qualified in
SVG with global debug enable).

3.3.10.2 VFE_STRG_VAL—Debug Snapshot Trigger Value

Address Offset: 7D04h-7D07h
Default Value: 00000000h
Access: Read/Write
Size: 32 bits

Bit Descriptions
31:28 Reserved : MBZ
27:0 Snapshot ID. This field will be used by the FF logic to compare to the current thread being

dispatched. When a match occurs, a snapshot flag will be generated and passed into the thread
dispatch. Various signals within the FF unit will also be latched for read back via MMIO registers.
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3.3.10.3 VFE_RDATA—Debug Return Data
Address Offset: 7D08h-7D0Bh
Default Value: UuUuUuU Uuuuh
Access: Read-Only
Size: 32 bits
Bit Descriptions
31:0 VFE Debug Data. Returns data captured during a snaphot
3.3.11 Thread Spawner

TS does not have a kernel counter.

To assemble the r0 register when creating a root thread, TS simply copies the 32-bit
debug identifier received from VFE into r0.6, and leaves 0 in r0.7.

For child thread, rO register is created by the parent thread and stored in URB. TS is
not involved. However, the dispatch child thread message sent to TS must contain the
same debug field (r0.6 and r0.7) for the given child thread. TS latches the debug field.

TS can generate the snapshot based on snapshot match, or generate the snapshot
independently for all root threads (including synchronized root) and/or for all child
threads depending the configuration in Debug Register 1.

When Thread Snapshot Enable is set, but "Snapshot All Root Threads” and “Snapshot
All Child Threads” are not set, TS uses Debug Register 2 and 3 to match against the
thread to be dispatched. If it is a root thread, TS uses the debug field received from
VFE. If it is a child thread, TS uses the debug field latched from the child dispatch
request message.
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3.3.11.1 TS CTL—Debug Control

Address Offset: 7E00h-7EOQO3h
Default Value: 00000000h
Access: Read/Write
Size: 32 bits
Bit Descriptions
31 Snapshot Complete. This bit will be set to 1 by hardware when a snapshot compare occurs. After
debugging the errant thread, the driver should reset this bit to 0.
30:16 Reserved : MBZ
15:8 Debug Data Mux Select: Controls which 32 bits of the trap data for the selected Thread Spawner unit
are returned
0 = Message Error:
[31:27] Message Sideband Function Control [4:0]
[26] End of Thread
[25:22] FFID[3:0]
[21:18] | EUID[3:0]
[17:16] | TID[1:0]
[15] Error Code Valid
[14:10] Dispatch ID[4:0]
[9:1] URB Handle[8:0]
[0] Error Code
Identifies Type of Error
0 = Unexpected Message to TS
1 = Bad Length
1 - 2 = Defined in a Thread Spawner-specific document outside the PRM
3 = Snapshot Interface Descriptor:
[31:30] Reserved
[29] Child Thread
[28] Reserved
[27:0] Interface Descriptor
4 - 255 = Defined in a Thread Spawner-specific document outside the PRM
7:3 Reserved : MBZ
2 Snapshot All Child Threads. If set, the snapshot flag will be set for all spawned threads generated
by TS (qualified in SVG with global debug enable).
1 Snapshot All Root Threads. If set, the snapshot flag will be set for all root threads generated by
TS (qualified in SVG with global debug enable).
0 Thread Snapshot Enable. This bit is set to enable the fixed function snapshot logic in TS and to

pass the snapshot flag into TS thread dispatch (qualified in SVG with global debug enable).
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3.3.11.2 TS _STRG_O0-6VAL—Debug Snapshot Trigger R0O.6 Value
Address Offset: 7E04h-7EQ7h
Default Value: 00000000h
Access: Read/Write
Size: 32 bits
Bit Descriptions

31:24 Reserved : MBZ

Note: Bits 31:24 of R0.6 are reserved. Therefore, this field is not included in the comparison.

23:0 Snapshot IDO (bits [23:0] of R0.6). This field together with Debug Snapshot Trigger RO.7
Value will be used by the FF logic to compare to the debug field (R0.6 and R0.7) of the current
thread being dispatched. When a match occurs, a snapshot flag will be generated and passed into
the thread dispatch. TS does not latch any internal signals upon a snapshot is generated.

3.3.11.3 TS_STRG_O0-7VAL—Debug Snapshot Trigger R0O.7 Value
Address Offset: 7E08h-7EOBh

Default Value: 00000000h
Access: Read/Write
Size: 32 bits

Bit Descriptions

31:24 Reserved : MBZ

Note: Bit 31 of R0.7 carries the snapshot flag, and bits [30:24] of R0.7 are reserved. Therefore, this
field is not included in the comparison.

23:0 Snapshot ID1 (bits [23:0] of RO.7). This field together with Debug Snapshot Trigger RO.6
Value will be used by the FF logic to compare to the debug field (R0.6 and R0.7) of the current
thread being dispatched. When a match occurs, a snapshot flag will be generated and passed into
the thread dispatch. TS does not latch any internal signals upon a snapshot is generated.

3.3.11.4 TS_RDATA—Debug Return Data
Address Offset: 7E0Ch-7EQFh

Default Value: UUuUuU Uuuuh
Access: Read-Only
Size: 32 bits
Bit Descriptions
31:0 TS Debug Data. Returns data captured when a ‘bad’ message is received (based on mux select in
TS Debug Control)
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Parent Thread Recommendations
Kernel Development Guideline

A parent thread, serving the purpose of a fixed function unit, should generate the 32-
bit r0.7 debug field for its child threads.

As the MSB of r0.7 is reserved for hardware to insert the snapshot flag, software must
make sure that it never alters bit 31. This is shown by the following pseudo code.
and (1) reg32 r0.7:ud 0x80000000:ud // save bit 31
// update r0.7 with new child ID
or (1) r0.7:ud r0.7:ud reg32:ud // restore bit 31
A root thread should forward its r0.6 to its child thread.

A branch parent thread should create a unique parent ID in r0.6 for its child threads.
For example, it may copy its own r0.7 into its children’s r0.6.

A leaf child thread should not alter the debug ID field.

The debug ID field of a root thread:

RO.7 RO.6

SSflag 0 FF Unit ID Object ID Root Thread ID

1 bit 31 bits 4 bits 12 bits 16 bits

The debug ID field of a child thread:

RO.7 RO.6

SSflag Child Thread 1D FF Unit ID Object ID Parent Thread ID

1 bit 31 bits 4 bits 12 bits 16 bits




3.4 Shared Function Debug
3.4.1 Thread Dispatcher
3.4.1.1 TD_CTL—Debug Control
Address Offset: 8000h-8003h
Default Value: 00000000h
Access: Read/Write
Size: 32 bits
Bit Descriptions
31:16 Reserved : MBZ
15:8 Debug Data Mux Select. Controls which 32 bits of trap data are returned.
0 - 255 = = Defined in a Thread Dispatcher-specific document outside the PRM

7 External Halt on RO Debug Match. When set, causes an external halt exception to occur on the
thread dispatch for which the comparison on R0.6 and R0.7 succeeds. Setting this bit forces the
External Halt Exception bit to be set to true. This signal is qualified in SVG with global debug enable.

6 Force External Halt. When set, forces an external halt exception to occur on the next thread
dispatch. Setting this bit forces the External Halt Exception bit to be set to true. This signal is
qualified in SVG with global debug enable.

5 Exception Mask Override. When set, forces all exception masks to be over-ridden with the settings
in TD Debug Register 2 (qualified in SVG with global debug enable).

4 Force Thread Breakpoint Enable. When set, enables breakpoints on all dispatched threads. When
clear, thread debug may still be enabled on a snapshot basis. CR1.15 will be set for all threads when
this bit is set, regardless of the state of bit 2 and regardless of whether a snapshot was associated
with the thread at the FF. This signal is qualified in SVG with global debug enable.

3 Reserved : MBZ

2 Breakpoint Enable. Enables breakpoints to be honored in the dispatched thread. This bit must be
set in order for CR1.15 to be set for a thread corresponding to FF data that triggered a snapshot,
unless bit 4 is set. When bit 4 is set this bit is ignored (qualified in SVG with global debug enable).

1:0 Reserved : MBZ
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3.4.1.2 TD_CTL2—Debug Control 2

Address Offset: 8004h-8007h
Default Value: 00000000h
Access: Read/Write
Size: 32 bits
Bit Descriptions
31:29 Reserved : MBZ
28 Illegal Opcode Exception Override. When set (and the exception override bit, TD Debug Control, is
set), forces the illegal opcode exception to be enabled, overriding the state control of this function.
27 Reserved : MBZ
26 MaskStack Exception Override. When set (and the exception override bit, TD Debug Control, is
set), forces the MaskStack exception to be enabled, overriding the state control of this function.
25 Software Exception Override. When set (and the exception override bit, TD Debug Control, is set),
forces the software exception to be enabled, overriding the state control of this function.
24 Reserved : MBZ
23:19 Reserved : MBZ
18:16 | Active Thread Limit. When enabled by Active Thread Limit Enable, the TD will limit the number
of active threads per execution unit to the value specified in this field.
15:13 Reserved : MBZ
12:10 Reserved : MBZ
9 Reserved : MBZ
8 Active Thread Limit Enable. Limits the number of active threads per execution unit.
7 Thread Spawner Execution Mask Enable. Limits which execution units are available for these
threads to execute on
6 WI1Z Execution Mask Enable. Limits which execution units are available for these threads to
execute on
5 SF Execution Mask Enable. Limits which execution units are available for these threads to execute
on
4 Clipper Execution Mask Enable. Limits which execution units are available for these threads to
execute on
3 GS Execution Mask Enable. Limits which execution units are available for these threads to execute
on
2 Reserved : MBZ
1 Reserved : MBZ
0 VS Execution Mask Enable. Limits which execution units are available for these threads to execute

on
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3.4.1.3 TD_VF_VS_EMSK—Debug VF/VS Execution Mask
Address Offset: 8008h-800Bh
Default Value: 00000000h
Access: Read/Write
Size: 32 bits
Bit Descriptions
31:16 Reserved : MBZ

15:0 VS Execution Mask. When enabled, forces all VS threads to execute on only those execution units
with the corresponding mask bit set to 1.
3.4.1.4 TD_GS_EMSK—Debug GS Execution Mask
Address Offset: 800Ch-800Fh
Default Value: 00000000h
Access: Read/Write
Size: 32 bits
Bit Descriptions
31:16 Reserved : MBZ
15:0 GS Execution Mask. When enabled, forces all GS threads to execute on only those execution units
with the corresponding mask bit set to 1.
3.4.1.5 TD_CLIP_EMSK—Debug Clipper Execution Mask
Address Offset: 8010h-8013h
Default Value: 00000000h
Access: Read/Write
Size: 32 bits
Bit Descriptions
31:16 Reserved : MBZ
15:0 Clipper Execution Mask. When enabled, forces all Clipper threads to execute on only those
execution units with the corresponding mask bit set to 1.
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3.4.1.6 TD_SF_EMSK—Debug SF Execution Mask
Address Offset: 8014h-8017h
Default Value: 00000000h
Access: Read/Write
Size: 32 bits
Bit Descriptions
31:16 Reserved : MBZ
15:0 SF Execution Mask. When enabled, forces all SF threads to execute on only those execution units
with the corresponding mask bit set to 1.
3.4.1.7 TD_WI1Z_EMSK — Debug WIZ Execution Mask
Address Offset: 8018h-801Bh
Default Value: 00000000h
Access: Read/Write
Size: 32 bits
Bit Descriptions
31:16 Reserved : MBZ
15:0 WI1Z Execution Mask. When enabled, forces all WIZ threads to execute on only those execution
units with the corresponding mask bit set to 1.
3.4.1.8 TD_0-6_EHTRG_VAL—Debug R0O.6 External Halt Trigger Value
Address Offset: 801Ch-801Fh
Default Value: 00000000h
Access: Read/Write
Size: 32 bits
Bit Descriptions
31:24 Reserved: MBZ
23:0 RO.6 Debug Compare Value. Specifies the match to compare against the R0.6 debug header. A
match on both the R0.7 and R0.6 headers (based on the mask bits) will cause the TD to generate an
external halt exception if External Halt on RO Debug Match is set.
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3.4.1.9 TD_O-7_EHTRG_VAL—Debug RO.7 External Halt Trigger Value

Address Offset: 8020h-8023h
Default Value: 00000000h
Access: Read/Write
Size: 32 bits

Bit Descriptions

31:24 Reserved: MBZ

23:0 RO.7 Debug Compare Value. Specifies the match to compare against the R0.7 debug header. A
match on both the R0.7 and R0.6 headers (based on the mask bits) will cause the TD to generate an
external halt exception if External Halt on RO Debug Match is set.

3.4.1.10 TD_0-6_EHTRG_MSK—Debug R0O.6 External Halt Trigger Mask

Address Offset: 8024h-8027h
Default Value: 00000000h
Access: Read/Write
Size: 32 bits

Bit Descriptions

31:24 Reserved: MBZ

23:0 R0O.6 Debug Compare Mask. Specifies the mask to use for the compare against the R0.6 debug
header. A match on both the R0.7 and R0.6 headers (based on the mask bits) will cause the TD to
generate an external halt exception if External Halt on RO Debug Match is set.

3.4.1.11 TD_O0O-7_EHTRG_MSK—Debug RO.7 External Halt Trigger Mask

Address Offset: 8028h-802Ch
Default Value: 00000000h
Access: Read/Write
Size: 32 bits

Bit Descriptions

31:24 Reserved: MBZ

23:0 RO.7 Debug Compare Mask. Specifies the mask to use for the compare against the R0.7 debug
header. A match on both the R0.7 and R0.6 headers (based on the mask bits) will cause the TD to
generate an external halt exception if External Halt on RO Debug Match is set.
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3.4.1.12 TD_RDATA—Debug Return Data

Address Offset: 802Ch-802Fh
Default Value: UUuUU Uuuuh
Access: Read-Only
Size: 32 bits

Bit Descriptions

31:0 TD Debug data. Returns debug data (based on debug data mux select)

3.4.1.13 TD_TS_EMSK—Debug TS Execution Mask

Address Offset: 8030h-8033h
Default Value: 00000000h
Access: Read/Write
Size: 32 bits

Bit Descriptions

31:16 Reserved : MBZ

15:0 TS Execution Mask. When enabled, forces all TS threads to execute on only those execution units
with the corresponding mask bit set to 1.

3.4.2 Math Unit

3.4.2.1 MATH_CTL—Math Debug Control

Address Offset: 8100h-8103h
Default Value: 00000000h
Access: Read/Write
Size: 32 bits

Bit Descriptions

31:16 Reserved: MBZ

17:16 EM Unit Select: Controls which EM returns the trap data associated with the Snapshot Output Mux
Select

Range: 0 -1
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Bit

Descriptions

15:8

Debug Data Mux Select: Controls which 32 bits of the trap data for the selected SF unit are

returned

0 = Error Message Header:

[31:28] Reserved
[27:24] | FFID[3:0]
[23:22] Reserved
[21:20] | TID[1:0]
[19:16] | EUID[3:0]
[15:12] rlen[3:0]
[11:8] mlen[3:0]
[7:4] opcode[3:0]
[3:0] Error Code[3:0] -Identifies type of error
[0] = bad length
[1]= invalid opcode
[2] = EOT bit detected
[3] = Error bit detected
In all cases above EM will discard message
1 = EM Debug Data
31:31 Input Data Valid
30:30 Input FIFO Full
29:26 Input Opcode
25:22 Input EUID
21:20 Thread ID
19:16 Msg Length
15:9 Destination register
8 Sequencer to FPU
Valid & 'Hold
7 FPU to FPU
6:3 Valid
Counter
2 FPU to Assembler
Valid & !'Hold
1 Output of EM
Valid & Grant
0 Reserved

2 -255 = to be defined is an EM-specific document outside the PRM
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Descriptions

7:2 Reserved : MBZ

1 Non-Pipeline Mode Enable. When enabled, forces the Math Unit to operate in a non-pipelined

mode of operation (qualified in SVG with global debug enable).

0 Reserved : MBZ

3.4.2.2

MATH_RDATA—Math Debug Return Data

Address Offset: 8104h-8107h
Default Value: UUUU Uuuuh
Access: Read-Only
Size: 32 bits
Bit Descriptions
31:0 Math Debug Data. Returns data captured by the compare on snapshot ID (based on snapshot
output mux select)
3.4.3 Instruction / State Cache
3.4.3.1 ISC_CTL—Instruction / State Debug Control
Address Offset: 8200h-8203h
Default Value: 00000000h
Access: Read/Write
Size: 32 bits
Bit Descriptions
31:0 Reserved : MBZ
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Instruction L1 Cache

3.4.4
3.4.4.1 ISC_L1CA CTR—Instruction L1 Cache Debug Control
Address Offset: 8280h-8283h
Default Value: 00000000h
Access: Read/Write
Size: 32 bits
Bit Descriptions
31:16 Reserved : MBZ
15:8 Snapshot Output Mux Select. Controls which 32 bits of the trap data are returned
0 - 255 = = Defined in an ISC-specific document outside the PRM
7:0 Reserved : MBZ
3.4.4.2 ISC_L1CA RDATA—Instruction L1 Cache Debug Return Data
Address Offset: 8284h-8287h
Default Value: UUuUuU Uuuuh
Access: Read-Only
Size: 32 bits
Bit Descriptions
31:0 Instruction L1 Cache Debug Data. Returns data (based on output mux select)
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3.4.4.3 ISC_L1CA BP_ADRIl1—Instruction L1 Cache Breakpoint Address
1 Control
The Instruction L1 Cache Breakpoint Address Control Registers allow a breakpoint to
be set on a given instruction address. These registers may be updated at any time.
Address Offset: 8288h-828Ch
Default Value: 00000000h
Access: Read/Write
Size: 32 bits
Bit Descriptions
31:4 Breakpoint Address 1. This field holds the 28 MSBs of the desired linear address of the context’s
memory space.
3:1 Reserved : MBZ
0 BPIP 1 Enable. Specifies whether this breakpoint is enabled or disabled.
This field has no effect when Breakpoint Enable bit is unset.
This field is initialized to O at reset.
0 = Breakpoint IP 1 disabled
1 = Breakpoint IP 1 enabled
3.4.4.4 ISC _L1CA BP_ADR2—Instruction L1 Cache Breakpoint Address
2 Control
Address Offset: 8290h-8293h
Default Value: 00000000h
Access: Read/Write
Size: 32 bits
Bit Descriptions
31:4 Breakpoint Address 2. This field holds the 28 MSBs of the desired linear address of the context’s
memory space.
3:1 Reserved : MBZ
0 BPIP 2 Enable. Specifies whether this breakpoint is enabled or disabled.

This field has no effect when Breakpoint Enable bit is unset.
This field is initialized to 0 at reset.

0 = Breakpoint IP 2 disabled

1 = Breakpoint IP 2 enabled
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3.4.4.5 ISC_L1CA BP_OPCl—Instruction L1 Cache Breakpoint Opcode
1 Control
Address Offset: 8294h-8297h
Default Value: 00000000h
Access: Read/Write
Size: 32 bits
Bit Descriptions
31:24 Reserved : MBZ
23:16 Breakpoint Opcode 1. Specifies opcode to breakpoint against (if enabled). Any thread for which
breakpoints are enabled will break on any instruction matching this field.
15:2 Reserved : MBZ
1 Breakpoint Opcode 1 EOT Enable. Specifies opcode to breakpoint against (if enabled). Any
thread for which breakpoints are enabled will break on any instruction matching this field.
0 Breakpoint Opcode 1 Enable. Specifies opcode to breakpoint against (if enabled). Any thread for
which breakpoints are enabled will break on any instruction matching this field.
3.4.4.6 ISC_L1CA BP_OPC2—Instruction L1 Cache Breakpoint Opcode
2 Control
Address Offset: 8298h-829Ch
Default Value: 00000000h
Access: Read/Write
Size: 32 bits
Bit Descriptions
31:24 Reserved : MBZ
23:16 Breakpoint Opcode 2. Specifies opcode to breakpoint against (if enabled). Any thread for which
breakpoints are enabled will break on any instruction matching this field.
15:1 Reserved : MBZ
0 Breakpoint Opcode 2 Enable. Specifies opcode to breakpoint against (if enabled). Any thread for
which breakpoints are enabled will break on any instruction matching this field.
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3.4.5

86

Message Arbiter

When the MASFHalt bit is set in the debug register, the Message Arb enters a ‘halt’
state and ceases to further arbitrate, thus no further grants are issued back to EUs.
Any in-flight messages or any ‘grant’ which has been committed at the time of
transition is continued to its conclusion. Any previously-posted requests from the EUs
to the MA remain in the MA’s input/request queues, and the MA’s input queue logic
remains operational, capable of accepting further EU requests until the associated
input queue is full. The MA remains in the *halt’ state until the register’s bit field is
reset by driver software.

A similar mechanism is defined for the Writeback Arb (WBarb) called *‘WBHalt’. In this
case, the arbiter halts further issuance of grants to shared functions which have
pending requests in the WBarb’s input queues. Any pending requests which have
already been committed are allowed to continue to completion. Similar to MAHalt, the
request logic of WBarb continues to operate normally while in the *halt’ state,
accepting new requests until such time that the request queues become full. The
WBarb remains in the ‘halt’ state until the register’s bit is reset by driver software.

A similar mechanism also exists for the RowInput Arb (RIarb). A single bit is defined
to place all the RI arbiters (one exists for each row) into halt mode. When this bit is
set, the RI arbiters halt further arbitration of Math return data and Writeback traffic.
Any traffic already committed for transmission is allowed to complete, and the Rlarb
input logic continues to accept any new requests that may be made. Note that thread-
dispatch traffic is defined as non-throttled, so it will not be halted. The RIarb remains
in the *halt’ state until the register’s bit is reset by driver software.



3.45.1 MA_DEBUG_1—Message Arbiter Debug Control
Address Offset: 8300h-8303h
Default Value: 00000000h
Access: Read/Write
Size: 32 bits
Bit Descriptions
31:5 Reserved : MBZ
4 Writeback Arbiter Halt Mode (WBHalt). Puts the WB arbiter into halt mode. WB arbitrates
between the writebacks (return data) from all the shared functions except extended math which
instantiated per row and whose writeback data goes directly to the RI arbiter. This signal is qualified
in SVG with global debug enable.
Format = Enable
3 Rowlnput Arbiter Halt Mode (RIHalt). Puts the RI arbiter into halt mode. One RI per row
arbitrates between writebacks (shared function return data) and TD dispatches coming into the EUs.
This bit places the RI arbiters of all rows into halt mode. However, RI arbiters will still grant TD
dispatch requests even when in halt mode. This signal is qualified in SVG with global debug enable.
Format = Enable
2 Shared Function Arb Halt Mode (MASFHalt). Puts the MASF arbiter into Halt mode. MASF
arbitrates all request messages to shared functions from EUs. This signal is qualified in SVG with
global debug enable.
Format = Enable
1 Non-Pipeline Mode Enable. Forces the Message Arbiter to operate in a non-pipelined mode of
operation. In this mode it will enqueue only 1 request to each shared function at a time. A new
request will not be enqueued until the SF indicates its input queue is empty. Depending on the SF,
this may or may not de-pipeline the SF to some extent. This signal is qualified in SVG with global
debug enable.
Format = Enable
0 Reserved: MBZ
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3.4.6 Sampler

3.4.6.1 SAMPLER_CTL—Sampler Debug Control

Address Offset: 8400h-8403h
Default Value: 00000000h
Access: Read/Write
Size: 32 bits

Bit Descriptions

31:16 Reserved : MBZ

15:8 Debug Data Mux Select. Controls which 32 bits of the trap data for the selected sampler unit are
returned

0 = Error Message Header:

[31:28] Reserved
[27:24] | FFID[3:0]
[23] Reserved
[22:21] | TID[1:0]
[20] Reserved
[19:16] | EUID[3:0]

[15:0] Error Code[15:0]: Identifies type of error are:

1 = bad length
2 = invalid EOT message

1
2

Debug data from Message Header dword 6

Debug data from Message Header dword 7

3 - 255 = Defined in a Sampler-specific document outside the PRM

7:3 Sampler Unit Select. Selects the unit to be observed in the debug data register

00000 - SIUnit
00001 - PLUnit
00010 - DGUnit
00011 - QCUnit
00100 - FTUnit
00101 - DMUnit
00110 - SCUnit
00111 - FLUnit
01000 - SOUnit

2 Texture L1 Cache Disable. Disables the Texture L1 Cache. Unless this bit is set when the texture
cache is guaranteed to be empty (such as during initialization), the texture cache must first be
flushed by issuing an MI_FLUSH with the Map Cache Invalidate bit set.

Format = Disable

1 Reserved : MBZ

0 Reserved : MBZ
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3.4.6.2 SAMPLER_RDATA—Sampler Debug Return Data
Address Offset: 8404h-8407h
Default Value: UuUuUuU Uuuuh
Access: Read-Only
Size: 32 bits
Bit Descriptions
31:0 Sampler Debug Data. Returns debug data (based on snapshot output mux select)
3.4.7 Data Port
The Dataport captures message header information for the first detected error. Error
detection can occur at the message arbiter or be internally detected by the dataport.
3.4.7.1 DP_CTL—Data Port Debug Control
Address Offset: 8500h-8503h
Default Value: 00000000h
Access: Read/Write
Size: 32 bits
Bit Descriptions
31:16 Reserved : MBZ
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Bit Descriptions
15:8 Debug Data Mux Select. Controls which 32 bits of the trap data are returned
0 = Error Message Header:
[31:28] | Reserved
[27:24] | FFID[3:0]
[23] Reserved
[22:21] | TID[1:0]
[20] Reserved
[19:16] | EUID[3:0]
[15:14] | Reserved
[13] Error Bit: Wrong Return Length
[12] Error Bit: Illegal Surface Format
[10] Error Bit: Wrong Message Programming for Stateless Boundary
[9] Error Bit: Wrong Message Programming for illegal Stateless Mode Set
[8] Error Bit: Wrong Message Programming for Message Length
[7] Error Bit: Illegal Address Alignment
[6] Error Bit: Wrong Message Programming for Block Size
[5] Error Bit: Illegal Surface Type
[4] Error Bit: Illegal Target Cache
[3] Error Bit: Error Bit Received from Message Sideband
[2] Error Bit Invalid S/F Id
[1] Error Bit Invalid EOT Message
[0] Error Bit Bad Length
1 = Debug data from Message Header dword 7
2 = Debug data from Message Header dword 6
3 - 31 = Defined in a Dataport-specific document outside the PRM
32 - 63 = Binding Table Pointers
64 - 255 = Defined in a Dataport-specific document outside the PRM
7:0 Reserved : MBZ
3.4.7.2 DP_RDATA—Data Port Debug Return Data
Address Offset: 8504h-8507h
Default Value: UUUU UUUUhA
Access: Read-Only
Size: 32 bits
Bit Descriptions
31:0 Data Port Debug Data. Returns debug data (based on snapshot output mux select)
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3.4.8 Render Cache
3.4.8.1 RC_CTL—RC Debug Control
Address Offset: 8600h-8603h
Default Value: 00000000h
Access: Read/Write
Size: 32 bits
Bit Descriptions
31:16 Reserved : MBZ
15:8 Snapshot Output Mux Select. Controls which 32 bits of the trap data are returned
0 - 255 = = Defined in a Render Cache-specific document outside the PRM
7:3 Reserved : MBZ

2 Default Color Enable. Forces the Render Cache to output a constant color for all channels when
enabled (only for pixels whose rO header has the snapshot flag set). This signal is qualified in SVG
with global debug enable.

1 Non-Pipeline Mode Enable. Forces the Render Cache to operate in a non-pipelined mode of
operation. This signal is qualified in SVG with global debug enable.

0 Snapshot Enable. This bit is set to enable the snapshot logic in the RC. The snapshot logic is also
dependent on the snapshot flag being set in the RO header. This signal is qualified in SVG with
global debug enable.

3.4.8.2 RC_DEF_CLR—RC Debug Force Default Color
Address Offset: 8603h-8607h
Default Value: 00000000h
Access: Read/Write
Size: 32 bits
Bit Descriptions
31:0 Default Color. If Default Color is enabled, the Render Cache will output the default color for each

channel (RGBA). The default color is assumed to be in the format of the render target (and aligned
to the MSB).
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3.4.8.3 RC_RDATA—RC Debug Return Data

Address Offset: 8608h-860Bh
Default Value: UuUuUuU Uuuuh
Access: Read-Only
Size: 32 bits

Bit Descriptions

31:0 RC Debug Data. Returns data captured by the compare on snapshot ID (based on snapshot output

mux select)

3.4.9 Unified Return Buffer (URB)
The ability to trap a write to the URB (from a thread) will be provided. When the URB
snapshot enable bit is set (URB Debug Control), the URB will trap any message that
has the snapshot flag set in the RO header. The n'" data phase will be trapped (where
n is specified using the Snapshot Output Register control in the URB Debug Control).
3.4.9.1 URB_CTL—URB Debug Control
Address Offset: 8700h-8703h
Default Value: 00000000h
Access: Read/Write
Size: 32 bits
Bit Descriptions
31 Snapshot Complete. This bit will be set to 1 by hardware when a snapshot compare occurs. After
reading the desired snapshot return values, the driver should reset this bit to 0.
30:20 Reserved : MBZ
19:16 Snapshot Output Register Select. Controls which register of the URB write message is trapped.
Range: 0 - 15
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Bit

Descriptions

15:8

Debug Data Mux Select. Controls which 32 bits of the trap data are returned. Controls which 32
bits of the trap data for the selected sampler unit are returned

0 = Error Message Header:

[31:28] Reserved
[27:24] FFID[3:0]

[23] Reserved
[22:21] TID[1:0]

[20] Reserved
[19:16] EUID[3:0]
[15:0] Error Code[15:0]
Identifies type of error

4 = Invalid S/F Id

= Debug data from Message Header dword 6
= Debug data from Message Header dword 7
- 7 = Reserved for HW usage

= trapped message data bits 0 - 31

= trapped message data bits 32 - 63

10 = trapped message data bits 64 - 95

11 = trapped message data bits 96 - 127

12 = trapped message data bits 128 - 159

13 = trapped message data bits 160 - 191

14 = trapped message data bits 192 - 223

15 = trapped message data bits 224 - 255

16 - 255 = = Defined in a URB-specific document outside the PRM

O WWWNHK

7:1

Reserved : MBZ

Snapshot Enable. This bit is set to enable the snapshot logic in the URB. The snapshot logic is also
dependent on the snapshot flag being set in the RO header. This signal is qualified in SVG with global

debug enable.

3.4.9.2 URB_RDATA—URB Debug Return Data

Address Offset: 8708h-870Bh
Default Value: UUUU Uuuuh
Access: Read-Only
Size: 32 bits

Bit

Descriptions

31:0

URB Debug Data. Returns data captured by the compare on snapshot enable (based on snapshot

output mux select)
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Thread Spawner (TS)

TS is not only a fixed function to generate thread for the media pipeline, it is also a
shared function allowing a thread running on EU to directly send message to.
Therefore, it must handle ‘bad’ messages in a similar manner as other shared

functions.

See the Fixed Function Debug section above for the debug registers defined for
handling bad messages.

Attention Signaling from EU to Host

[mkd: Text duplicated in Exceptions chapter — need to resolve]

e Each thread has dedicated signaling mechanism to/from the host, based on a
3-wire protocol (per thread) and the ‘wait n1’ instruction.

e Likely uses: (a) Debug breakpoint “suspend/resume” signaling (b) Software
manipulated serial data stream (bit-banged) to the host, for use in debug, in
the case where thread state save/restore via the dataport is unavailable/hung.

e Attention Signaling

o The following signals are provided per thread:

Attn - a 1b signal sent from the thread to the host, indicating
that the associated thread desires attention. This signals is set
to ‘1’ via the ‘wait n1’ instruction and held set until an ‘AClear’
signal is received from the host, at which time the signal is
reset to '0".

AData - a 1b data signal sent from the thread to the host,
indicating any data the thread wishes to communicate;
Reflects the value of the architectural register CRO, bit 2, as
set by the thread.

AClear - a 1b signal, send from the host to the thread, which
resets the thread’s internal Host-To-Thread-Notification bit
(register N1, bit 0), as well as the Host-Notification-Data
register (register CRO, bit 2). MMIO registers available to the
host

Attn[63:0] - reflects the combined 64 ‘Attn’ bits of the thread.
Read-only.

AData[63:0] - reflects the combined 64 ‘AData’ bits of the
thread. Read-Only.

AClear[63:0] - the port through which the host issues a ‘Clear’
signal to one or more threads. Write-only; a write to this
register causes a 1-clock pulse to be sent to the associated
‘Clear’ signal of any bit position set as a '1’. Signaling
attention to the driver

All 64 *Attn’ bits are ‘OR’ed together to crate a 1b ATTN
interrupt signal to the driver



3.5.1 EU_CTL—EU Debug Control
Address Offset: 8800h-8803h
Default Value: 00000000h
Access: Read/Write
Size: 32 bits
Bit Descriptions
31:19 Reserved : MBZ
18:16 EU Select. Controls which EU returns the debug data associated with the Debug Data Mux Select
Range: 0 - 7
15:8 Debug Data Mux Select. Controls which 32 bits of the trap data are returned
0 - 255 = = Defined in an EU-specific document outside the PRM
7:0 Reserved : MBZ
3.5.2 EU_ATT—EU Debug Attention
Address Offset: 8810h-881Fh
Default Value: 00000000000000000000000000000000hN
Access: Read-Only
Size: 128 bits
Bit Descriptions
127:32 Reserved : MBZ.
31:0 Attention. Reflects the Attention bits (msb is EU 0 thread 0).
3.5.3 EU_ATT_DATA—EU Debug Attention Data
Address Offset: 8820h-882Fh
Default Value: 00000000000000000000000000000000h
Access: Read-Only
Size: 128 bits
Bit Descriptions
127:32 Reserved : MBZ.
63:0 Attention Data. A 1b data signal sent from the thread to the host, indicating any data the thread

wishes to communicate (msb is EU 0 thread 0).
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3.54 EU_ATT_CLR—EU Debug Attention Clear

Address Offset: 8830h-883Fh

Default Value: 00000000000000000000000000000000hN
Access: Write-Only

Size: 128 bits

Bit Descriptions

127:32 Reserved : MBZ.

31:0 Attention Clear. A 1b data signal sent from the host to a thread, indicating the thread may resume
operation (Isb is EU 0 thread 0). These bits must be set to 1, then set back to 0 to clear the

associated thread wait.

3.5.5 EU_RDATA—EU Debug Return Data

Address Offset: 8840h-8843h
Default Value UuUuUuU Uuuuh
Access: Read-Only
Size: 32 bits
Bit Descriptions
31:0 EU Debug Data. Returns debug data (based on debug data mux select)
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Breakpoints

A breakpoint is an instruction attribute that will cause a breakpoint exception to be
taken prior to issuing the instruction. A breakpoint is indicated for a given instruction
in any one or more of these 3 ways:

e Setting the DebugCtrl field to ‘1’ (Breakpoint) in the instruction word in memory.
See Instruction Set Summary for details.

e Setting the Breakpoint Address field in one of the Instruction L1 Cache
Breakpoint Address Control registers to the address of the instruction (See
Instruction L1 Cache earlier in this chapter).

e Setting of the Breakpoint Opcode field in one of the Instruction L1 Cache
Breakpoint Opcode Control registers to the opcode of the instruction. Note that
any instructions with matching opcodes will raise a breakpoint exception if
breakpoints are enabled.

In order for a breakpoint exception to be raised for these cases, the thread executing
the instruction for which a breakpoint is indicated must have breakpoints enabled.
This is controlled via the Breakpoint Enable bit in control register 1 (CR1). This
control bit will be set when a thread is dispatched if:

e The Breakpoint Enable bit is set in the TD Debug Control registers (see Section
TD_CTL—Debug Control) and the FF initiating the thread set the Snapshot Flag
(see Section 3.2, The Snapshot Mechanism), or

e The Force Thread Breakpoint Enable bit is set in the TD Debug Control
registers.

Otherwise, breakpoints will not be enabled for the thread by default. It is expected
that many thread instantiations will be running the same instruction set from the
same place in memory; the mechanism in the first bullet above makes it possible to
take a breakpoint exception only in the thread that generated erroneous data (as
detected by the Snapshot mechanism in the FF unit) instead of requiring inspection
and manual restart of every thread instance running the same code until the instance
of interest is found.

Setting of the Breakpoint Suppress bit in a thread’s control register 0 (CRO) will
prevent a breakpoint exception from being raised. This bit is cleared by hardware
upon suppression of a single breakpoint; its purpose is to allow execution of an
instruction with a breakpoint set to continue after the breakpoint exception handling is
complete.

Single Stepping

An important method for debugging is single-stepping through code, allowing registers
and memory to be examined after each instruction to make sure all intermediate
results are as expected. Single-stepping is accomplished using the breakpoint
mechanism.

A breakpoint is set (using any of the mechanisms above) at the point in the code

where the debugger wants to begin single-stepping. The System Routine (SR) code
that handles the breakpoint exception will normally communicate with host software
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where the majority of the debugger code resides. When the user wants to execute
the next instruction, the SR sets the Breakpoint Suppress bit of CRO but does not
clear the Breakpoint Exception Status and Control bit of CR1. Control is
transferred from the system routine back to application code by writing a 0 to the
Master Exception State and Control.

Breakpoint Suppress will allow one instruction to execute before it is automatically
reset by hardware, at which time another breakpoint exception will be taken since the
Breakpoint Exception Status and Control bit is still set. In this way the debugger
can step through the code executing just one instruction at a time. To end single-
stepping, the SR simply clears the Breakpoint Exception Status and Control bit
(the Breakpoint Suppress bit must still be set) prior to transferring control back to the
application code. No more breakpoint exceptions will occur unless another breakpoint
is encountered in the code or via matching one of the L1 Cache Breakpoint Control
values described above.

Modification of Instruction Stream

A mechanism is provided to flush all caches in the path between main memory and
the EUs. This is controlled via an MMIO bit (see the Memory Interface Registers
chapter). This allows dynamic modification of the thread’s code at any breakpoint.
Note that the EUs prefetch instructions internally; these will be flushed on the branch
to SIP and again on the return back to AIP.

Message Errors

Error-Types Visible to the Arb

e Case 1: Unknown SFID destination in ‘send’ inst
— Message arbiter treats as a normal message.
— URB decodes invalid SFID.

e Case 2: Message length too long for destination S/F input buffer
— Detected by Msg Arb
— Arb overrides message length for arbitration purposes only (sets length =1)
— Message participates in arb as normal (w/ overridden shorter length)
— Grant issued for the full message to the EU, w/ ERR signal supplied to EU
— EU passes along ERR signal on the sideband w/ the message.
— The S/F treats this as a bad message (see case 1 in the subsequent section).



3.7.1.2 Non-pipelined S/F Operation

e There may be cases of errors which are caused by the contents of the data
payload (e.g. bad pointer, bad operand, etc.). These error types may not be
apparent until the message is well down the S/F’s pipeline. Given that many other
messages may be in-flight in the pipeline also, it may be difficult to associate a
failure to a specific message.

e To allow for message-to-error association, each S/F should implement a “non-
pipelined” operational mode.

¢ Arbiter operation in Non-pipelined mode.
— The arbiter guarantees that it will allow only one outstanding message to each

S/F at a time. Normally the arbiter tracks the input buffer depths of all shared
functions, and if sufficient room exists, allows a pending message to be sent.
In Non-pipelined mode, the arbiter treats each input queue are either full or
empty - if the input buffer is not empty, it is considered full and thus unable to
receive a further message.

e Shared function operation in non-pipelined mode

The S/F preserves the message sideband and rO data phase of all messages it
receives into its Error register. The 'Valid’ is not set at this time, thus no error
condition signaled.

The S/F processes the message as normal.

If any error occurs during the processing of the message, the ‘Valid’ bit is set
in the Error register and the message discarded. The S/F must continue to
operate on all subsequent messages.

The S/F assists the message arb in ensuring that only 1 message is delivered
at a time by not releasing its input buffer space until the current message is
guaranteed to complete w/o error.
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Sampling Engine

The Sampling Engine provides the capability of advanced sampling and filtering of
surfaces in memory.

The sampling engine function is responsible for providing filtered texture values to the
Gen4 Core in response to sampling engine messages.. The sampling engine uses
SAMPLER_STATE to control filtering modes, address control modes, and other features
of the sampling engine. A pointer to the sampler state is delivered with each
message, and an index selects one of 16 states pointed to by the pointer. Some
messages do not require SAMPLER_STATE. In addition, the sampling engine uses
SURFACE_STATE to define the attributes of the surface being sampled. This includes
the location, size, and format of the surface as well as other attributes.

Although data is commonly used for “texturing” of 3D surfaces, the data can be used
for any purpose once returned to the execution core.

The following table summarizes the various subfunctions provided by the Sampling
Engine. After the appropriate subfunctions are complete, the 4-component (reduced
to fewer components in some cases) filtered texture value is provided to the Gen4
Core in order to complete the sample instruction.

Subfunction

Description

Texture
Coordinate
Processing

Any required operations are performed on the incoming pixel’s interpolated internal texture
coordinates. These operations may include: cube map intersection.

Texel Address

The Sampling Engine will determine the required set of texel samples (specific texel values

Generation from specific texture maps), as defined by the texture map parameters and filtering modes.
This includes coordinate wrap/clamp/mirror control, mipmap LOD computation and sample
and/or miplevel weighting factors to be used in the subsequent filtering operations.

Texel Fetch The required texel samples will be read from the texture map. This step may require

decompression of texel data. The texel sample data is converted to an internal format.

Texture Palette
Lookup

For streams which have “paletted” texture surface formats, this function uses the “index”
values read from the texture map to look up texel color data from the texture palette.

Shadow Pre-
Filter Compare

For shadow mapping, the texel samples are first compared to the 3™ (R) component of the
pixel’s texture coordinate. The boolean results are used in the texture filter.

Texel Filtering

Texel samples are combined using the filter weight coefficients computed in the Texture
Address Generation function. This “combination” ranges from simply passing through a
“nearest” sample to blending the results of anisotropic filters performed on two mipmap
levels. The output of this function is a single 4-component texel value.

Texel Color
Gamma
Linearization

Performs optional gamma decorrection on texel RGB (not A) values.
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4.1.1

Texture Coordinate Processing

The Texture Coordinate Processing function of the Sampling Engine performs any
operations on the texture coordinates that are required before physical addresses of
texel samples can be generated.

Texture Coordinate Normalization

A texture coordinate may have normalized or unnormalized values. In this function,
unnormalized coordinates are normalized.

Normalized coordinates are specified in units relative to the map dimensions, where
the origin is located at the upper/left edge of the upper left texel, and the value 1.0
coincides with the lower/right edge of the lower right texel . 3D rendering typically

utilizes normalized coordinates.

Unnormalized coordinates are in units of texels and have not been divided
(normalized) by the associated map’s height or width. Here the origin is the located
at the upper/left edge of the upper left texel of the base texture map. Unnormalized
coordinates delivered to the sampling engine are only supported with the “Id” type
messages.

Figure 4-1. Normalized vs. Unnormalized Texture Coordinates

4.1.2
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Texture Coordinate Computation

Cartesian (2D) and homogeneous (projected) texture coordinate values are projected
from (interpolated) screen space back into texture coordinate space by dividing the
pixel's S and T components by the Q component. This operation is done as part of the
pixel shader kernel in the Gen4 Core.

Vector (cube map) texture coordinates are generated by first determining which of the
6 cube map faces (+X, +Y, +Z, -X, -Y, -Z) the vector intersects. The vector
component (X, Y or Z) with the largest absolute value determines the proper (major)




axis, and then the sign of that component is used to select between the two faces
associated with that axis. The coordinates along the two minor axes are then divided
by the coordinate of the major axis, and scaled and translated, to obtain the 2D
texture coordinate ([0,1]) within the chosen face. Note that the coordinates
delivered to the sampling engine must already have been divided by the component
with the largest absolute value.

An illustration of this cube map coordinate computation, simplified to only two
dimensions, is provided below:

Figure 4-2. Cube Map Coordinate Computation Example

4.2
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Texel Address Generation

To better understand texture mapping, consider the mapping of each object (screen-
space) pixel onto the textures images. In texture space, the pixel becomes some
arbitrarily sized and aligned quadrilateral. Any given pixel of the object may “cover”
multiple texels of the map, or only a fraction of one texel. For each pixel, the usual
goal is to sample and filter the texture image in order to best represent the covered
texel values, with a minimum of blurring or aliasing artifacts. Per-texture state
variables are provided to allow the user to employ quality/performance/footprint
tradeoffs in selecting how the particular texture is to be sampled.

The Texel Address Generation function of the Sampling Engine is responsible for
determining how the texture maps are to be sampled. Outputs of this function include
the number of texel samples to be taken, along with the physical addresses of the
samples and the filter weights to be applied to the samples after they are read. This
information is computed given the incoming texture coordinate and gradient values,
and the relevant state variables associated with the sampler and surface. This
function also applies the texture coordinate address controls when converting the
sample texture coordinates to map addresses.
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Level of Detail Computation (Mipmapping)

Due to the specification and processing of texture coordinates at object vertices, and
the subsequent object warping due to a perspective projection, the texture image may
become magnified (where a texel covers more than one pixel) or minified (a pixel
covers more than one texel) as it is mapped to an object. In the case where an
object pixel is found to cover multiple texels (texture minification), merely choosing
one (e.g., the texel sample nearest to the pixel’s texture coordinate) will likely result
in severe aliasing artifacts.

Mipmapping and texture filtering are techniques employed to minimize the effect of
undersampling these textures. With mipmapping, software provides mipmap levels, a
series of pre-filtered texture maps of decreasing resolutions that are stored in a fixed
(monolithic) format in memory. When mipmaps are provided and enabled, and an
object pixel is found to cover multiple texels (e.g., when a textured object is located a
significant distance from the viewer), the device will sample the mipmap level(s)
offering a texel/pixel ratio as close to 1.0 as possible.

The device supports up to 14 mipmap levels per map surface, ranging from 8192 x
8192 texels to a 1 X 1 texel. Each successive level has Y2 the resolution of the
previous level in the U and V directions (to a minimum of 1 texel in either direction)
until a 1x1 texture map is reached. The dimensions of mipmap levels need not be a
power of 2.

Each mipmap level is associated with a Level of Detail (LOD) number. LOD is
computed as the approximate, log, measure of the ratio of texels per pixel. The
highest resolution map is considered LOD 0. A larger LOD number corresponds to
lower resolution mip level.

The Sampler[]BaseMipLevel state variable specifies the LOD value at which the
minification filter vs. the magnification filter should be applied.

When the texture map is magnified (a texel covers more than one pixel), the base
map (LOD 0) texture map is accessed, and the magnification mode selects between
the nearest neighbor texel or bilinear interpolation of the 4 neighboring texels on the
base (LOD 0) mipmap.

Base Level Of Detail (LOD)

The per-pixel LOD is computed in an implementation-dependent manner and
approximates the log, of the texel/pixel ratio at the given pixel. The computation is
typically based on the differential texel-space distances associated with a one-pixel
differential distance along the screen x- and y-axes. These texel-space distances are
computed by evaluating neighboring pixel texture coordinates, these coordinates
being in units of texels on the base MIP level (multiplied by the corresponding surface
size in texels). The q coordinates represent the third dimension for 3D (volume)
surfaces, this coordinate is a constant 0 for 2D surfaces.

The ideal LOD computation is included below.

LOD(x, y) =log,[p(x, y)]
where :

we=mos (]3] (3] (5] (5 (5] |




4.2.1.2

4.2.1.3

4.2.1.4

LOD Bias

A biasing offset can be applied to the computed LOD and used to artificially select a
higher or lower miplevel and/or affect the weighting of the selected mipmap levels.
Selecting a slightly higher mipmap level will trade off image blurring with possibly
increased performance (due to better texture cache reuse). Lowering the LOD tends
to sharpen the image, though at the expense of more texture aliasing artifacts.

The LOD bias is defined as sum of the LODBias state variable and the pixLODBias
input from the input message (which can be non-zero only for sample_b messages).
The application of LOD Bias is unconditional, therefore these variables must both be
set to zero in order to prevent any undesired biasing.

Note that, while the LOD Bias is applied prior to clamping and min/mag determination
and therefore can be used to control the min-vs-mag crossover point, its use has the
undesired effect of actually changing the LOD used in texture filtering.

LOD Pre-Clamping

The LOD Pre-Clamping function can be enabled or disabled via the
LODPreClampEnable state variable.

After biasing and/or adjusting of the LOD , the computed LOD value is clamped to a
range specified by the (integer and fractional bits of) MinLOD and MaxLOD state
variables prior to use in Min/Mag Determination.

MaxLOD specifies the lowest resolution mip level (maximum LOD value) that can be
accessed, even when lower resolution maps may be available. Note that this is the
only parameter used to specify the number of valid mip levels that be can be
accessed, i.e., there is no explicit “"number of levels stored in memory” parameter
associated with a mip-mapped texture. All mip levels from the base mip level map
through the level specified by the integer bits of MaxLOD must be stored in memory,
or operation is UNDEFINED.

MinLOD specifies the highest resolution mip level (minimum LOD value) that can be
accessed, where LOD==0 corresponds to the base map. This value is primarily used
to deny access to high-resolution mip levels that have been evicted from memory
when memory availability is low.

MinLOD and MaxLOD have both integer and fractional bits. The fractional parts will
limit the inter-level filter weighting of the highest or lowest (respectively) resolution
map. For example if MinLOD is 4.5 and MipFilter is LINEAR, LOD 4 can contribute only
up to 50% of the final texel color.

Min/Mag Determination

The biased and clamped LOD is used to determine whether the texture is being
minified (scaled down) or magnified (scaled up).

The BaseMiplLevel state variable is subtracted from the biased and clamped LOD. The
BaseMipLevel state variable therefore has the effect of selecting the “base” mip level
used to compute Min/Map Determination. (This was added to match OpenGL
semantics). Setting BaseMipLevel to 0 has the effect of using the highest-resolution
mip level as the base map.
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If the biased and clamped LOD is non-positive, the texture is being magnified, and a
single (high-resolution) miplevel will be sampled and filtered using the MagFilter state
variable. At this point the computed LOD is reset to 0.0. Note that LOD Clamping can
restrict access to high-resolution miplevels.

If the biased LOD is positive, the texture is being minified. In this case the MipFilter
state variable specifies whether one or two mip levels are to be included in the texture
filtering, and how that (or those) levels are to be determined as a function of the
computed LOD.

LOD Computation Pseudocode

This section illustrates the LOD biasing and clamping computation in pseudocode,
encompassing the steps described in the previous sections. The computation of the
initial per-pixel LOD value LOD is not shown.

Bias: S4.4
MinLod: U4.6
MaxLod: U4.6
Base: u4.1
MIPCnt: U4
SurfMinLod: U4

MaxLod = min(MaxLod, MIPCnt) + SurfMinLod
MinLod = min(MinLod, MIPCnt) + SurfMinLod

if (sample_b)
LOD += Bias + bias_parameter
else if (sample_| or Id)
LOD = Bias + lod_parameter + SurfMinLod
else
LOD += Bias

If (PreClamp)
LOD = min(LOD, MaxLod)
LOD = max(LOD, MinLod)

MagMode = (LOD - Base <= 0)
If (MagMode or MipFlt = None)
LOD =0
LOD = min(LOD, ceil(MaxLod))
LOD = max(LOD, floor(MinLod))
else if (MipFIt = Nearest)
LOD +=0.5
LOD = min(LOD, ceil(MaxLod))
LOD = max(LOD, floor(MinLod))
LOD = floor(LOD)
else // MipFlt = Linear
LOD = min(LOD, MaxLod)
LOD = max(LOD, MinLod)
TriBeta = frac(LOD)
LOD, = floor(LOD)
LOD, =LOD, + 1




intel)

4.2.2 Inter-Level Filtering Setup

The MipFilter state variable determines if and how texture mip maps are to be used
and combined. The following table describes the various mip filter modes:

MipFilter Value Description

MIPFILTER_NONE Mipmapping is DISABLED. Apply a single filter on the highest resolution
map available (after LOD clamping).

MIPFILTER_NEAREST Choose the nearest mipmap level and apply a single filter to it. Here the
biased LOD will be rounded to the nearest integer to obtain the desired
miplevel. LOD Clamping may further restrict this miplevel selection.

MIPFILTER_LINEAR Apply a filter on the two closest mip levels and linear blend the results
using the distance between the computed LOD and the level LODs as the
blend factor. Again, LOD Clamping may further restrict the selection of
miplevels (and the blend factor between them).

When minifying and MIPFILTER_NEAREST is selected, the computed LOD is rounded to
the nearest mip level.

When minifying and MIPFILTER_LINEAR is selected, the fractional bits of the
computed LOD are used to generate an inter-level blend factor. The LOD is then
truncated. The mip level selected by the truncated LOD, and the next higher (lower
resolution) mip level are determined.

Regardless of MipFilter and the min/mag determination, all computed LOD values (two
for MIPFILTER_LINEAR, otherwise one) are then unconditionally clamped to the range
specified by the (integer bits of) MinLOD and MaxLOD state variables.

4.2.3 Intra-Level Filtering Setup

Depending on whether the texture is being minified or magnified, the MinFilter or
MagFilter state variable (respectively) is used to select the sampling filter to be used
within a mip level (intra-level, as opposed to any inter-level filter). Note that for
volume maps, this selection also applies to filtering between layers.

The processing at this stage is restricted to the selection of the filter type,
computation of the number and texture map coordinates of the texture samples, and
the computation of any required filter parameters. The filtering of the samples occurs
later on in the Sampling Engine function.
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The following table summarizes the intra-level filtering modes.

Sampler[]Min/MagFilter value Description

MAPFILTER_NEAREST Supported on all surface types. The texel nearest to the pixel’s U,V,Q

coordinate is read and output from the filter.

MAPFILTER_LINEAR Not supported on buffer surfaces. The 2, 4, or 8 texels (depending on

1D, 2D/CUBE, or 3D surface, respectively) surrounding the pixel’s U,V,Q
coordinate are read and a linear filter is applied to produce a single
filtered texel value.

MAPFILTER_ANISOTROPIC Not supported on buffer or 3D surfaces. A projection of the pixel onto

the texture map is generated and “subpixel” samples are taken along the
major axis of the projection (center axis of the longer dimension). The
outermost subpixels are weighted according to closeness to the edge of
the projection, inner subpixels are weighted equally. Each subpixel
samples a bilinear 2x2 of texels and the results are blended according to
weights to produce a filtered texel value.

MAPFILTER_MONO Supported only on 2D surfaces. This filter is only supported with the

monochrome (MONOS) surface format. The monochrome texel block of
the specified size surrounding the pixel is selected and filtered.

4.2.3.1

4.2.3.2
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MAPFILTER_NEAREST

When the MAPFILTER_NEAREST is selected, the texel with coordinates nearest to the
pixel’s texture coordinate is selected and output as the single texel sample coordinates
for the level.

MAPFILTER_LINEAR

The following description indicates behavior of the MIPFILTER_LINEAR filter for 2D and
CUBE surfaces. 1D and 3D surfaces follow a similar method but with a different
number of dimensions available.

When the MAPFILTER_LINEAR filter is selected on a 2D surface, the 2x2 region of
texels surrounding the pixel’s texture coordinate are sampled and later bilinearly
filtered.




Figure 4-3. Bilinear Filter Sampling
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The four texels surrounding the pixel center are chosen for the bilinear filter. The
filter weights each texel’s contribution according to its distance from the pixel center.
Texels further from the pixel center receive a smaller weight.

MAPFILTER_ANISOTROPIC

The MAPFILTER_ANISOTROPIC texture filter attempts to compensate for the
anisotropic mapping of pixels into texture map space. A possibly non-square set of
texel sample locations will be sampled and later filtered. The MaxAnisotropy state
variable is used to select the maximum aspect ratio of the filter employed, up to 16:1.

The algorithm employed first computes the major and minor axes of the pixel
projection onto the texture map. LOD is chosen based on the minor axis length in
texel space. The anisotropic “ratio” is equal to the ratio between the major axis
length and the minor axis length. The next larger even integer above the ratio
determines the anisotropic humber of “ways”, which determines how many subpixels
are chosen. A line along the major axis is determined, and “subpixels” are chosen
along this line, spaced one texel apart, as shown in the diagram below. In this
diagram, the texels are shown in light blue, and the pixels are in yellow.
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Each subpixel samples a bilinear 2x2 around it just as if it was a single pixel. The
result of each subpixel is then blended together using equal weights on all interior
subpixels (not including the two endpoint subpixels). The endpoint subpixels have
lesser weight, the value of which depends on how close the “ratio” is to the number of
“ways”. This is done to ensure continuous behavior in animation.

MAPFILTER_MONO

When the MAPFILTER_MONO filter is selected, a block of monochrome texels
surrounding the pixel sample location are read and filtered using the kernel described
below. The size of this block is controlled by Monochrome Filter Height and Width
(referred to here as N, and N, respectively) state. Filters from 1x1 to 7x7 are
supported (not necessarily square).

The figure below shows a 6x5 filter kernel as an example. The footprint of the filter
(filter kernel samples) is equal to the size of the filter and the pixel center lies at the
exact center of this footprint. The position of the upper left filter kernel sample (us, v¢)
relative to the pixel center at (u, v) is given by the following:

NU
U, =u-—

2

NV
V, =V-—

2

Bu and B, are the fractional parts of us and v¢, respectively. The integer parts select
the upper left texel for the kernel filter, given here as Ty .



Figure 4-4. Sampling Using MAPFILTER_MONO
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The formula for the final filter output F is given by the following. Since this is a
monochrome filter, each texel value (T) is a single bit, and the output F is an intensity
value that is replicated across the color and alpha channels.

1
N, *N

u v

S =

N,-1N, N, N

Fo|@-8)0-5)3 3T, +8,0- ) 3T, +1-B)A S ST, 463 3T, |*s

i=0 j=0 i1 j=0 i=0 j-1 i1 j-1
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4.2.4 Texture Address Control

The [TCX,TCY,TCZ]ControlMode state variables control the access and/or generation
of texel data when the specific texture coordinate component falls outside of the
normalized texture map coordinate range [0,1).

Note: For Wrap Shortest mode, the setup kernel has already taken care of correctly
interpolating the texture coordinates. Software will need to specify
TEXCOORDMODE_WRAP mode for the sampler that is provided with wrap-shortest
texture coordinates, or artifacts may be generated along map edges.

TC[X,Y,Z] Control Operation

TEXCOORDMODE_CLAMP Clamp to the texel value at the edge of the map.

TEXCOORDMODE_CLAMP_BORDER Use the texture map’s border color for any texel
samples falling outside the map. The border color is
specified via a pointer in SAMPLER_STATE.

TEXCOORDMODE_WRAP Upon crossing an edge of the map, repeat at the other
side of the map in the same dimension.

TEXCOORDMODE_CUBE Only used for cube maps. Here texels from adjacent
cube faces can be sampled along the edges of faces.
This is considered the highest quality mode for cube
environment maps.

TEXCOORDMODE_MIRROR Similar to the wrap mode, though reverse direction
through the map each time an edge is crossed.
INVALID for use with unnormalized texture
coordinates.

TEXCOORDMODE_MIRROR_ONCE Similar to the wrap mode, though reverse direction
through the map each time an edge is crossed.
INVALID for use with unnormalized texture
coordinates.

Separate controls are provided for texture TCX, TCY, TCZ coordinate components so,
for example, the TCX coordinate can be wrapped while the TCY coordinate is clamped.
Note that there are no controls provided for the TCW component as it is only used to
scale the other 3 components before addressing modes are applied.

Maximum Wraps/Mirrors

The number of map wraps on a given object is limited to 32. Going beyond this limit
is legal, but may result in artifacts due to insufficient internal precision, especially
evident with larger surfaces. Precision loss starts at the subtexel level (slight color
inaccuracies) and eventually reaches the texel level (choosing the wrong texels for
filtering).
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TEXCOORDMODE_WRAP Mode

In TEXCOORDMODE_WRAP addressing mode, the integer part of the texture
coordinate is discarded, leaving only a fractional coordinate value. This results in the
effect of the base map ([0,1)) being continuously repeated in all (axes-aligned)
directions. Note that the interpolation between coordinate values 0.1 and 0.9 passes
through 0.5 (as opposed to WrapShortest mode which interpolates through 0.0).

TEXCOORDMODE_MIRROR Mode

TEXCOORDMODE_MIRROR addressing mode is similar to Wrap mode, though here the
base map is flipped at every integer junction. For example, for U values between 0
and 1, the texture is addressed normally, between 1 and 2 the texture is flipped
(mirrored), between 2 and 3 the texture is normal again, and so on. The second row
of pictures in the figure below indicate a map that is mirrored in one direction and
then both directions. You can see that in the mirror mode every other integer map
wrap the base map is mirrored in either direction.

Figure 4-5. Texture Wrap vs. Mirror Addressing Mode
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TEXCOORDMODE_MIRROR_ONCE Mode

The TEXCOORDMODE_MIRROR_ONCE addressing mode is a combination of Mirror and
Clamp modes. The absolute value of the texture coordinate component is first taken
(thus mirroring about 0), and then the result is clamped to 1.0. The map is therefore
mirrored once about the origin, and then clamped thereafter. This mode is used to
reduce the storage required for symmetric maps.
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TEXCOORDMODE_CLAMP Mode

The TEXCOORDMODE_CLAMP addressing mode repeats the “edge” texel when the
texture coordinate extends outside the [0,1) range of the base texture map. This is
contrasted to TEXCOORDMODE_CLAMPBORDER mode which defines a separate texel
value for off-map samples. TEXCOORDMODE_CLAMP is also supported for cube maps,
where texture samples will only be obtained from the intersecting face (even along

edges).

The figure below illustrates the effect of clamp mode. The base texture map is shown,
along with a texture mapped object with texture coordinates extending outside of the

base map region.

Figure 4-6. Texture Clamp Mode
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TEXCOORDMODE_CLAMPBORDER Mode

For non-cube map textures, TEXCOORDMODE_CLAMPBORDER addressing mode
specifies that the texture map’s border value BorderColor is to be used for any texel
samples that fall outside of the base map. The border color is specified via a pointer
in SAMPLER_STATE.

TEXCOORDMODE_CUBE Mode

For cube map textures TEXCOORDMODE_CUBE addressing mode can be set to allow
inter-face filtering. When texel sample coordinates that extend beyond the selected
cube face (e.g., due to intra-level filtering near a cube edge), the correct sample
coordinates on the adjoining face will be computed. This will eliminate artifacts along
the cube edges, though some artifacts at cube corners may still be present.
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Texel Fetch

The Texel Fetch function of the Sampling Engine reads the texture map contents
specified by the texture addresses associated with each texel sample. The texture
data is read either directly from the memory-resident texture map, or from internal
texture caches. The texture caches can be invalidated by the Sampler Cache
Invalidate field of the MI_FLUSH instruction or via the Read Cache Flush Enable bit
of PIPE_CONTROL. Except for consideration of coherency with CPU writes to textures
and rendered textures, the texture cache does not affect the functional operation of
the Sampling Engine pipeline.

When the surface format of a texture is defined as being a compressed surface, the
Sampler will automatically decompress from the stored format into the appropriate
[A]JRGB values. The compressed texture storage formats and decompression
algorithms can be found in the Memory Data Formats chapter. When the surface
format of a texture is defined as being an index into the texture palette (format
names includiong “Px”), the palette lookup of the index determines the appropriate
RGB values.

Texel Chroma Keying

ChromakKey is a term used to describe a method of effectively removing or replacing a
specific range of texel values from a map that is applied to a primitive, e.g., in order
to define transparent regions in an RGB map. The Texel Chroma Keying function of
the Sampling Engine pipeline conditionally tests texel samples against a “key” range,
and takes certain actions if any texel samples are found to match the key.

Chroma Key Testing

ChromaKey refers to testing the texel sample components to see if they fall within a
range of texel values, as defined by ChromaKey[][High,Low] state variables. If each
component of a texel sample is found to lie within the respective (inclusive) range and
ChromakKey is enabled, then an action will be taken to remove this contribution to the
resulting texel stream output. Comparison is done separately on each of the channels
and only if all 4 channels are within range the texel will be eliminated.

The Chroma Keying function is enabled on a per-sampler basis by the
ChromaKeyEnable state variable.

The ChromaKey[][High,Low] state variables define the tested color range for a
particular texture map.
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Chroma Key Effects

There are two operations that can be performed to “remove” matching texel samples
from the image. The ChromaKeyEnable state variable must first enable the chroma
key function. The ChromaKeyMode state variable then specifies which operation to
perform on a per-sampler basis.

The ChromaKeyMode state variable has the following two possible values:

e KEYFILTER_KILL_ON_ANY_MATCH: Kill the pixel if any contributing texel sample
matches the key

e KEYFILTER_REPLACE_BLACK: Here the sample is replaced with (0,0,0,0).

The Kill Pixel operation has an effect on a pixel only if the associated sampler is
referenced by a sample instruction in the pixel shader program. If the sampler is not
referenced, the chroma key compare is not done and pixels cannot be killed based on
it.

Shadow Prefilter Compare

When a sample_c message type is processed, a special shadow-mapping
precomparison is performed on the texture sample values prior to filtering.
Specifically, each texture sample value is compared to the “ref” component of the
input message, using a compare function selected by ShadowFunction, and described
in the table below. Note that only single-channel texel formats are supported for
shadow mapping, and so there is no specific color channel on which the comparison
occurs.

ShadowFunction Result
PREFILTEROP_ALWAYS 0.0
PREFILTEROP_NEVER 1.0
PREFILTEROP_LESS (texel < ref) 2 0.0 : 1.0
PREFILTEROP_EQUAL (texel ==ref) 2 0.0 : 1.0
PREFILTEROP_LEQUAL (texel <=ref) 2 0.0 : 1.0
PREFILTEROP_GREATER (texel > ref) 2 0.0 : 1.0
PREFILTEROP_NOTEQUAL (texel '=ref) 0.0 : 1.0
PREFILTEROP_GEQUAL (texel >=ref) 2 0.0 : 1.0

The binary result of each comparison is fed into the subsequent texture filter
operation (in place of the texel’s value which would normally be used).

Software is responsible for programming the “ref” component of the input message
such that it approximates the same distance metric programmed in the texture map
(e.g., distance from a specific light to the object pixel). In this way, the comparison
function can be used to generate “in shadow” status for each texture sample, and the
filtering operation can be used to provide soft shadow edges.



4.5

4.6

Programming Notes:

¢ Refer to the Surface Formats table in section 4.7.2.1.1 for the specific surface
formats that are supported with shadow mapping.

Texel Filtering

The Texel Filtering function of the Sampling Engine performs any required filtering of
multiple texel values on and possibly between texture map layers and levels. The
output of this function is a single texel color value.

The state variables MinFilter, MagFilter, and MipFilter are used to control the filtering
of texel values. The MipFilter state variable specifies how many mipmap levels are
included in the filter, and how the results of any filtering on these separate levels are
combined to produce a final texel color. The MinFilter and MagFilter state variables
specify how texel samples are filtered within a level.

Texel Color Gamma Linearization

This function is supported to allow pre-gamma-corrected texel RGB (not A) colors to
be mapped back into linear (gamma=1.0) gamma space prior to (possible) blending
with, and writing to the Color Buffer. This permits higher quality image blending by
performing the blending on colors in linear gamma space.

This function is enabled on a per-texture basis by use of a surface format with
“_SRGB” in its name. If enabled, the post-filtered texel RGB color to be converted
from gamma=2.4 space to gamma=1.0 space by applying a ~(1/2.4) = ~0.4167
exponential function.
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4.7 State

4.7.1 BINDING_TABLE_STATE

The binding table binds surfaces to logical resource indices used by shaders and other
compute engine kernels. It is stored as an array of up to 256 elements, each of which
contains one dword as defined here. The start of each element is spaced one dword
apart. The first element of the binding table is aligned to a 32-byte boundary.

DWord Bit Description

0 31:5 Surface State Pointer. This 32-byte aligned address points to a surface state block.
This pointer is relative to the Surface State Base Address.

[DevBW-A,B] Errata BWTOO7: Surface State data pointed at by offsets from Surface
State Base must be contained within 32-bit physical address space (that is, must map to
memory pages under 4G.)

Format = SurfaceStateOffset[31:5]

4:0 Reserved : MBZ

4.7.2 SURFACE_STATE

The surface state is stored as individual elements, each with its own pointer in the
binding table. Each surface state element is aligned to a 32-byte boundary.

Surface state defines the state needed for the following objects:
e texture maps (1D, 2D, 3D, cube) read by the sampling engine
buffers read by the sampling engine
constant buffers read by the data cache via the data port
render targets read/written by the render cache via the data port
media surfaces read from the texture cache or render cache via the data port
media surfaces written to the render cache via the data port
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4.7.2.1 For Most Messages

SURFACE_STATE

Project: All
This is the normal surface state used by all messages that use SURFACE_STATE except deinterlace and sample 8x8.
DWord Bit Description
0 31:29 Surface Type
Project: All
Format: U3 enumerated type FormatDesc

This field defines the type of the surface.

Value Name Description Project

Oh SURFTYPE_1D Defines a 1-dimensional map or array of | All
maps

1h SURFTYPE_2D Defines a 2-dimensional map or array of | All
maps

2h SURFTYPE_3D Defines a 3-dimensional (volumetric) All
map

3h SURFTYPE_CUBE Defines a cube map or array of cube All
maps

4h SURFTYPE_BUFFER Defines an element in a buffer All

5h-6h Reserved All

7h SURFTYPE_NULL Defines a null surface All

Programming Notes

A null surface will be used in instances where an actual surface is not bound. When a
write message is generated to a null surface, no actual surface is written to. When a
read message (including any sampling engine message) is generated to a null surface,
the result is all zeros. All of the remaining fields in surface state are ignored for null
surfaces, with the following exceptions:

. Width, Height, Depth, LOD, MIP Map Layout Mode, and Render Target
View Extent fields must match the depth buffer’s corresponding state for all
render target surfaces, including null.

The Surface Type of a surface used as a render target (accessed via the Data Port’s
Render Target Write message) must be the same as the Surface Type of all other
render targets and of the depth buffer (defined in 3DSTATE_DEPTH_BUFFER), unless
either the depth buffer or render targets are SURFTYPE_NULL.

28 Reserved Project: Al Format: MBZ
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SURFACE_STATE

27

26:18

Data Return Format
Project: All
Format: U1l enumerated type FormatDesc

For Sampling Engine Surfaces:

This field determines the format of the return data from the sampling engine to the
compute engine. This field is ignored for surfaces used by other units.

For Other Surfaces:

This field is ignored.

Value Name Description Project

Oh DATA_RETURN_FLOAT32 FLOAT32 data is returned All

1h DATA_RETURN_S1.14 S1.14 fixed point data is All
returned

Programming Notes

The S1.14 return format is only legal for returning data from normalized (UNORM, or
SNORM) map formats where all channels have <= 8 bits. It is not legal to use this
format with any floating point or integer map format.

S1.14 return format is only used for SIMD16 and SIMD8 messages from the sampling
engine. For SIMD4x2 messages, FLOAT32 format will be used for surfaces specifying
S1.14 data return format.

Data returned in format S1.14 will be converted to FLOAT32 before reaching the GRF
register, thus the state of this bit does not affect the kernel.

It is recommended that S1.14 format be used wherever it is legal, as the performance
will generally be improved.

Surface Format
Project: All
Format: u32 FormatDesc

Specifies the format of the surface or element within this surface. This field is ignored for
all data port messages other than the render target message. Some forms of the media
block messages use the surface format.

Refer to the table in section 4.7.2.1.1 for the formats supported and their encodings.

Programming Notes

Tile Walk TILEWALK_YMAIJOR is UNDEFINED for render target formats that have 128
bits-per-element (BPE).

YUV (YCRCB) surfaces used as render targets can only be rendered to using
3DPRIM_RECTLIST with even X coordinates on all of its vertices, and the pixel shader
cannot kill pixels.

Errata Description Project

# surfaces with FLOAT format are not supported. [DevBW-A,B]
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17:14

13

Color Buffer Component Write Disables
Project: All

Format: U4 bit mask of disables (0 or logical OR  FormatDesc
of any of the enumerated values)

For Render Target Surfaces:

This field contains a bitmask that controls the writing of individual color components into
the Color Buffer. If a component is disabled (bit set) writes to the color buffer will not
modify that component. If enabled (bit clear), that component can be overwritten.

For Other Surfaces:

this field is ignored.

Value Name Description Project
1000b WRITEDISABLE_ALPHA All
0100b WRITEDISABLE_RED All
0010b WRITEDISABLE_GREEN All
0001b WRITEDISABLE_BLUE All

Programming Notes

For YUV surfaces, this field must be set to 0000B (all channels enabled).

Errata Description Project

# Desc All

Color Blend Enable
Project: All
Format: Enable FormatDesc

For Render Target Surfaces:

Specifies that color blend is enabled for this particular render target. The Color Buffer
Blend Enable state in COLOR_CALC_STATE provides global control over blending. See
Color Buffer Blending (Windower) for details.

For Other Surfaces:

is ignored.
Errata Description Project
# This Color Blend Enable bit is not used, and acts as [DevBW-A,B]

if it is ENABLED for each RenderTarget. Blending is
enabled or disabled only a a global basis by the Color
Buffer Blend Enable state variable in
COLOR_CALC_STATE.
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11

Vertical Line Stride
Project: All

Format: U1 in lines to skip between logically FormatDesc
adjacent lines

For 2D Non-Array Surfaces accessed via the Sampling Engine or Data Port:

Specifies number of lines (0 or 1) to skip between logically adjacent lines — provides
support of interleaved (field) surfaces as textures.

For Other Surfaces:

Vertical Line Stride must be zero.

Programming Notes

This bit must not be set if the surface format is a compressed type (BCn*).

If this bit is set on a sampling engine surface, texture addess control modes cannot be
set to any mode other than TEXCOORDMODE_CLAMP and the mip mode filter must be
set to MIPFILTER_NONE.

Vertical Line Stride Offset
Project: All

Format: U1 in lines of initial offset (when Vertical FormatDesc
Line Stride == 1)

For 2D Non-Array Surfaces accessed via the Sampling Engine or Data Port:

Specifies the offset of the initial line from the beginning of the buffer. Ignored when
Vertical Line Stride is 0.

For Other Surfaces:

Vertical Line Stride Offset must be zero.
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10 MIP Map Layout Mode
Project: All
Format: U1l enumerated type FormatDesc
For 1D and 2D Surfaces and
This field specifies which MIP map layout mode is used, whether the map for LOD 1 is
stored to the right of the LOD 0 map, or stored below it. See Memory Data Formats for
details on the specifics of each layout mode.
For Other Surfaces:
This field is reserved : MBZ
Value Name Description Project
Oh MIPLAYOUT_BELOW All
1h MIPLAYOUT_RIGHT All
Programming Notes
MIPLAYOUT_RIGHT is legal only for 2D non-array surfaces
Errata Description Project
# MIPLAYOUT_RIGHT is not supported with “Id” sampler All
message
# MIPLAYOUT_RIGHT is not supported with [DevCL]
sample_c/sample_l_c/sample_b_c sampler messages.
9 Reserved : MBZ
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SURFACE_STATE

Render Cache Read Write Mode
Project: All
Format: U1l enumerated type FormatDesc

For Surfaces accessed via the Data Port to Render Cache:

This field specifies the way Render Cache treats a write request. If unset, Render Cache
allocates a write-only cache line for a write miss. If set, Render Cache allocates a read-
write cache line for a write miss.

For Surfaces accessed via the Sampling Engine or Data Port to Texture Cache or
Data Cache:

This field is reserved : MBZ

Value Name Description Project
Oh Allocating write-only cache for a write miss All
1h Allocating read-write cache for a write miss All

Programming Notes

This field is provided for performance optimization for Render Cache read/write accesses
(from Gen4 EU’s point of view).

Errata Description Project

# This field must be set to 0Oh. [DevBW-A,B]
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7:6

Media Boundary Pixel Mode

Project: All
Format: U2 enumerated type FormatDesc

For 2D Non-Array Surfaces accessed via the Data Port Media Block Read
Message:

This field enables control of which rows are returned on vertical out-of-bounds reads using
the Data Port Media Block Read Message. In the description below, frame mode refers to
Vertical Line Stride = 0, field mode is Vertical Line Stride = 1 in which only the even
or odd rows are addressable. The frame refers to the entire surface, while the field refers
only to the even or odd rows within the surface. Refer to Section 5.6.1 for more details.

For Other Surfaces:

Reserved : MBZ

Value Name Description Project

Oh NORMAL_MODE the row returned on an out-of- All
bound access is the closest row in
the frame or field. Rows from
the opposite field are never

returned.
1h Reserved
2h Reserved
3h Reserved
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5:0

Cube Face Enables

Project: All

Format: U6 bit mask of enables FormatDesc
For SURFTYPE_CUBE Surfaces accessed via the Sampling Engine:

Bits 5:0 of this field enable the individual faces of a cube map. Enabling a face indicates
that the face is present in the cube map, while disabling it indicates that that face is
represented by the texture map’s border color. Refer to Memory Data Formats for the
correlation between faces and the cube map memory layout. Note that storage for
disabled faces must be provided.

For other surfaces:

This field is reserved : MBZ

Value Name Description Project
100000b -X face All
010000b +X face All
001000b -Y face All
000100b +Y face All
000010b -Z face All
000001b +Z face All

Programming Notes

When TEXCOORDMODE_CLAMP is used when accessing a cube map, this field must be
programmed to 111111b (all faces enabled).

This field is ignored unless the Surface Type is SURFTYPE_CUBE.
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SURFACE_STATE

Surface Base Address

Project: All

Format: GraphicsAddress[31:0] FormatDesc
Specifies the byte-aligned base address of the surface.

Programming Notes

For SURFTYPE_BUFFER render targets, this field specifies the base address of first
element of the surface. The surface is interpreted as a simple array of that single
element type. The address must be naturally-aligned to the element size (e.g., a buffer
containing R32G32B32A32_FLOAT elements must be 16-byte aligned).

For SURFTYPE_BUFFER non-rendertarget surfaces, this field specifies the base address of
the first element of the surface, computed in software by adding the surface base
address to the byte offset of the element in the buffer.

Mipmapped, cube and 3D sampling engine surfaces are stored in a “*monolithic” (fixed)
format, and only require a single address for the base texture.

Linear render target surface base addresses must be element-size aligned, for non-YUV
surface formats, or a multiple of 2 element-sizes for YUV surface formats. Other linear
surfaces have no alignment requirements (byte alignment is sufficient.)

Linear depth buffer surface base addresses must be 64-byte aligned. Note that while
render targets (color) can be SURFTYPE_BUFFER, depth buffers cannot.

Tiled surface base addresses must be 4KB-aligned. Note that only the offsets from
Surface Base Address are tiled, Surface Base Address itself is not transformed using
the tiling algorithm.

Certain message types used to access surfaces have more stringent alignment
requirements. Please refer to the specific message documentation for additional
restrictions.
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2 31:19

Height

Project: All

Format: ui3 FormatDesc
Range SURFTYPE_1D: must be zero

SURFTYPE_2D: height of surface - 1 (y/v dimension) [0,8191]
SURFTYPE_3D: height of surface - 1 (y/v dimension) [0,2047]
SURFTYPE_CUBE: height of surface - 1 (y/v dimension) [0,8191]

SURFTYPE_BUFFER: contains bits [19:7] of the number of entries
in the buffer - 1 [0,8191]

This field specifies the height of the surface. If the surface is MIP-mapped, this field
contains the height of the base MIP level. For buffers, this field specifies a portion of the

buffer size.

Programming Notes

For buffer surfaces, the number of entries in the buffer ranges from 1 to 2%7. After
subtracting one from the number of entries, software must place the fields of the
resulting 27-bit value into the Height, Width, and Depth fields as indicated, right-
justified in each field. Unused upper bits must be set to zero.

If Vertical Line Stride is 1, this field indicates the height of the field, not the height of
the frame

The Height of a render target must be the same as the Height of the other render
targets and the depth buffer (defined in 3DSTATE_DEPTH_BUFFER), unless Surface
Type is SURFTYPE_1D or SURFTYPE_2D with Depth = 0 (non-array) and LOD = 0 (non-
mip mapped).

Errata Description Project

# The number of entries in a SURFTYPE_BUFFER is [DevBW-A,B]
restricted to 2727 - 1
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SURFACE_STATE

18:6 Width

Project: All
Format: uil3 FormatDesc
Range SURFTYPE_1D: width of surface - 1 (x/u dimension) [0,8191]

SURFTYPE_2D: width of surface - 1 (x/u dimension) [0,8191]
SURFTYPE_3D: width of surface - 1 (x/u dimension) [0,2047]
SURFTYPE_CUBE: width of surface - 1 (x/u dimension) [0,8191]

SURFTYPE_BUFFER: contains bits [6:0] of the number of entries in
the buffer - 1 [0,127]

This field specifies the width of the surface. If the surface is MIP-mapped, this field
specifies the width of the base MIP level. The width is specified in units of pixels or texels.
For buffers, this field specifies a portion of the buffer size.

For surfaces accessed with the Media Block Read/Write message, this field is in units of
DWords.

Programming Notes

The Width specified by this field must be less than or equal to the surface pitch (specified
in bytes via the Surface Pitch field).

For cube maps, Width must be set equal to the Height.

For MONOS8 textures, Width must be a multiple of 32 texels.

The Width of a render target must be the same as the Width of the other render
target(s) and the depth buffer (defined in 3DSTATE_DEPTH_BUFFER), unless Surface
Type is SURFTYPE_1D or SURFTYPE_2D with Depth = 0 (non-array) and LOD = 0 (non-
mip mapped).

The Width of a render target with YUV surface format must be a multiple of 2.
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5:2 MIP Count /7 LOD
Project: All
Format: Sampling Engine Surfaces: U4 in (LOD units - 1) FormatDesc
Render Target Surfaces: U4 in LOD units
Range Sampling Engine Surfaces: [0,13] representing [1,14] MIP levels
Render Target Surfaces: [0,13] representing LOD
Other Surfaces: [0]
For Sampling Engine Surfaces:
This field indicates the number of MIP levels allowed to be accessed starting at Surface
Min LOD, which must be less than or equal to the number of MIP levels actually stored in
memory for this surface.
Force the mip map access to be between the mipmap specified by the integer bits of the
Min LOD and the ceiling of the value specified here.
For Render Target Surfaces:
This field defines the MIP level that is currently being rendered into. This is the absolute
MIP level on the surface and is not relative to the Surface Min LOD field, which is
ignored for render target surfaces.
For Other Surfaces:
This field is reserved : MBZ
Value Name Description Project
Oh Disable Desc All
1h Enable Desc All
Programming Notes
The LOD of a render target must be the same as the LOD of the other render target(s)
and of the depth buffer (defined in 3DSTATE_DEPTH_BUFFER).
For render targets with YUV surface formats, the LOD must be zero.
Errata Description Project
# Desc All
1:0 Reserved : MBZ
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31:21

Depth

Project: All

Format: U1l FormatDesc

Range SURFTYPE_1D: number of array elements - 1 [0,511]
SURFTYPE_2D: number of array elements - 1 [0,511]
SURFTYPE_3D: depth of surface - 1 (z/r dimension) [0,2047]

SURFTYPE_CUBE: number of array elements - 1 [see
programming notes for range]

SURFTYPE_BUFFER: contains bits [26:20] of the number of entries
in the buffer - 1 [0,127]

This field specifies the total number of levels for a volume texture or the number of array
elements allowed to be accessed starting at the Minimum Array Element for arrayed
surfaces. If the volume texture is MIP-mapped, this field specifies the depth of the base
MIP level. For buffers, this field specifies a portion of the buffer size.

Programming Notes

The Depth of a render target must be the same as the Depth of the other render
target(s) and of the depth buffer (defined in 3DSTATE_DEPTH_BUFFER).

For SURFTYPE_CUBE:

for all cube surfaces, this field must be zero as cube arrays are not supported.

20

Reserved Project:  All Format: MBZ

19:3

Surface Pitch

Project: All

Format: U17 pitch in (#Bytes - 1) FormatDesc

Range For surfaces of type SURFTYPE_BUFFER: [0,2047] -> [1B, 2048B]
For other linear surfaces: [0, 131071] -> [1B, 128KB]

For X-tiled surface: [511, 131071] -> [512B, 128KB] = [1tile, 256
tiles]

For Y-tiled surfaces: [127, 131071]->[128B,128KB] = [1 tile, 1024
tiles]

This field specifies the surface pitch in (#Bytes - 1).
For surfaces of type SURFTYPE_BUFFER, this field indicates the size of the structure.

Programming Notes

For linear render target surfaces, the pitch must be a multiple of the element size for
non-YUV surface formats. Pitch must be a multiple of 2 * element size for YUV surface
formats.

For other linear surfaces, the pitch can be any multiple of bytes.

For tiled surfaces, the pitch must be a multiple of the tile width.

Reserved Project:  All Format: MBZ
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Tiled Surface

Project: All

Format: U1l enumerated type FormatDesc
This field specifies whether the surface is tiled.

Value Name Description Project
Oh FALSE Linear surface All
1h TRUE Tiled surface All

Programming Notes

Linear surfaces can be mapped to Main Memory (uncached) or System Memory
(cacheable, snooped). Tiled surfaces can only be mapped to Main Memory.

The corresponding cache(s) must be invalidated before a previously accessed surface is
accessed again with an altered state of this bit.

If Surface Type is SURFTYPE_BUFFER, this field must be FALSE (buffers are supported
only in linear memory)

If the target cache via the Data Port is the Data Cache, this field must be disabled
(zero). The data cache only supports access to linear memory.

If Surface Type is SURFTYPE_NULL, this field must be TRUE

Tile Walk
Project: All
Format: U1l enumerated type FormatDesc

This field specifies the type of memory tiling (XMajor or YMajor) employed to tile this
surface. See Memory Interface Functions for details on memory tiling and restrictions.

Value Name Description Project
Oh TILEWALK_XMAJOR X major tiling All
1h TILEWALK_YMAIJOR Y major tiling All

Programming Notes

Refer to Memory Data Formats for restrictions on TileWalk direction for the various buffer
types. (Of particular interest is the fact that YMAJOR tiling is not supported for
display/overlay buffers).

The corresponding cache(s) must be invalidated before a previously accessed surface is
accessed again with an altered state of this bit.

Use of TILEWALK_YMAJOR is UNDEFINED for render target formats that have 128 bits-
per-element (BPE).

This field is ignored when the surface is linear.




SURFACE_STATE

31:28

Surface Min LOD

Project: All

Format: U4 in LOD units FormatDesc
Range [0,13]

For Sampling Engine Surfaces:

This field indicates the most detailed LOD that can be accessed as part of this surface.
This field is added to the delivered LOD (sample_l, Id, or resinfo message types) before it
is used to address the surface.

For Other Surfaces:

This field is ignored.

Programming Notes

This field must be zero if the Surface Format is MONO8

[DevBW-A,B]: this field must be zero

27:17

Minimum Array Element

Project: All
Format: ul1 FormatDesc
Range 1D/2D/cube surfaces: [0,511]

3D surfaces: [0,2047]
For Sampling Engine and Render Target 1D and 2D Surfaces:

This field indicates the minimum array element that can be accessed as part of this
surface. This field is added to the delivered array index before it is used to address the
surface.

For Render Target 3D Surfaces:

This field indicates the minimum ‘R’ coordinate on the LOD currently being rendered to.
This field is added to the delivered array index before it is used to address the surface.

For Other Surfaces:

This field must be set to zero.

Errata Description Project

# This field must be zero. [DevBW-A,B]

#H# For sample_c/sample_b_c/sample_|_c instructions this | [DevBW-
field is ignored. If it is tiled surface and not at a 4k A,B,C,D],
boundary it must be copied to a 4k aligned surface. [DevCL-A,B]
Then for any case it must be pointed to by the
Surface Base Address.
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16:8 Render Target View Extent

Project: All
Format: uo FormatDesc
Range [0,511] to indicate extent of [1,512]

For Render Target 3D Surfaces:

This field indicates the extent of the accessible ‘R’ coordinates minus 1 on the LOD
currently being rendered to.

For Render Target 1D and 2D Surfaces:
This field must be set to the same value as the Depth field.
For Other Surfaces:

This field is ignored.

7 Reserved Project:  All Format: MBZ
6:4 Number of Multisamples. Reserved : MBZ
3 Reserved Project:  All Format: MBZ

2:0 Reserved : MBZ

4.7.2.1.1 Surface Formats

The following table indicates the supported surface formats and the 9-bit encoding for
each. Note that some of these formats are used not only by the Sampling Engine, but
also by the Data Port and the Vertex Fetch unit.

Support of each format and capability is as follows:

Y | supported on all products
Y* | Not used in PRM
Y+ | Not used in PRM
Y~ | Not used in PRM
Y~ | Not used in PRM
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0 Format Name
Y Y Y Y Y 000 R32G32B32A32_FLOAT 128**
Y Y Y Y 001 R32G32B32A32_SINT 128**
Y Y Y Y 002 R32G32B32A32_UINT 128**
Y 003 R32G32B32A32_UNORM 128
Y 004 R32G32B32A32_SNORM 128
Y 005 R64G64_FLOAT 128
Y 006 R32G32B32X32_FLOAT 128
Y 007 R32G32B32A32_SSCALED 128
Y 008 R32G32B32A32_USCALED 128
Y Y Y 040 R32G32B32_FLOAT 96
Y Y Y 041 R32G32B32_SINT 96
Y Y Y 042 R32G32B32_UINT 96
Y 043 R32G32B32_UNORM 96
Y 044 R32G32B32_SNORM 96
Y 045 R32G32B32_SSCALED 96
Y 046 R32G32B32_USCALED 96
Y Y Y Y 080 R16G16B16A16_UNORM 64
Y Y Y Y 081 R16G16B16A16_SNORM 64
Y Y Y 082 R16G16B16A16_SINT 64
Y Y Y 083 R16G16B16A16 UINT 64
Y Y Y Y Y 084 R16G16B16A16 FLOAT 64
Y Y Y Y Y 085 R32G32_FLOAT 64
Y Y Y Y 086 R32G32_SINT 64
Y Y Y Y 087 R32G32_UINT 64
Y Y 088 R32_FLOAT_ X8X24 TYPELESS 64
Y 089 X32_TYPELESS_ G8X24 UINT 64
Y 08A L32A32_FLOAT 64
Y 08B R32G32_UNORM 64
Y 08C R32G32_SNORM 64
Y 08D R64_FLOAT 64
Y Y 08E R16G16B16X16 _UNORM 64
Y Y 08F R16G16B16X16 FLOAT 64
Y 090 A32X32_FLOAT 64
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0 Format Name

Y 091 L32X32_FLOAT 64
Y 092 132X32_FLOAT 64
Y 093 R16G16B16A16_SSCALED 64
Y 094 R16G16B16A16_USCALED 64
Y 095 R32G32_SSCALED 64
Y 096 R32G32_USCALED 64
Y Y Y Y Y Y 0co B8GB8R8A8_UNORM 32
Y Y Y Y 0C1 B8G8R8A8_UNORM_SRGB 32
Y Y Y Y Y 0C2 R10G10B10A2_UNORM 32
Y Y 0C3 R10G10B10A2_UNORM_SRGB 32
Y Y Y 0C4 R10G10B10A2_UINT 32
Y Y Y 0C5 R10G10B10_SNORM_A2 UNORM 32
Y Y Y Y Y 0C7 R8G8B8A8_UNORM 32
Y Y Y Y 0C8 R8G8B8BA8_UNORM_SRGB 32
Y Y Y Y 0C9 R8G8BB8A8_SNORM 32
Y Y Y OCA | R8G8B8A8_SINT 32
Y Y Y 0CB R8G8BBA8_UINT 32
Y Y Y Y 0CC | R16G16_UNORM 32
Y Y Y Y 0CD | R16G16_SNORM 32
Y Y Y 0CE R16G16_SINT 32
Y Y Y OCF R16G16_UINT 32
Y Y Y Y Y 0DO R16G16_FLOAT 32
Y Y Y Y 0D1 B10G10R10A2_UNORM 32
Y Y Y Y 0D2 B10G10R10A2_UNORM_SRGB 32
Y Y Y Y Y 0D3 R11G11B10_FLOAT 32
Y Y Y Y 0D6 R32_SINT 32
Y Y Y Y 0D7 R32_UINT 32
Y Y Y Y Y Y 0D8 R32_FLOAT 32
Y Y 0D9 R24 UNORM_X8 TYPELESS 32
Y ODA | X24 TYPELESS G8 UINT 32
Y Y ODF L16A16_UNORM 32
Y Y OEO 124X8 UNORM 32
Y Y OE1 L24X8 UNORM 32
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0 Format Name
Y Y OE2 A24X8 UNORM 32
Y Y OE3 132_FLOAT 32
Y Y OE4 L32 FLOAT 32
Y Y OE5 A32_FLOAT 32
Y Y Y OE9 B8G8R8X8_UNORM 32
Y Y OEA | BBG8R8X8 UNORM_SRGB 32
Y Y OEB R8G8B8X8_UNORM 32
Y Y OEC | R8G8B8X8 UNORM_SRGB 32
Y Y OED | R9G9B9E5 SHAREDEXP 32
Y Y OEE B10G10R10X2_UNORM 32
Y Y OF0 L16A16 FLOAT 32
Y OF1 R32_UNORM 32
Y OF2 R32_SNORM 32
Y OF3 R10G10B10X2_USCALED 32
Y OF4 R8G8B8A8_SSCALED 32
Y OF5 R8G8B8A8_USCALED 32
Y OF6 R16G16_SSCALED 32
Y OF7 R16G16_USCALED 32
Y OF8 R32_SSCALED 32
Y 0F9 R32_USCALED 32
Y Y Y Y Y 100 B5G6R5 _UNORM 16
Y Y Y Y 101 B5G6R5 UNORM_SRGB 16
Y Y Y Y Y 102 B5G5R5A1 _UNORM 16
Y Y Y Y 103 B5G5R5A1 UNORM_SRGB 16
Y Y Y Y Y 104 B4G4R4A4_UNORM 16
Y Y Y Y 105 B4G4R4A4_UNORM_SRGB 16
Y Y Y Y Y 106 R8G8 _UNORM 16
Y Y Y Y Y 107 R8G8 SNORM 16
Y Y Y 108 R8G8_SINT 16
Y Y Y 109 R8G8_UINT 16
Y Y Y Y Y 10A R16 _UNORM 16
Y Y Y Y 10B R16_SNORM 16
Y Y Y 10C R16_SINT 16
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n Format Name

Y Y Y 10D R16_UINT 16
Y Y Y Y Y 10E R16_FLOAT 16
10F | A8P8_UNORM [palette0] 16
110 | A8P8_UNORM [palettel] 16
Y Y Y 111 116_ UNORM 16
Y Y Y 112 L16_UNORM 16
Y Y Y 113 A16_UNORM 16
Y Y Y 114 L8A8 _UNORM 16
Y Y Y 115 116_FLOAT 16
Y Y Y 116 L16_FLOAT 16
Y Y Y 117 Al6_FLOAT 16
118 L8A8 UNORM_SRGB 16
Y Y Y 119 R5G5 SNORM_B6_UNORM 16
Y Y 11A B5G5R5X1_UNORM 16
Y Y 11B B5G5R5X1_UNORM_SRGB 16
Y 11C R8G8 SSCALED 16
Y 11D R8G8 USCALED 16
Y 11E R16_SSCALED 16
Y 11F R16_USCALED 16
122 | P8A8_UNORM [palette0] 16
123 | P8A8_UNORM [palettel] 16
Y Y Y Y Y 140 R8_UNORM 8
Y Y Y Y 141 R8_SNORM 8
Y Y Y 142 R8_SINT 8
Y Y Y 143 R8_UINT 8
Y Y Y Y Y 144 A8_UNORM 8
Y Y 145 1I8_UNORM 8
Y Y Y 146 L8 _UNORM 8
Y | Y 147 | P4A4_UNORM [palette0] 8
Y | Y 148 | A4P4_UNORM [palette0] 8
Y 149 R8 SSCALED 8
Y 14A R8 _USCALED 8
14B | P8_UNORM [palette0] 8
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14C L8 UNORM_SRGB 8
14D | P8_UNORM [palette1] 8
14E | P4A4 UNORM [palettel] 8
14F | A4P4 UNORM [palettel] 8
180 BC1 RGB_SRGB 0
Y Y 181 R1 UNORM/R1_UINT 1
Y Y Y Y 182 YCRCB_NORMAL 0
Y Y Y Y 183 YCRCB_SWAPUVY 0
184 | P2_UNORM [palette0] 2
185 P2_UNORM [palettel] 2
Y Y Y 186 BC1 _UNORM 0
Y Y Y 187 BC2_UNORM 0
Y Y Y 188 BC3_UNORM 0
Y Y 18B BC1 _UNORM_SRGB 0
Y Y 18C BC2_UNORM_SRGB 0
Y Y 18D BC3_UNORM_SRGB 0
Y 18E MONOS8 1
Y Y Y 18F YCRCB_SWAPUV 0
Y Y Y 190 YCRCB_SWAPY 0
Y Y 191 BC1l RGB 0
Y Y 192 FXT1 0
Y 193 R8G8B8_UNORM 24
Y 194 R8G8B8_SNORM 24
Y 195 R8G8B8_SSCALED 24
Y 196 R8G8B8_USCALED 24
Y 197 R64G64B64A64 FLOAT 256
Y 198 R64G64B64 FLOAT 192
19B R16G16B16 FLOAT 48
Y 19C R16G16B16 _UNORM 48
Y 19D R16G16B16_SNORM 48
Y 19E R16G16B16_SSCALED 48
Y 19F R16G16B16 _USCALED 48
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** Note: 128 BPE Formats cannot be Tiled Y when used as render targets
4.7.2.1.2 Sampler Output Channel Mapping

The following table indicates the mapping of the channels from the surface to the
channels output from the sampling engine. Formats with all four channels (R/G/B/A)
in their name map each surface channel to the corresponding output, thus those
formats are not shown in this table.

Surface Format Name R G B A
R32G32B32X32_FLOAT R G B 1.0
R32G32B32_FLOAT R G B 1.0
R32G32B32_SINT R G B 1.0
R32G32B32_UINT R G B 1.0
R32G32_FLOAT R G 1.0 1.0

R G 0.0 1.0
R32G32_SINT R G 0.0 1.0
R32G32_UINT R G 0.0 1.0
R32_FLOAT_X8X24_TYPELESS R 0.0 0.0 1.0
X32_TYPELESS_G8X24_UINT 0.0 G 0.0 1.0
L32A32_FLOAT L L L A
R16G16B16X16_UNORM R G B 1.0
R16G16B16X16_FLOAT R G B 1.0
A32X32_FLOAT 0.0 0.0 0.0 A
L32X32_FLOAT L L L 1.0
I32X32_FLOAT I I I I
R16G16_UNORM R G 1.0 1.0
R G 0.0 1.0
R16G16_SNORM R G 1.0 1.0
R G 0.0 1.0
R16G16_SINT R G 0.0 1.0
R16G16_UINT R G 0.0 1.0
R16G16_FLOAT R G 1.0 1.0
R G 0.0 1.0
R11G11B10_FLOAT R G B 1.0
R32_SINT R 0.0 0.0 1.0
R32_UINT R 0.0 0.0 1.0
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Surface Format Name R G B A
R32_FLOAT R 1.0 1.0 1.0
R 0.0 0.0 1.0
R24_UNORM_X8_TYPELESS R 0.0 0.0 1.0
X24_TYPELESS_G8_UINT 0.0 G 0.0 1.0
L16A16_UNORM L L A
124X8_UNORM I I I I
L24X8_UNORM L L L 1.0
A24X8_UNORM 0.0 0.0 0.0 A
I32_FLOAT I I I I
L32_FLOAT L L L 1.0
A32_FLOAT 0.0 0.0 0.0 A
B8G8R8X8_UNORM R G B 1.0
B8G8R8X8_UNORM_SRGB R G B 1.0
R8G8B8X8_UNORM R G B 1.0
R8G8B8X8_UNORM_SRGB R G B 1.0
RO9G9B9E5_SHAREDEXP R G B 1.0
B10G10R10X2_UNORM R G B 1.0
L16A16_FLOAT L L L A
B5G6R5_UNORM R G B 1.0
B5G6R5_UNORM_SRGB R G B 1.0
R8G8_UNORM R G 1.0 1.0
R G 0.0 1.0
R8G8_SNORM R G 1.0 1.0
R G 0.0 1.0
R8G8_SINT R G 0.0 1.0
R8G8_UINT R G 0.0 1.0
R16_UNORM R 0.0 0.0 1.0
R16_SNORM R 0.0 0.0 1.0
R16_SINT R 0.0 0.0 1.0
R16_UINT R 0.0 0.0 1.0
R16_FLOAT R 1.0 1.0 1.0
R 0.0 0.0 1.0

I116_UNORM I I I I
L16_UNORM L L L 1.0
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Surface Format Name R G B A
A16_UNORM 0.0 0.0 0.0
L8A8_UNORM L L L
I116_FLOAT I I I I
L16_FLOAT L L L 1.0
A16_FLOAT 0.0 0.0 0.0 A
R5G5_SNORM_B6_UNORM R G B 1.0
R8_UNORM R 0.0 0.0 1.0
R8_SNORM R 0.0 0.0 1.0
R8_SINT R 0.0 0.0 1.0
R8_UINT R 0.0 0.0 1.0
A8_UNORM 0.0 0.0 0.0 1.0
I8_UNORM I I I I
L8_UNORM L L L 1.0
L8_UNORM_SRGB L L L 1.0
R1_UNORM/R1_UINT R 0.0 0.0 1.0
YCRCB_NORMAL Cr Y Cb 1.0
YCRCB_SWAPUVY Cr Y Cb 1.0
YCRCB_SWAPUV Cr Y Cb 1.0
YCRCB_SWAPY Cr Y Cb 1.0
BC1_RGB R G B 1.0
BC1_RGB_SRGB R G B 1.0

4.7.3 SAMPLER_STATE
SAMPLER_STATE has three different formats, depending on the message type used.
All messages use the format described under “For most messages”.
4.7.3.1 For Most Messages
SAMPLER_STATE
Project: All

This is the normal sampler state used by all messages that use SAMPLER_STATE except sample_8x8 and deinterlace.
The sampler state is stored as an array of up to 16 elements, each of which contains the dwords described here. The
start of each element is spaced 4 dwords apart. The first element of the sampler state array is aligned to a 32-byte

boundary.
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DWord Bit Description
0 31 Sampler Disable
Project: All
Format: Disable FormatDesc
This field allows the sampler to be disabled. If disabled, all output channels will return 0.
30:29 Reserved Project: Al Format: MBZ
28 LOD PreClamp Enable
Project: All
Format: U1l enumerated type FormatDesc
When enabled, the computed LOD is clamped to [max,min] mip level before the mag-vs-
min determination is performed. This is how the standard API currently performs
min/mag determination, and therefore it is expected that a standard API driver would
need to set this bit.
27 Reserved Project:  All Format: MBZ
26:22 Base Mip Level

Project: All
Format: u4.1 FormatDesc
Range [0.0,13.0]

Specifies which mip level is considered the “base” level when determining mag-vs-min
filter and selecting the “base” mip level.
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21:20

Mip Mode Filter
Project: All
Format: U2 enumerated type FormatDesc

This field determines if and how mip map levels are chosen and/or combined when texture
filtering.

Value Name Description Project

Oh MIPFILTER_NONE Disable mip mapping - force All
use of the mipmap level
corresponding to Min LOD.

1h MIPFILTER_NEAREST Nearest, Select the nearest mip | All
map

2h Reserved All

3h MIPFILTER_LINEAR Linearly interpolate between All

nearest mip maps (combined
with linear min/mag filters this
is analogous to “Trilinear”
filtering).

Programming Notes

MIPFILTER_LINEAR is not supported for surface formats that do not support “Sampling
Engine Filtering” as indicated in the Surface Formats table unless using the sample_c
message type.
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19:17

Mag Mode Filter
Project: All
Format: U2 enumerated type FormatDesc

This field determines how texels are sampled/filtered when a texture is being “magnified”
(enlarged). For volume maps, this filter mode selection also applies to the 3™ (inter-
layer) dimension.

Value Name Description Project

Oh MAPFILTER_NEAREST Sample the nearest All
texel

1h MAPFILTER_LINEAR Bilinearly filter the 4 All
nearest texels

2h MAPFILTER_ANISOTROPIC Perform an “anisotropic” | All
filter on the chosen mip
level

3h-5h Reserved All

6h MAPFILTER_MONO Perform a monochrome All
convolution filter

7h Reserved All

Programming Notes

Only MAPFILTER_NEAREST and MAPFILTER_LINEAR are supported for surfaces of type
SURFTYPE_3D.

Only MAPFILTER_NEAREST is supported for surface formats that do not support
“Sampling Engine Filtering” as indicated in the Surface Formats table unless using the
sample_c message type.

MAPFILTER_MONO: Only CLAMP_BORDER texture addressing mode is supported. .

Both Mag Mode Filter and Min Mode Filter must be programmed to
MAPFILTER_MONO. Mip Mode Filter must be MIPFILTER_NONE. Only valid on surfaces
with Surface Format MONO8 and with Surface Type SURFTYPE_2D.

MAPFILTER_ANISOTROPIC may cause artifacts at cube edges if enabled for cube maps
with the TEXCOORDMODE_CUBE addressing mode.

MAPFILTER_ANISOTROPIC will be overridden to MAPFILTER_LINEAR when using a
sample_| or sample_l_c message type or when Force LOD to Zero is set in the message
header. [DevBW, DevCL] Errata: Force LOD to Zero will not cause
MAPFILTER_ANISOTROPIC to get forced to MAPFILTER_LINEAR and instead it will have
to be worked around using sample_| or sample_|_c.

16:14

Min Mode Filter
Project: All
Format: U2 enumerated type FormatDesc

This field determines how texels are sampled/filtered when a texture is being “minified”
(shrunk). For volume maps, this filter mode selection also applies to the 3™ (inter-layer)
dimension.

See Mag Mode Filter
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13:3 Texture LOD Bias
Project: All
Format: S4.6 2's complement FormatDesc
Range [-16.0, 16.0)
This field specifies the signed bias value added to the calculated texture map LOD prior to
min-vs-mag determination and mip-level clamping. Assuming mipmapping is enabled, a
positive LOD bias will result in a somewhat blurrier image (using less-detailed mip levels)
and possibly higher performance, while a negative bias will result in a somewhat crisper
image (using more-detailed mip levels) and may lower performance.
Programming Notes
There is no requirement or need to offset the LOD Bias in order to produce a correct LOD
for texture filtering (as was required for correct bilinear and anisotropic filtering in some
legacy devices).
2:0 Shadow Function

Project: All
Format: U3 enumerated type FormatDesc

This field is used for shadow mapping support via the sample_c message type, and
specifies the specific comparison operation to be used. The comparison is between the
texture sample red channel (except for alpha-only formats which use the alpha channel),
and the “ref” value provided in the input message.

Value Name Description Project
Oh PREFILTEROP_ALWAYS All
ih PREFILTEROP_NEVER All
2h PREFILTEROP_LESS All
3h PREFILTEROP_EQUAL All
4h PREFILTEROP_LEQUAL All
5h PREFILTEROP_GREATER All
6h PREFILTEROP_NOTEQUAL All
7h PREFILTEROP_GEQUAL All
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31:22

Min LOD
Project: All
Format: U4.6 in LOD units FormatDesc

Range [0.0, 13.0], where the upper limit is also bounded by the Max
LOD.

This field specifies the minimum value used to clamp the computed LOD after LOD bias is
applied. Note that the minification-vs.-magnification status is determined after LOD bias
and before this maximum (resolution) mip clamping is applied.

The integer bits of this field are used to control the "maximum” (highest resolution)
mipmap level that may be accessed (where LOD 0 is the highest resolution map).

The fractional bits of this value effectively clamp the inter-level trilinear blend factor when
trilinear filtering is in use.

Programming Notes

If Min LOD is greater than Max LOD, Min LOD takes precedence, i.e. the resulting LOD
will always be Min LOD.

This field must be zero if the Min or Mag Mode Filter is set to MAPFILTER_MONO

Errata Description Project

# If the Mip Mode Filter is set to MIPFILTER_NEAREST All
and the fractional portion of MIn LOD is < 0.5 but >
0.0, the LOD chosen is one too large. Zeroing the
fractional portion of Min LOD in these cases gives the
correct behavior as a software workaround.

21:12

Max LOD

Project: All

Format: U4.6 in LOD units FormatDesc
Range [0.0, 13.0]

This field specifies the maximum value used to clamp the computed LOD after LOD bias is
applied. Note that the minification-vs.-magnification status is determined after LOD bias
and before this minimum (resolution) mip clamping is applied.

The integer bits of this field are used to control the "minimum” (lowest resolution)
mipmap level that may be accessed.

The fractional bits of this value effectively clamp the inter-level trilinear blend factor when
trilinear filtering is in use.

Force the mip map access to be between the mipmap specified by the integer bits of the
Min LOD and the ceiling of the value specified here.

Programming Notes

If Min LOD is greater than Max LOD, Min LOD takes precedence, i.e. the resulting LOD
will always be Min LOD.

11:10

Reserved Project: All Format: MBZ
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Cube Surface Control Mode

Project:

Format:

All
U1l enumerated type

FormatDesc

When sampling from a SURFTYPE_CUBE surface, this field controls whether the TC*
Address Control Mode fields are interpreted as programmed or overridden to
TEXCOORDMODE_CUBE.

Value Name Description Project

Oh CUBECTRLMODE_PROGRAMMED All

1h CUBECTRLMODE_OVERRIDE All

Errata Description Project

# this field must be set to [DevBW-A,B],
CUBECTRLMODE_PROGRAMMED [DevCL-A]
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8:6 TCX Address Control Mode
Project: All
Format: U3 enumerated type FormatDesc
Controls how the 1% (TCX, aka U) component of input texture coordinates are mapped to
texture map addresses - specifically, how coordinates “outside” the texture are handled
(wrap/clamp/mirror). The setting of this field is subject to being overridden by the Cube
Surface Control Mode field when sampling from a SURFTYPE_CUBE surface.
Value Name Description Project
Oh TEXCOORDMODE_WRAP Map is repeated in the All
U direction
1h TEXCOORDMODE_MIRROR Map is mirrored in the All
U direction
2h TEXCOORDMODE_CLAMP Map is clamped to the All
edges of the accessed
map
3h TEXCOORDMODE_CUBE For cube-mapping, All
filtering in edges access
adjacent map faces
4h TEXCOORDMODE_CLAMP_BORDER Map is infinitely All
extended with the
border color
5h TEXCOORDMODE_MIRROR_ONCE Map is mirrored once All
about origin, then
clamped
6h-7h Reserved All
Programming Notes
When using cube map texture coordinates, only TEXCOORDMODE_CLAMP and
TEXCOORDMODE_CUBE settings are valid, and each TC component must have the same
Address Control mode.
When TEXCOORDMODE_CLAMP is used when accessing a cube map, the map’s Cube
Face Enable field must be programmed to 111111b (all faces enabled).
MAPFILTER_MONO: Texture addressing modes must all be set to
TEXCOORDMODE_CLAMP_BORDER. The Border Color is ignored in this mode, a
constant value of 0 is used for border color. Software must pad the border texels within
the map itself with 0.
5:3 TCY Address Control Mode

Project: All
Format: U3 enumerated type FormatDesc

Controls how the 2" (TCY, aka V) component of input texture coordinates are mapped to
texture map addresses - specifically, how coordinates “outside” the texture are handled
(wrap/clamp/mirror) or whether the “wrap shortest” mapping should be applied.

See Address TCX Control Mode above for details
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2:0 TCZ Address Control Mode
Project: All
Format: U3 enumerated type FormatDesc
Controls how the 3™ (TCZ) component of input texture coordinates are mapped to texture
map addresses - specifically, how coordinates “outside” the texture are handled
(wrap/clamp/mirror) or whether the “wrap shortest” mapping should be applied.
See Address TCX Control Mode above for details

2 31:5 Border Color Pointer

Project: All
Format: GeneralStateOffset[31:5] FormatDesc
This field specifies the pointer to SAMPLER_BORDER_COLOR_STATE, which contains the
“border” color to be used when accessing texels not contained within the texture map.
This pointer is relative to the General State Base Address.

4:0 Reserved Project: All Format: MBZ

3 31:29 Monochrome Filter Height
Project: All
Format: u3 FormatDesc
Range [1,7]
This field specifies the height of the monochrome filter. It is ignored if the monochrome
filter is not enabled.
28:26 Monochrome Filter Width

Project: All
Format: u3 FormatDesc
Range [1,7]
This field specifies the width of the monochrome filter. It is ignored if the monochrome
filter is not enabled.

25 ChromaKey Enable

Project: All
Format: Enable FormatDesc

This field enables the chroma key function.

Programming Notes

Supported only on a specific subset of surface formats. See section 4.7.2.1.1 “Surface
Formats” for supported formats.

This field must be disabled if min or mag filter is MAPFILTER_MONO or
MAPFILTER_ANISOTROPIC.

This field must be disabled if used with a surface of type SURFTYPE_3D.
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24:23 ChromaKey Index
Project: All
Format: u2 FormatDesc
Range [0,3]
This field specifies the index of the ChromaKey Table entry associated with this Sampler.
This field is a “don't care” unless ChromaKey Enable is ENABLED.
22 ChromaKey Mode

Project: All
Format: U1l enumerated type FormatDesc

This field specifies the behavior of the device in the event of a ChromaKey match. This
field is ignored if ChromaKey is disabled.

KEYFILTER _KILL_ON_ANY_MATCH:

In this mode, if any contributing texel matches the chroma key, the corresponding pixel
mask bit for that pixel is cleared. The result of this operation is observable only if the
Killed Pixel Mask Return flag is set on the input message.

KEYFILTER_REPLACE_BLACK:

In this mode, each texel that matches the chroma key is replaced with (0,0,0,0) (black
with alpha=0) prior to filtering. For YCrCb surface formats, the black value is A=0,
R(Cr)=0x80, G(Y)=0x10, B(Cb)=0x80. This will tend to darken/fade edges of keyed
regions. Note that the pixel pipeline must be programmed to use the resulting filtered
texel value to gain the intended effect, e.g., handle the case of a totally keyed-out region
(filtered texel alpha==0) through use of alpha test, etc.

Value Name Description Project
Oh KEYFILTER_KILL_ON_ANY_MATCH All
1h KEYFILTER_REPLACE_BLACK All

151




SAMPLER_STATE

21:19 Maximum Anisotropy
Project: All
Format: U3 enumerated type FormatDesc
This field clamps the maximum value of the anisotropy ratio used by the
MAPFILTER_ANISOTROPIC filter (Min or Mag Mode Filter).
Value Name Description Project
Oh ANISORATIO_2 At most a 2:1 aspect ratio filter is used All
1h ANISORATIO_4 At most a 4:1 aspect ratio filter is used All
2h ANISORATIO_6 At most a 6:1 aspect ratio filter is used All
3h ANISORATIO_S8 At most a 8:1 aspect ratio filter is used All
4h ANISORATIO_10 At most a 10:1 aspect ratio filter is used All
5h ANISORATIO_12 At most a 12:1 aspect ratio filter is used All
6h ANISORATIO_14 At most a 14:1 aspect ratio filter is used All
7h ANISORATIO_16 At most a 16:1 aspect ratio filter is used All
18:13 Address Rounding Enable
Project: All
Format: 6-bit mask of enables FormatDesc
Controls whether the U/V/R texture address is rounded or truncated before being used to
select texels to sample. Each bit provides independent control of rounding on one texture
address dimension (U/V/R) in either mag or min filter mode.
Value Name Description Project
100000b U address mag filter All
010000b U address min filter All
001000b V address mag filter All
000100b V address min filter All
000010b R address mag filter All
000001b R address min filter All
12:0 Reserved Project:  All Format: MBZ
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4.7.4 SAMPLER_BORDER_COLOR_STATE

This structure is pointed to by a field in SAMPLER_STATE.

The interpretation of the border color is as follows:

e The format of the border color is R32G32B32A32_FLOAT, regardless of the surface

format chosen. For surface formats with one or more channels missing, the value
from the border color is not used for the missing channels, resulting in these
channels resulting in the overall default value (0 for colors and 1 for alpha)
regardless of whether border color is chosen. The surface formats with “"L” and “I”
have special behavior with respect to the border color. The border color value
used for the replicated channels (RGB for “L"” formats and RGBA for “I"” formats)
comes from the red channel of border color. In these cases, the green and blue
channels, and also alpha for “I”, of the border color are ignored.

Programming Notes:

e The conditions under which this color is used depend on the Surface Type -

1D/2D/3D surfaces use the border color when the coordinates extend beyond the
surface extent; cube surfaces use the border color for “empty” (disabled) faces.

The border color itself is accessed through the texture cache hierarchy rather than
the state cache hierarchy. Thus, if the border color is changed in memory, the

texture cache must be invalidated and the state cache does not need to be
invalidated.

MAPFILTER_MONO: The border color is ignored. Border color is fixed at a value
of 0 by hardware.

DWord Bit Description
0 31:0 Border Color Red
Format = IEEE_FP
1 31:0 Border Color Green
Format = IEEE_FP
2 31:0 Border Color Blue
Format = IEEE_FP
3 31:0 Border Color Alpha
Format = IEEE_FP
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4.7.5

3DSTATE_CHROMA_KEY

3DSTATE_CHROMA_KEY

Project:

All

|Length Bias: |2

The 3DSTATE_CHROMA_KEY instruction is used to program texture color/chroma-key key values. A table containing
four set of values is supported. The ChromaKey Index sampler state variable is used to select which table entry is
associated with the map. Texture chromakey functions are enabled and controlled via use of the ChromaKey Enable
texture sampler state variable.

Texture Color Key (keying on a paletted texture index) is not supported.

DWord Bit Description
0 31:29 Command Type
Default Value: 3h GFXPIPE Format: OpCode
28:27 Command SubType
Default Value: 3h GFXPIPE_3D Format: OpCode
26:24 3D Command Opcode
Default Value: 1h 3DSTATE Format: OpCode
24:16 3D Command Sub Opcode
Default Value: 04h 3DSTATE_CHROMA_KEY Format: OpCode
15:8 Reserved Project:  All Format: MBZ
7:0 DWord Length
Default Value: 2h Excludes DWord (0,1)
Format: =n Total Length - 2
1 31:30 ChromaKey Table Index
Project: All
Format: u2 index
Range 0..3
Selects which entry in the ChromakKey table is to be loaded
29:0 Reserved Project: Al Format: MBZ
2 31:0 ChromaKey Low Value

This field specifies the “low” (minimum) value of the chroma key range. Texel samples
are considered “matching the key” if each component of the texel falls within the
(inclusive) chroma range.

See ChromakKey High Value for further format, programming info.

154




intel.

3DSTATE_CHROMA_KEY

ChromaKey High Value

This field specifies the “high” (maximum) value of the chroma key range. Texel samples
are considered “matching the key” if each component of the texel falls within the

(inclusive) chroma range.

Programming Notes

ChromaKey values are specified using 8-bit channels. When using surface formats with
less than 8 bits per channel, the device will expand channels by replicating the required
number of MSBs into the LSBs of each channel. Software must account for this
conversion when it programs Chromakey Low/High Values (e.g., by performing the same
replication).

For channels that do not exist in the actual surface (e.g., Alpha channel for non-ARGB
maps), software must explicitly program full range high/low values (High=FFh, Low=0h
for formats using unsigned chroma key values, High=7Fh, Low=FFh for formats using
sign magnitude chroma key values) in order to effectively remove the comparison of that
field from the ChromaKey function.

For channels in SNORM format in the surface format, the value in the high/low value for
that channel is interpreted in sign magnitude format. Negative zero value is not
supported (use positive zero instead). For channels with mixed UNORM/SNORM formats
(i.e. R5G5_SNORM_B6_UNORM), the ChromaKey is programmed as if all channels are
SNORM.

YUV ChromaKey will use an interpolated chrominance value from the map for
comparison to the chroma key values for those texels without chrominance due to
downsampling. The chrominance value used is the average of values to the left and
right of the texel in question.

It is UNDEFINED to program any component of the ChromaKey High Value to be less
than the corresponding component of ChromaKey Low Value.

Format = interpreted according to associated texel format “class”:

Only the surface formats listed as supported for chroma key in the surface formats table
can be used with this feature. Use of any other surface format with chroma key enabled
is UNDEFINED.

Surface Format 31:24 23:16 15:8 7:0
ARGB and BC formats A R G B
YCrCb formats A Cr Y Cb
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4.7.6 3DSTATE_SAMPLER_PALETTE_LOADO

3DSTATE_SAMPLER_PALETTE_LOADO

Project: All |Length Bias: |2

The 3DSTATE_SAMPLER_PALETTE_LOADO instruction is used to load 24-bit values into the first texture
palette. The texture palette is used whenever a texture with a paletted format (containing “Px
[palette0]”) is referenced by the sampler.

This instruction is used to load all or a subset of the 16 entries of the first palette. Partial loads always start from the
first (index 0) entry.

DWord Bit Description

0 31:29 Command Type
Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType
Default Value: 3h GFXPIPE_3D Format: OpCode

26:24 3D Command Opcode
Default Value: 1h 3DSTATE Format: OpCode

24:16 3D Command Sub Opcode
Default Value: 02h 3DSTATE_SAMPLER_PALETTE_LOADO Format: OpCode

15:8 Reserved Project:  All Format: MBZ

7:0 DWord Length

Default Value: Oh Excludes DWord (0,1)
Format: =n Total Length - 2
1..n 31:24 Reserved : MBZ

23:0 Palette Color[0:N-1]
Project: All

Colors loaded into the first N entries of the texture color palette.
Format = Bits 23:0 = U24 interpreted as RGB_888 color as follows:
[23:16] Red

[15:8] Green

[7:0] Blue
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Messages

Restrictions:

e Use of any message to the Sampling Engine function with the End of Thread bit
set in the message descriptor is not allowed.

e [DevBW-A,B,CO, DevCL-AQ] Errata: use of any Sampling Engine message in
the same workload (between pipeline flushes) with any Data Port read messages
utilizing the Sampler Cache or Data Cache is not allowed.

Initiating Message

Execution Mask

SIMD16. The 16-bit execution mask forms the valid pixel signals. This determines
which pixels are sampled and results returned to the GRF registers. Samples for
invalid pixels are not overwritten in the GRF. However, if LOD needs to be computed
for a subspan based on the message type and MIP filter mode and at least one pixel in
the subspan being valid, the sampling engine assumes that the parameters for the
upper left, upper right, and lower left pixels in the subspan are valid regardless of the
execution mask, as these are needed for the LOD computation.

SIMD8. The lower 8 bits of the execution mask forms the valid pixel signals. If LOD
needs to be computed based on MIP filter mode and at least one pixel in the subspan
being valid, the sampling engine assumes that the parameters for the upper left,
upper right, and lower left pixels in the subspan are valid regardless of the execution
mask, as these are needed for the LOD computation.

SIMD4x2. The lower 8 bits of the execution mask is interpreted in groups of four. If
any of the high 4 bits are asserted, that sample is valid. If any of the low 4 bits are
asserted, that sample is valid. The Write Channel Mask rather than the execution
mask determines which channels are written back to the GRF.
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4.8.1.1 Message Descriptor

Bit Description

15:14 Message Type: Specifies the type of message being sent, along with the message length (in the
general message descriptor)
Format = U2
Refer to the table in section 4.8.1.3 for encoding details.

13:12 Data Return Format: Specifies the format of the data returned to the requesting thread.
00 = FLOAT32 - return a signed 32-bit IEEE Float to the thread. Required for all UNORM,
SNORM, and FLOAT surface formats. Can be used by resinfo messages regardless of surface
format.
01 = Reserved
10 = UINT32 - return an unsigned 32-bit integer. Required for all UINT surface formats. Can be
used by resinfo messages regardless of surface format.
11 = SINT32 - return a signed 32-bit 2's complement integer. Required for all SINT surface
formats.

11:8 Sampler Index: Specifies the index into the sampler state table. Ignored for “Id” and “resinfo”
type messages.
Format = U4
Range = [0,15]

7:0 Binding Table Index: Specifies the index into the binding table.

Format = U8
Range = [0,255]
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4.8.1.2 Message Header
The message header for the sampling engine is the same regardless of the message
type.
DWord Bit Description
MO.7 31:0 Debug
MO.6 31:0 Debug
MO0.5 31:0 Ignored
MO0.4 31:0 Ignored
MO0.3 31:5 Sampler State Pointer: Specifies the 32-byte aligned pointer to the sampler state
table. This field is ignored for “Id” and “resinfo” message types. This pointer is relative
to the General State Base Address.
Format = GeneralStateOffset[31:5]
4:0 Ignored
MO0.2 31:17 Ignored

16 Force LOD to Zero: If this bit is enabled, the calculated LOD is replaced with zero. The
LOD is replaced just before entering the pseudocode in section 4.2.1.5, therefore the
LOD is still subject to bias, overriding by sample_| delivered LOD, and clamping.

Format = Enable

15 Alpha Write Channel Mask: Enables the alpha channel to be written back to the
originating thread.

0 = Alpha channel will be written back
1 = Alpha channel will not be written back
Programming Notes:
e a message with all four channels masked is not allowed.

e this field is ignored for the sample_unorm*. The write channel mask is
generated from the message type itself.

e this field is ignored for the deinterlace message.

e this field must be set to zero for sample_8x8 in VSA mode.

14 Blue Write Channel Mask: See Alpha Write Channel Mask
13 Green Write Channel Mask: See Alpha Write Channel Mask
12 Red Write Channel Mask: See Alpha Write Channel Mask
11:8 U Offset: the u offset from the _aoffimmi modifier on the “sample” or “Id” instruction.

Must be zero if the Surface Type is SURFTYPE_CUBE or SURFTYPE_BUFFER. Must be
set to zero if _aoffimmi is not specified. Format is S3 2’s complement.

Programming Note:

e this field is ignored for the sample_unorm*, sample_8x8, and deinterlace
messages
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DWord Bit Description
7:4 V Offset: the v offset from the _aoffimmi modifier on the “sample” or “ld” instruction.
Must be zero if the Surface Type is SURFTYPE_CUBE or SURFTYPE_BUFFER. Must be
set to zero if _aoffimmi is not specified. Format is S3 2's complement.
Programming Note:
e this field is ignored for the sample_unorm*, sample_8x8, and deinterlace
messages
3:0 R Offset: the r offset from the _aoffimmi modifier on the “sample” or “ld” instruction.
Must be zero if the Surface Type is SURFTYPE_CUBE or SURFTYPE_BUFFER. Must be
set to zero if _aoffimmi is not specified. Format is S3 2's complement.
Programming Note:
e this field is ignored for the sample_unorm*, sample_8x8, and deinterlace
messages
MO.1 31:0 Ignored
MO0.0 31:0 Ignored
4.8.1.3 Payload Parameter Definition
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The table below shows all of the messages supported by the sampling engine. The
message type field in the message descriptor in combination with the message length
determines which message is being sent. The table defines all of the parameters sent
for each message type. The position of the parameters in the payload is given in the
section following corresponding to the SIMD mode given in the table. The instruction
column indicates the shader instructions expected to be translated to each message
type.

All parameters are of type IEEE_Float, except those in the Id and resinfo instruction
message types, which are of type S31. Any parameter indicated with a blank entry in
the table is unused. A message register containing only unused parameters not
included as part of the message. The response lengths given below assume all
channels are unmasked. SIMD16 messages with masked channels will have reduced
response length.
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00 3 8 u SIMD16 sample
00 5 8 u \ SIMD16 sample
00 7 8 u v r SIMD16 sample
00 4 4 u \ r SIMD8 sample
01 4 5 u \Y r SIMD8 sample+Kkillpix
00 9 8 u \ r bias SIMD16 sample b
01 9 8 u \ r lod SIMD16 sample_|
01 2 1 u \Y r lod SIMD4x2 sample |
10 9 8 u \ r ref SIMD16 sample ¢
00 2 1 u \ r ref SIMD4x2 sample ¢
00 6 4 u v r bias ref SIMD8 sample_b ¢
01 6 4 u \Y r lod ref SIMD8 sample | ¢
01 3 1 u \Y r lod ref SIMD4x2 sample_|_c
11 3 8 u SIMD16 Id
11 5 8 u \Y SIMD16 Id
11 7 8 u \ r SIMD16 Id
11 4 4 u \ r SIMD8 Id
11 9 8 u \ r lod SIMD16 Id
11 2 1 u \ r lod SIMD4x2 Id
10 7 4 u \Y dudx | dvdx | dudy | dvdy SIMD8 sample_g
10 10 4 u \Y r dudx | dvdx drdx | dudy [ dvdy | drdy SIMD8 sample g
10 4 1 u \Y r dudx | dvdx | drdx dudy dvdy | drdy SIMD4x2 sample g
10 3 8 lod SIMD16 resinfo
10 2 1 lod SIMD4x2 resinfo

Note that the SIMD8 messages actually contain only eight pixels of data. For the
sample_g messages, this is due to the message length constraint of 16 registers not
allowing these messages of 16 pixels. The Jitter will need to send two messages to
the sampler to get 16 pixels of data.
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4.8.1.4 Message Types

The behavior of each message type is as follows:

Message Type

Description

sample

The surface is sampled using the indicated sampler state. LOD is computed using
gradients between adjacent pixels. One, two, or three parameters may be specified
depending on how many coordinate dimensions the indicated surface type uses. Extra
parameters specified are ignored. Missing parameters are defaulted to 0.

Programming Notes:

e The Surface Type of the associated surface must be SURFTYPE_1D, SURFTYPE_2D,
SURFTYPE_3D, or SURFTYPE_CUBE.

e The Surface Format of the associated surface cannot be MONOS8 or any UINT or
SINT format.

e sample is not supported in SIMD4x2 mode.

sample+killpix

The surface is sampled as in the sample message type. An additional register is returned
after the sample results which contains the kill pixel mask. This message type is
required to allow the result of a chroma key enabled sampler in
KEYFILTER_KILL_ON_ANY_MATCH mode to affect the final pixel mask.

Programming Notes:

e The Surface Type of the associated surface must be SURFTYPE_1D, SURFTYPE_2D,
SURFTYPE_3D, or SURFTYPE_CUBE.

e The Surface Format of the associated surface cannot be MONOS8 or any UINT or
SINT format.

e sample+Kkillpix is supported only in SIMD8 mode.

sample_b The surface is sampled using the indicated sampler state. LOD is computed using
gradients between adjacent pixels, then the value in the “bias” parameter is added to the
LOD for each pixel. All four coordinates must be specified, however v and r may not be
used depending on the indicated surface type. The LOD bias delivered in the “bias”
parameter is restricted to a range of [-16.0, +16.0). Values outside this range produce
undefined results.
Programming Notes:
e The Surface Type of the associated surface must be SURFTYPE_1D, SURFTYPE_2D,
SURFTYPE_3D, or SURFTYPE_CUBE.
e The Surface Format of the associated surface cannot be MONOS8 or any UINT or
SINT format.
e sample_b is not supported in SIMD4x2 mode.
sample_| The surface is sampled using the indicated sampler state. LOD is not computed, but

instead is taken from the “lod” parameter. All four coordinates must be specified,
however v and r may not be used depending on the indicated surface type.

Programming Notes:

e The Surface Type of the associated surface must be SURFTYPE_1D, SURFTYPE_2D,
SURFTYPE_3D, or SURFTYPE_CUBE.

e The Surface Format of the associated surface cannot be a UINT or SINT format.
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Message Type Description

sample_c The surface is sampled using the indicated sampler state. All four coordinates must be
specified, however v and r may not be used depending on the indicated surface type.
The “ai” parameter indicates the array index for a cube surface. The “ref” parameter
specifies the reference value that is compared against the red channel of the sampled
surface, and the texel is replaced with either white or black depending on the result of
the comparison. The WGF sample_c_lz instruction is implemented by issuing the
sample_c message with Force LOD to Zero enabled in the message header or by
issuing the sample_I_c message with the LOD parameter set to zero.

Programming Notes:

e The Surface Type of the associated surface must be SURFTYPE_1D, SURFTYPE_2D,
or SURFTYPE_CUBE.

e 1D and 2D arrays are not supported (Depth of the associated surface must be 0).

e The Surface Format of the associated surface must be indicated as supporting
shadow mapping as indicated in the surface format table.

e With sample_c, MIPFILTER_LINEAR, MAPFILTER_LINEAR, MAPFILTER_ANISOTROPIC
are allowed even for surface formats that are listed as not supporting filtering in the
surface formats table.

e Use of the SIMD4x2 form of sample_c without Force LOD to Zero enabled in the
message header is not allowed, as it is not possible for the hardware to compute
LOD for SIMD4x2 messages.

e Use of sample_c with SURFTYPE_CUBE surfaces is undefined with the following
surface formats: I24X8_UNORM, L24X8_UNORM, A24X8_UNORM, 132_FLOAT,
L32_FLOAT, A32_FLOAT.

e [DevBW, DevCL] Errata: When sample_c is used on a texture map with
A16_FLOAT surface format, any value read in from the texture map that is a NaN
will be treated like a + inf.

sample_b_c This is a combination of sample_b and sample_c. Both the LOD bias and reference
values are delivered. All restrictions applying to both sample_b and sample_c must be
honored.

sample_| ¢ This is a combination of sample_| and sample_c. Both the LOD and reference values are

delivered. All restrictions applying to both sample_| and sample_c must be honored.
However, unlike sample_c, sample_|_c is allowed as a SIMD4x2 message.

Programming Notes:

e [DevBW, DevCL] Errata: SIMD4x2 sample_|_c is not allowed and must be worked
around using SIMD8 sample | c.

sample_g The surface is sampled using the indicated sampler state. LOD is computed using the
(sample_d) gradients present in the message. The r coordinate and its gradients are required only
for surface types that use the third coordinate. Usage of this message type on cube
surfaces assumes that the u, v, and gradients have already been transformed onto the
appropriate face, but still in [-1,+1] range. The r coordinate contains the faceid, and the
r gradients are ignored by hardware.

Programming Notes:

e The Surface Type of the associated surface must be SURFTYPE_1D, SURFTYPE_2D,
SURFTYPE_3D, or SURFTYPE_CUBE.

e The Surface Format of the associated surface cannot be MONOS8 or any UINT or
SINT format.
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Message Type

Description

resinfo

The surface indicated in the surface state is not sampled. Instead, the width, height,
depth, and MIP count of the surface are returned in the red, green, blue, and alpha
channels respectively (UINT32 format). The width, height, and depth are shifted right,
per pixel, by the LOD value provided in the “lod” parameter to give the dimensions of the
specified mip level. The “lod” parameter is an unsigned 32-bit integer in this mode (note
that sending a signed 32-bit integer always has the same effect, as negative values are
out-of-range when interpreted as unsigned integers). The Sampler State Pointer and
Sampler Index are ignored.

Programming Notes:

o [DevBW-A,B] Errata: if lod is > Oxf it must be forced to Oxf.

Id
(includes Id2dms)

The surface is sampled using a default sampler state, indicated below. The “lod”
parameter contains the LOD of the mip map to be sampled. The v and r channel may
also be ignored depending on the indicated surface type. All incoming values are
unsigned 32-bit integers in this mode. The u, v, and r parameters contain integer texel
addresses on the LOD indicated in the “lod” parameter. The Sampler State Pointer
and Sampler Index are ignored.

For the Id message type, the sampler state is defaulted as follows:

e min, mag, and mip filter modes are “nearest”

¢ all address control modes are “zero” (a special mode in which any texel off the map
or outside the MIP range of the surface has a value of zero in all channels, except for
surface formats without an alpha channel, which will return a value of one in the
alpha channel)

Programming Notes:
e The Surface Type of the associated surface must be SURFTYPE_1D, SURFTYPE_2D,
SURFTYPE_3D, or SURFTYPE_BUFFER.

e [DevBW-A,B] Errata: Only non-array (Depth = 0) SURFTYPE_1D and
SURFTYPE_2D are supported with “Id".

e The Surface Format of the associated surface cannot be MONOS.
e [DevBW, DevCL] Errata: For Id with SURFTYPE_BUFFER the lod channel MBZ.

e Errata: Surface formats with 8 bits per channel and no alpha channel will return
zero in the alpha channel.

Programming Notes:
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4.8.1.5 Parameter Types
sample*, LOD, and load4 messages
For all of the sample*, LOD, and load4 message types, all parameters are 32-bit
floating point. Usage of the u, v, and r parameters is as follows based on Surface
Type. Normalized values range from [0,1] across the surface, with values outside the
surface behaving as specified by the Address Control Mode in that dimension.
Unnormalized values range from [0,n-1] across the surface, where n is the size of the
surface in that dimension, with values outside the surface being clamped to the
surface.
Surface Type u \% r ai
SURFTYPE_1D normalized ‘x’ unnormalized ignored ignored
coordinate array index
SURFTYPE_2D normalized *x’ normalized ‘y’ unnormalized ignored
coordinate coordinate array index
SURFTYPE_3D normalized ‘x’ normalized ‘y’ normalized ‘'z’ ignored
coordinate coordinate coordinate
SURFTYPE_CUBE normalized ‘x’ normalized ‘y’ normalized 'z’ unnormalized
coordinate coordinate coordinate array index
Id messages
For the Id message types, all parameters are 32-bit signed integers. Usage of the u,
v, and r parameters is as follows based on Surface Type. Unnormalized values range
from [0,n-1] across the surface, where n is the size of the surface in that dimension.
Input of any value outside of the range returns zero.
Surface Type U \% r
SURFTYPE_1D unnormalized *x’ unnormalized array ignored
coordinate index
SURFTYPE_2D unnormalized ‘x’ unnormalized ‘y’ unnormalized
coordinate coordinate array index
SURFTYPE_3D unnormalized ‘x’ unnormalized ‘y’ unnormalized
coordinate coordinate ‘z' coordinate
SURFTYPE_BUFFER unnormalized *x’ ignored ignored
coordinate
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4.8.1.6 SIMD16 Payload

The payload of a SIMD16 message provides addresses for the sampling engine to
process 16 entities (examples of an entity are vertex and pixel). The number of
parameters required to sample the surface depends on the state that the
sampler/surface is in. Each parameter takes two message registers, with 8 entities,
each a 32-bit floating point value, being placed in each register. Each parameter
always takes a consistent position in the input payload. The length field can be used
to send a shorter message, but intermediate parameters cannot be skipped as there is
no way to signal this. For example, a 2D map using “sample_b” needs only u, v, and
bias, but must send the r parameter as well.

DWord Bit Description

M1.7 31:0 Subspan 1, Pixel 3 (lower right) Parameter O
Specifies the value of the pixel’s parameter 0. The actual parameter that maps to
parameter 0 is given in the table in section 4.8.1.3.
Format = IEEE Float for all sample* message types, U32 for |d and resinfo message
types.

M1.6 31:0 Subspan 1, Pixel 2 (lower left) Parameter O

M1.5 31:0 Subspan 1, Pixel 1 (upper right) Parameter O

M1.4 31:0 Subspan 1, Pixel O (upper left) Parameter O

M1.3 31:0 Subspan 0, Pixel 3 (lower right) Parameter O

M1.2 31:0 Subspan 0, Pixel 2 (lower left) Parameter O

M1.1 31:0 Subspan O, Pixel 1 (upper right) Parameter O

M1.0 31:0 Subspan O, Pixel O (upper left) Parameter O

M2.7 31:0 Subspan 3, Pixel 3 (lower right) Parameter O

M2.6 31:0 Subspan 3, Pixel 2 (lower left) Parameter O

M2.5 31:0 Subspan 3, Pixel 1 (upper right) Parameter O

M2.4 31:0 Subspan 3, Pixel O (upper left) Parameter O

M2.3 31:0 Subspan 2, Pixel 3 (lower right) Parameter O

M2.2 31:0 Subspan 2, Pixel 2 (lower left) Parameter O

M2.1 31:0 Subspan 2, Pixel 1 (upper right) Parameter O

M2.0 31:0 Subspan 2, Pixel O (upper left) Parameter O

M3 — Mn Repeat packets 1 and 2 to cover all required parameters
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4.8.1.7 SIMD8 Payload
This message is intended to be used in a SIMDS8 thread, or in pairs from a SIMD16
thread. Each message contains sample requests for just 8 pixels.
DWord Bit Description
M1.7 31:0 Subspan 1, Pixel 3 (lower right) Parameter O
Specifies the value of the pixel’s parameter 0. The actual parameter that maps to
parameter 0 is given in the table in section 4.8.1.3.
Format = IEEE Float for all sample* message types, U32 for Id and resinfo message
types.
M1.6 31:0 Subspan 1, Pixel 2 (lower left) Parameter O
M1.5 31:0 Subspan 1, Pixel 1 (upper right) Parameter O
M1.4 31:0 Subspan 1, Pixel O (upper left) Parameter O
M1.3 31:0 Subspan 0, Pixel 3 (lower right) Parameter O
M1.2 31:0 Subspan 0O, Pixel 2 (lower left) Parameter O
M1.1 31:0 Subspan O, Pixel 1 (upper right) Parameter O
M1.0 31:0 Subspan 0, Pixel O (upper left) Parameter O
M2 — Mn Repeat packet 1 to cover all required parameters
4.8.1.8 SIMD4x2 Payload
DWord Bit Description
M1.7 31:0 Sample 1 Parameter 3
Specifies the value of the pixel’s parameter 3. The actual parameter that maps to
parameter 3 is given in the table in section 4.8.1.3.
Format = IEEE Float for all sample* message types, U32 for Id and resinfo message
types.
M1.6 31:0 Sample 1 Parameter 2
M1.5 31:0 Sample 1 Parameter 1
M1.4 31:0 Sample 1 Parameter O
M1.3 31:0 Sample O Parameter 3
M1.2 31:0 Sample O Parameter 2
M1.1 31:0 Sample O Parameter 1
M1.0 31:0 Sample 0 Parameter O
M2 Parameters 4-7 if present
M3 Parameters 8-11 if present
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4.8.2 Writeback Message
Corresponding to the four input message definitions are four writeback messages.
Each input message generates a corresponding writeback message of the same type
(SIMD16, SIMD8 or SIMD4x2).
4.8.2.1 SIMD16
A SIMD16 writeback message consists of up to 8 destination registers. Which
registers are returned is determined by the write channel mask received in the
corresponding input message. Each asserted write channel mask results in both
destination registers of the corresponding channel being skipped in the writeback
message, and all channels with higher numbered registers being dropped down to fill
in the space occupied by the masked channel. For example, if only red and alpha are
enabled, red is sent to regid+0 and regid+1, and alpha to regid+2 and regid+3. The
pixels written within each destination register is determined by the execution mask on
the “send” instruction.
DWord Bit Description
WO0.7 31:0 Subspan 1, Pixel 3 (lower right) Red: Specifies the value of the pixel’s red channel.
Format = IEEE Float, S31 signed 2’s comp integer, or U32 unsigned integer. Format
depends on the Data Return Format programmed for the surface being sampled.
WO0.6 31:0 Subspan 1, Pixel 2 (lower left) Red
WO0.5 31:0 Subspan 1, Pixel 1 (upper right) Red
WO0.4 31:0 Supspan 1, Pixel O (upper left) Red
WO0.3 31:0 Subspan 0, Pixel 3 (lower right) Red
WO0.2 31:0 Subspan 0, Pixel 2 (lower left) Red
WO0.1 31:0 Subspan 0, Pixel 1 (upper right) Red
WO0.0 31:0 Supspan O, Pixel O (upper left) Red
W1.7 31:0 Subspan 3, Pixel 3 (lower right) Red
W1.6 31:0 Subspan 3, Pixel 2 (lower left) Red
W1.5 31:0 Subspan 3, Pixel 1 (upper right) Red
W1.4 31:0 Supspan 3, Pixel O (upper left) Red
W1.3 31:0 Subspan 2, Pixel 3 (lower right) Red
W1.2 31:0 Subspan 2, Pixel 2 (lower left) Red
W1.1 31:0 Subspan 2, Pixel 1 (upper right) Red
W1.0 31:0 Supspan 2, Pixel O (upper left) Red
W2 Subspans 1 and O of Green: See WO definition for pixel locations
w3 Subspans 3 and 2 of Green: See W1 definition for pixel locations
w4 Subspans 1 and O of Blue: See WO definition for pixel locations
W5 Subspans 3 and 2 of Blue: See W1 definition for pixel locations
W6 Subspans 1 and O of Alpha: See WO definition for pixel locations
w7 Subspans 3 and 2 of Alpha: See W1 definition for pixel locations
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4.8.2.2 SIMDS8
This writeback message consists of four registers, or five in the case of
sample+Kkillpix. As opposed to the SIMD16 writeback message, channels that are
masked in the write channel mask are not skipped, all four channels are always
returned. The masked channels, however, are not overwritten in the destination
register.
For the sample+Kkillpix message types, an additional register (W4) is included after the
last channel register.
DWord Bit Description
WO0.7 31:0 Subspan 1, Pixel 3 (lower right) Red: Specifies the value of the pixel’s red channel.
Format = IEEE Float, S31 signed 2's comp integer, or U32 unsigned integer. Format
depends on the Data Return Format programmed for the surface being sampled.
WO0.6 31:0 Subspan 1, Pixel 2 (lower left) Red
WO0.5 31:0 Subspan 1, Pixel 1 (upper right) Red
WO0.4 31:0 Supspan 1, Pixel O (upper left) Red
WO0.3 31:0 Subspan 0, Pixel 3 (lower right) Red
WO0.2 31:0 Subspan 0, Pixel 2 (lower left) Red
WO0.1 31:0 Subspan O, Pixel 1 (upper right) Red
WO0.0 31:0 Supspan 0, Pixel O (upper left) Red
w1 Subspans 1 and O of Green: See WO definition for pixel locations
w2 Subspans 1 and O of Blue: See WO definition for pixel locations
W3 Subspans 1 and O of Alpha: See WO definition for pixel locations
W4.7:1 Reserved (not written) : W4 is only delivered for the sample+killpix message type
w4.0 31:16 Dispatch Pixel Mask: This field is always Oxffff to allow dword-based ANDing with the

RO header in the pixel shader thread.

15:0 Active Pixel Mask: This field has the bit for all pixels set to 1 except those pixels that
have been killed as a result of chroma key with kill pixel mode. Since the SIMD8
message applies to only 8 pixels, only the low 8 bits within this field are used. The high
8 bits are always set to 1.

[DevBW, DevCL] Errata: Active Pixel Mask needs to be ORed with the inverse of the
EMask before it is ANDed with the DMask. Also if the sample instruction is within a
conditional then the active pixel mask will be overwritten with the partial mask on each
different sample instruction so this will have to be done for each instance of the sample
instruction not just as the end.
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4.8.2.3 SIMD4x2

A SIMD4x2 writeback message always consists of a single message register containing
all four channels of each of the two “pixels” (called “samples” here, as they are not
really pixels) of data. The write channel mask bits as well as the execution mask on
the “send” instruction are used to determine which of the channels in the destination
register are overwritten. If any of the four execution mask bits for a sample is
asserted, that sample is considered to be active. The active channels in the write
channel mask will be written in the destination register for that sample. If the sample
is inactive (all four execution mask bits deasserted), none of the channels for that
sample will be written in the destination register.

DWord Bit Description

WO0.7 31:0 Sample 1 Alpha: Specifies the value of the pixel’s alpha channel.

Format = IEEE Float, S31 signed 2's comp integer, or U32 unsigned integer. Format
depends on the Data Return Format programmed for the surface being sampled.

WO0.6 31:0 Sample 1 Blue

WO0.5 31:0 Sample 1 Green

WO0.4 31:0 Sample 1 Red

WO0.3 31:0 Sample O Alpha

WO0.2 31:0 Sample O Blue

WO0.1 31:0 Sample O Green

WO0.0 31:0 Sample O Red
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Data Port

51

The Data Port provides all memory accesses for the Gen4 subsystem other than those
provided by the sampling engine. These include render target writes, constant buffer
reads, scratch space reads/writes, and media surface accesses.

The diagram below shows the two parts of the Data Port (Read and Write) and how
they connect with the caches and memory subsystem. The execution units and
sampling engine are shown for clarity.

» Sampling Engine

Execution
» Read Data Port

Sampler Cache

Memory

Data Cache Subsystem

Render Cache

> Write Data Port

The kernel programs running in the execution units communicate with the data port
via messages, the same as for the other shared function units. The read and write
data ports are considered to be separate shared functions, each with its own shared
function identifier.

Cache Agents

The data port allows access to memory via various caches. The choice of which cache
to use for a given application is dictated by its restrictions, coherency issues, and how
heavily that cache is used for other purposes.

The cache to use is selected by the Target Cache field of the read data port message
descriptor. The write data port message descriptor does not have an equivalent field
as it only supports writes to the render cache.
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51.1

51.2

5.1.3

52
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Render Cache

The render cache is the only cache that supports both reads and writes. All writes
must use this cache. In addition, all reads to a surface that is also being written
should use this cache to avoid expensive flushing that would be required for
coherency. The render cache supports both linear and tiled memory.

The render cache is intended to be used for the following surfaces:
e 3D render target surfaces
e destination surfaces for media applications
e intermediate working surfaces for media applications

e scratch space buffers

Data Cache

The data cache is a small, read-only cache that supports only linear memory. For 3D
graphics, it is intended to be used only for constant buffers. For media and other
generic applications, it may be used to load kernel constants such as filter coefficients
as well as other linear data buffers such as compressed data buffer for HWMC.

In the hardware implementation on all of these devices, the data cache does not exist
as a separate physical cache. It is mapped in hardware to the sampler cache.

Sampler Cache

The sampler cache is a read-only cache that supports both linear and tiled memory.
In addition to being used by the sampling engine (via the sampling engine messages),
the sampler cache is intended to be used for source surfaces in media applications via
the data port. The same application may use the sampler cache via the sampling
engine and data port without flushing the pipeline between accesses.

Surfaces

The data elements accessed by the data port are called “surfaces”. There are two
models used by the data port to access these surfaces: surface state model and
stateless model.
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52.2
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Surface State Model

The data port uses the binding table to bind indices to surface state, using the same
mechanism used by the sampling engine. The surface state model is used when a
Binding Table Index (specified in the message descriptor) of less than 255 is
specified. In this model, the Binding Table Index is used to index into the binding
table, and the binding table entry contains a pointer to the SURFACE_STATE.
SURFACE_STATE contains the parameters defining the surface to be accessed,
including its location, format, and size.

This model is intended to be used for constant buffers, render target surfaces, and
media surfaces.

Stateless Model

The stateless model is used when a Binding Table Index (specified in the message
descriptor) of 255 is specified. In this model, the binding table is not accessed, and
the parameters that define the surface state are overloaded as follows:

e Surface Type = SURFTYPE_BUFFER
e Surface Format = R32G32B32A32_FLOAT
e Vertical Line Stride = 0

e Surface Base Address = General State Base Address + Immediate Base
Address

e Buffer Size = checked only against General State Access Upper Bound
e Surface Pitch = 16 bytes
e Utilize Fence = false

e Tiled = false
This model is primarily intended to be used for scratch space buffers.

[DevBW-A,B] Erratum BWTO0O06: Issuing a stateless access is UNDEFINED unless
the DAP Stateless Access ECO bit in the SVG-Debug Workaround Control register is
set. This is a DEBUG ONLY mode that lacks necessary security checks.

Write Commit

For write messages, an optional write commit writeback message can be requested via
the Send Write Commit Message bit in the message descriptor. This bit causes a
return message to the thread indicating when the write has been committed to the in-
order cache pipeline and it is safe to issue another access to the same data with the
assurance that it will happen after the first write. A read issued after the write
commit ensures that the read will get the newly written data, and another write issued
after the write commit will be the last to modify the data. “Committed” does not
guarantee that the data has been actually written to the memory subsystem, but only
that the write has been scheduled and cannot be passed by another read or write
issued subsequently.
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If Send Write Commit Message is used on a Flush Render Cache message, the
write commit is sent only when the render cache has completed its flush to memory.
A read issued to another cache after the write commit is received will be guaranteed
to retrieve the “"new” data that was written before the Flush Render Cache message
was issued.

The write commit does not modify the destination register, but merely clears the
dependency associated with the destination register. Thus, a simple *mov” instruction
using the register as a source is sufficient to wait for the write commit to occur. The
following code sequence indicates this:

send r12 ml DPWRITE ; issue write to render cache
mov ml r3 ; assemble read message

mov rl2 ri2 ; block on write commit

send r13 ml DPREAD ; read same location as write

Read/Write Ordering

Hardware does not guarantee ordering between read and write messages issued to
the data port, even between messages issued by the same thread. If ordering is
important, software must guarantee ordering. For a write followed by a read to the
same location, the write must use a write commit, and wait for the write commit to
return before issuing the read message. For a read followed by a write to the same
location, software must wait for the read data to be returned before issuing the write
message.

Accessing Buffers

There are three data port messages used to access buffers. They are used for both
constant buffers and scratch space buffers. All of these messages support only
buffers, and can use the surface state model as well as the stateless model.

The following table indicates the intended applications of each of the buffer messages.

Message Applications

e constant buffer reads of a single constant or multiple contiguous

constants
gg?j;(\jlﬁilfe(:k e scratch space reads/writes where the index for each pixel/vertex is the
same
e block constant reads, scratch memory reads/writes for media
e SIMD4x2 constant buffer reads where the indices of each vertex/pixel
OWord Dual are different (if there are two indices and they are the same,

hardware will optimize the cache accesses and do only one cache
access)
o SIMD4x2 scratch space reads/writes where the indices are different.

Block Read/Write

e SIMD8/16 constant buffer reads where the indices of each pixel are
different (read one channel per message)

e SIMDB8/16 scratch space reads/writes where the indices are different
(read/write one channel per message)

o general purpose DWord scatter/gathering, used by media

DWord Scattered
Read/Write

These messages ignore the surface format field of the state and perform no format
conversion. The data contained in each channel is still not converted in any way.
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Accessing Media Surfaces

The Media Block Read/Write message is intended to be used to access 2D media
surfaces. The message specifies an X/Y coordinate into the 2D surface as input.
Since this message only supports 2D surfaces, the stateless model cannot be used
with this message.

Boundary Behavior

The table below summarizes the behavior of the Media Boundary Pixel Mode field
(SURFACE_STATE) in combination with the Vertical Line Stride and Vertical Line
Stride Offset fields (both of which are subject to being overridden by the Data Port
message descriptor fields). The Behavior column illustrates behavior for a surface
with four rows numbered 0 to 3. The bold indicators are off-surface behavior and the
non-bold indicators are on-surface behavior. Input row addresses range from -3 to
+7 going left to right.

~g .g E ?) Usage Model Behavior
© GO -0 £
TO= T2 <O
55 | 25 o9
821 57 | 5%
> >0
0 0 X normal frame 000001233333
0 1 0 normal field even 000002222222
0 1 1 normal field odd 111113333333
2 0 X frame / progressive 000001233333
2 1 0 field even / progressive 000002333333
2 1 1 field odd / progressive 000013333333
3 0 X frame / interlaced 010101232323
3 1 0 field even / interlaced 000002222222
3 1 1 field odd / interlaced 111113333333
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Note:

Accessing Render Targets

Render targets are the surfaces that the final results of pixel shaders are written to.
The render targets support a large set of surface formats (refer to surface formats
table in Sampling Engine for details) with hardware conversion from the format
delivered by the thread. The render target message also causes numerous side
effects, including potentially alpha test, depth test, stencil test, alpha blend (which
normally causes a read of the render target), and other functions. These functions are
covered in the Windower chapter as some of them (depth/stencil test) are also
partially done in the Windower.

The render target write messages are specifically for the use of pixel shader threads
that are spawned by the windower, and may not be used by any other threads. This
is due to the pixel scoreboard side-effects that sending of this message entails. The
pixel scoreboard ensures that incorrect ordering of reads and writes to the same pixel
does not occur.

Single Source

|II

The “normal” render target messages are single source. There are two forms, SIMD16
and SIMDS, intended for the equivalent-sized pixel shader threads. A single color (4
channels) is delivered for each of the 16 or 8 pixels in the message payload. Optional
depth, stencil, and antialias alpha information can also be delivered with these
messages.

The pixel scoreboard bits corresponding to the dispatched pixel mask (or half of the
mask in the case of SIMD8 messages) are cleared only if the Pixel Scoreboard Clear
bit is set in the message descriptor.

Dual Source [DevCL-B]

Dual Source messages are not supported in DevBW and DevCL-A devices.

The dual source render target messages only have SIMD8 forms due to maximum
message length limitations. SIMD16 pixel shaders must send two of these messages
to cover all of the pixels. Each message contains two colors (4 channels each) for
each pixel in the message payload. In addition to the first source, the second source
can be selected as a blend factor (BLENDFACTOR_*_SRC1_* options in the blend
factor fields of COLOR_CALC_STATE or BLEND_STATE). Optional depth, stencil, and
antialias alpha information can also be delivered with these messages.

Each dual source message delivered will clear the corresponding pixel scoreboard bits
if the Pixel Scoreboard Clear bit in the message descriptor is set.

It is UNDEFINED to utilize a DualSource RT Write message when Color Buffer Blend
Enable is DISABLED.



5.7.3

57.4

5.8

5.9

59.1

59.2

Replicate Data

The replicate data render target message is intended to be used for “fast clear”
functionality in cases where the color data for each pixel is identical. This message
performs better than the other messages due to its smaller message length. This
message does not support depth, stencil, or antialias alpha data being sent with it.
This message must target only tiled memory. Access of linear memory using this
message type is UNDEFINED. The depth buffer can be cleared through the “early
depth” function in conjunction with a pixel shader using this message. Refer to the
Windower chapter for more details on the early depth function.

The pixel scoreboard bits corresponding to the dispatched pixel mask are cleared only

if the Pixel Scoreboard Clear bit is set in the message descriptor.

Multiple Render Targets (MRT)

Multiple render targets are supported with the single source and replicate data
messages. Each render target is accessed with a separate Render Target Write
message, each with a different surface indicated (different binding table index). The
depth buffer is written only by the message(s) to the last render target, indicated by
the Last Render Target Select bit set to clear the pixel scoreboard bits.

Flushing the Render Cache

A message that allows flushing the render cache is available for applications or for
debug purposes. This message should not be used in normal 3D shaders, the render
cache flushing mechanisms via PIPE_CONTROL or MI_FLUSH should be used instead
as the render cache generally needs to be flushed on a level more global than that
provided by a shader.

State

BINDING_TABLE_STATE

The data port uses the binding table to retrieve surface state. Refer to Sampling
Engine for the definition of this state.

SURFACE_STATE

The data port uses the surface state for constant buffers, render targets, and media
surfaces. Refer to Sampling Engine for the definition of this state.
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Messages

Global Definitions

For data port messages, part of the message descriptor is used to determine the
message type. This field is documented here. The remainder of the message
descriptor is defined differently depending on the message type, and is documented in
the section for the corresponding message.

The Data Port is actually two separate targets, Data Port Read and Data Port
Write, each with its own target unit ID. Each target has its own set of message type
encodings as shown below.

Restrictions:

¢ [DevBW-A,B,CO, DevCL-AO] Errata: use of any Sampling Engine message in
the same workload (between pipeline flushes) with any Data Port read messages
utilizing the Sampler Cache is not allowed.

e Data port messages may not have the End of Thread bit set in the message
descriptor other than the following exeptions:
— The Render Target Write message may have End of Thread set for pixel
shader threads dispatched by the windower in non-contiguous dispatch mode.
— The Render Target UNORM Write message may have End of Thread set for
pixel shader threads dispatched by the windower in contiguous dispatch mode.



5.10.1.1 Message Descriptor

Bit Description
DATA PORT READ TARGET DATA PORT WRITE TARGET
15:14 Target Cache 15 Send Write Commit Message. Indicates
b h that a write commit message will be sent
00 = Data Cache back to the thread when the write has
01 = Render Cache been committed. See section 5.3 for more
details.
10 = Sampler Cache
Format = Enable
11 = Reserved
13:12 Read Message Type 14:12 Write Message Type
00 = OWord Block Read 000 = OWord Block Write
01 = OWord Dual Block Read 001 = OWord Dual Block Write
10 = Media Block Read 010 = Media Block Write
11 = DWord Scattered Read 011 = DWord Scattered Write
100 = Render Target Write
111 = Flush Render Cache
All other encodings are reserved.
11:8 Message Specific Control. Refer to the specific message section for the definition of these bits.
7:0 Binding Table Index. Specifies the index into the binding table for the specified surface. A

binding table index of 255 indicates that a stateless model is to be used. Refer to section 5.2.2 for
details on the stateless model.

Programming Notes:

. [DevBW-A,B] Erratum BWTOO6: Using a binding table index of 255 is UNDEFINED
unless the DAP Stateless Access ECO bit in the SVG-Debug Workaround Control register
is set. This is a DEBUG ONLY mode that lacks necessary security checks.

Format = U8
Range = [0,255]
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5.10.1.2 Message Header
This header applies to the following data port messages:
¢ OWord Block Read/Write
e Unaligned OWord Block Read
e OWord Dual Block Read/Write
e DWord Scattered Read/Write
The header definitions for the other data port messages is in the section for each
message.
DWord Bit Description
MO.7 31:0 Debug
MO.6 31:0 Debug
MO0.5 31:10 Immediate Buffer Base Address. Specifies the surface base address for messages in
which the Binding Table Index is 255 (stateless model), otherwise this field is ignored.
This pointer is relative to the General State Base Address.
Format = GeneralStateOffset[31:10]
9:8 Ignored
7:0 Dispatch ID. This ID is assigned by the fixed function unit and is a unique identifier for
the thread. It is used to free up resources used by the thread upon thread completion.
MO0.4 31:0 Ignored (reserved for hardware delivery of binding table pointer)
MO0.3 31:0 Ignored
MO0.2 31:0 Global Offset.
Specifies the global byte offset into the buffer.
. For the OWord messages, this offset must be OWord aligned (bits 3:0 MBZ)
e For the DWord messages, this offset must be DWord aligned (bits 1:0 MBZ)
Format = U32
Range = [0,FFFFFFFOh] for OWord messages
Range = [0,FFFFFFFCh] for DWord messages
MO.1 31:0 Ignored
MO0.0 31:0 Ignored
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5.10.1.3 Write Commit Writeback Message
The writeback message is only sent on Data Port Write messages if the Send Write
Commit Message bit in the message descriptor is set. The destination register is not
modified. Write messages without the Send Write Commit Message bit set will not
return anything to the thread (response length is 0 and destination register is null).

DWord Bit Description

W0.7:0 Reserved

5.10.2 OWord Block Read/Write

This message takes one offset (Global Offset), and reads or writes 1, 2, 4, or 8
contiguous OWords starting at that offset.

Restrictions:
e the only surface type allowed is SURFTYPE_BUFFER.

e the surface format is ignored, data is returned from the constant buffer to the
GRF without format conversion.

e the surface pitch is ignored, the surface is treated as a 1-dimensional surface.
An element size (pitch) of 16 bytes is used to determine the size of the buffer
for out-of-bounds checking if using the surface state model.

e the surface cannot be tiled

e the surface base address must be OWord aligned

e the Render Cache Read Write Mode field in SURFACE_STATE must be set
to read/write mode when using this message with the render cache in the
surface state model

¢ the Stateless Render Cache Read-Write Mode field in the SVG_WORK_CTL

register must be set to read/write mode when using this message with the
render cache in the stateless model

Applications:
e constant buffer reads of a single constant or multiple contiguous constants
e scratch space reads/writes where the index for each pixel/vertex is the same
e block constant reads, scratch memory reads/writes for media

Execution Mask. The low 8 bits of the execution mask are used to enable the 8
channels in the first and third GRF registers returned (W0, W2) for read, or the first
and third write registers sent (M1, M3). The high 8 bits are used similarly for the
second and fourth (W1, W3 or M2, M4). For reads, any mask bit asserted within a
group of four will cause the entire OWord to be read and returned to the destination
GRF register. For writes, each mask bit is considered for its corresponding DWord
written to the destination surface.

For the 1-OWord messages, only the low 8 bits of the execution mask are used.

Either the low 4 bits or the high 4 bits, depending on the position of the OWord to be
read or written, is used as the single group of four with behavior following that in the
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preceding paragraph. [DevBW], [DevCL] Errata: Execution mask bits outside of
those corresponding to the OWord being read/written cannot be asserted.

The above behavior enables a SIMD16 thread to use the 8-OWord form of this
message to access two channels (red and green) of a single scratch register across 16
pixels. A second message would access the other two channels (blue and alpha). The
execution mask is used to ensure that data associated with inactive pixels are not
overwritten.

Out-of-Bounds Accesses. Reads to areas outside of the surface return 0. Writes to
areas outside of the surface are dropped and will not modify memory contents.

5.10.2.1 Message Descriptor

Bit Description

12 Ignored

11 this bit is part of the Read Message Type field for the read version of this message)
10:8 Block Size. Specifies the number of contiguous OWords to be read or written

000 = 1 OWord, read into or written from the low 128 bits of the destination register
001 = 1 OWord, read into or written from the high 128 bits of the destination register
010 = 2 OWords
011 = 4 OWords
100 = 8 OWords
101 = 6 OWords

all other encodings are reserved.
Programming Notes:

e The 6 OWord block size is valid only with Data Port Constant Cache.
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5.10.2.2 Message Payload (Write)

For the write operation, the message payload consists of one, two, or four registers
(not including the header) depending on the Block Size specified in the message. For
the one-constant case, data is taken from either the high or low half of the payload
register depending on the half selected in Block Size. In this case, the other half of
the payload register is ignored.

The Offset referred to below is the Global Offset and is in units of OWords (discard
low 4 bits). The OWord array index is also in units of OWords.

DWord Bit Description

M1.7:4 127:0 OWord[Offset + 1]. If the block size is 1 OWord to be written from the high 128 bits of
the destination, OWord[Offset] will appear in this location

M1.3:0 127:0 OWord[Offset]

M2.7:4 127:0 OWord[Offset+3]

M2.3:0 127:0 OWord[Offset+2]

M3.7:4 127:0 OWord[Offset+5]

M3.3:0 127:0 OWord[Offset+4]

M4.7:4 127:0 OWord[Offset+7]

M4.3:0 127:0 OWord[Offset+6]

5.10.2.3 Writeback Message (Read)

For the read operation, the writeback message consists of one, two, three, or four
registers depending on the Block Size specified in the message. For the one-
constant case, data is placed in either the high or low half of the returned register
depending on the half selected in Block Size. In this case, the other half of the
register is not changed.

The Offset referred to below is the Global Offset and is in units of OWords (discard
low 4 bits). The OWord array index is also in units of OWords.

DWord Bit Description

WO0.7:4 127:0 OWord[Offset + 1]. If the block size is 1 OWord to be loaded into the high 128 bits of
the destination, OWord[Offset] will appear in this location

WO0.3:0 127:0 OWord[Offset]

W1.7:4 127:0 OWord[Offset+3]

W1.3:0 127:0 OWord[Offset+2]

W2.7:4 127:0 OWord[Offset+5]

W2.3:0 127:0 OWord[Offset+4]

W3.7:4 127:0 OWord[Offset+7]

W3.3:0 127:0 OWord[Offset+6]
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5.10.3 OWord Dual Block Read/Write

This message takes two offsets, and reads or writes 1 or 4 contiguous OWords starting
at each offset. The Global Offset is added to each of the specific offsets.

Restrictions:

e the only surface type allowed is SURFTYPE_BUFFER.

e the surface format is ignored, data is returned from the constant buffer to the
GRF without format conversion.

e the surface pitch is ignored, the surface is treated as a 1-dimensional surface.
An element size (pitch) of 16 bytes is used to determine the size of the buffer
for out-of-bounds checking if using the surface state model.

e the surface cannot be tiled

e the surface base address must be OWord aligned

¢ the Render Cache Read Write Mode field in SURFACE_STATE must be set
to read/write mode when using this message with the render cache in the
surface state model

e the Stateless Render Cache Read-Write Mode field in the SVG_WORK_CTL
register must be set to read/write mode when using this message with the
render cache in the stateless model

Applications:

e SIMD4x2 constant buffer reads where the indices of each vertex/pixel are
different (if there are two indices and they are the same, hardware will
optimize the cache accesses and do only one cache access)

e SIMDA4x2 scratch space reads/writes where the indices are different

Execution Mask. The low 8 bits of the execution mask are used to enable the 8
channels in the GRF registers returned for read, or each of the write registers sent.
For reads, any mask bit asserted within a group of four will cause the entire OWord to
be read and returned to the destination GRF register. For writes, each mask bit is
considered for its corresponding DWord written to the destination surface.

Out-of-Bounds Accesses. Reads to areas outside of the surface return 0. Writes to
areas outside of the surface are dropped and will not modify memory contents.

5.10.3.1 Message Descriptor

Bit Description

12 Ignored

11:10 bit 11 is part of the Read Message Type field for the read version of this message)

9:8 Block Size: Specifies the number of OWords in each block to be read or written

00 = 1 OWord
10 = 4 OWords

all other encodings are reserved.
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5.10.3.2 Message Payload

DWord Bit Description
M1.7 31:0 Ignored
M1.6 31:0 Ignored
M1.5 31:0 Ignored
M1.4 31:0 Block Offset 1.
Specifies the byte offset of OWord Block 1 into the surface. Must be OWord aligned
(bits 3:0 MBZ).
Format = U32
Range = [0,FFFFFFFOh]
M1.3 31:0 Ignored
M1.2 31:0 Ignored
M1.1 31:0 Ignored
M1.0 31:0 Block Offset O
5.10.3.3 Additional Message Payload (Write)
For the write operation, the message payload consists of one or four registers (not
including the header or the first part of the payload) depending on the Block Size
specified in the message.
The Offset1/0 referred to below is the Global Offset added to the corresponding
Block Offset 1/0 and is in units of OWords (discard low 4 bits). The OWord array
index is also in units of OWords.
DWord Bit Description
M2.7:4 127:0 OWord[Offsetl]
M2.3:0 127:0 OWord[OffsetO]
M3.7:4 127:0 | OWord[Offsetl+1]
M3.3:0 127:0 OWord[OffsetO+1]
M4.7:4 127:0 OWord[Offsetl+2]
M4.3:0 127:0 OWord[Offset0+2]
M4.7:4 127:0 | OWord[Offset1+3]
M4.3:0 127:0 OWord[OffsetO+3]
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5.10.3.4 Writeback Message (Read)

For the read operation, the writeback message consists of one or four registers
depending on the Block Size specified in the message.

The Offsetl/0 referred to below is the Global Offset added to the corresponding
Block Offset 1/0 and is in units of OWords (discard low 4 bits). The OwWord array
index is also in units of OWords.

DWord Bit Description
WO0.7:4 127:0 OWord[Offsetl]

WO0.3:0 127:0 OWord[OffsetO]

W1.7:4 127:0 OWord[Offset1+1]

W1.3:0 127:0 OWord[OffsetO+1]

W2.7:4 127:0 OWord[Offsetl+2]

W2.3:0 127:0 OWord[Offset0+2]

W3.7:4 127:0 OWord[Offset1+3]

W3.3:0 127:0 OWord[OffsetO0+3]

5.10.4 Media Block Read/Write
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The read form of this message enables a rectangular block of data samples to be read
from the source surface and written into the GRF. The write form enables data from
the GRF to be written to a rectangular block.

Restrictions:

the only surface type allowed is SURFTYPE_2D. Because of this, the stateless
surface model is not supported with this message.

the surface format is used to determine the pixel structure for boundary clamp,
the raw data from the surface is returned to the thread without any format
conversion nor filtering operation

the target cache cannot be the data cache
the surface base address must be 32-byte aligned

When a surface is XMajor tiled, (tile walk field in the surface state is set to
TILEWALK_XMAIJOR), a memory area mapped through the Render Cache cannot
be read and/or wrote in mixed frame and field modes. For example, if a memory
location is first written with a zero Vertical Line Stride (frame mode), and later on
(without render cache flush) read back using Vertical Line Stride of one (field
mode), the read data stored in GRF are uncertain.

The block width and offset should be aligned to the size of pixels stored in the

surface. For a surface with 8bpp pixels for example, the block width and offset can

be byte aligned. For a surface with 16bpp pixels, it is word aligned.

— For YUV422 formats, the block width and offset must be pixel pair aligned (i.e.
dword aligned).

The write form of message has the additional restriction that both X Offset and
Block Width must be DWord aligned.




e The read form of message also has the additional restriction that both X Offset
and Block Width must be DWord aligned.

e [DevBW-A] Erratum BWTOO1: Surfaces being read with this message by the
render cache must be tiled. Writes to linear surfaces are allowed.

e [DevBW-A] Erratum: A memory area mapped through the Render Cache cannot
be read and/or written in mixed frame and field modes.

Applications:

e Block reads/writes for media

Execution Mask. The execution mask on the send instruction for this type of
message is ignored. The data that is read or written is determined completely by the
block parameters.

Out-of-Bounds Accesses. Reads outside of the surface results in the address being
clamped to the nearest edge of the surface and the pixel in the position being
returned. Writes outside of the surface are dropped and will not modify memory
contents.

Determining the boundary pixel value depends on the surface format. Surface format
definitions can be found in the Surface Formats Section of the Sampling Engine
Chapter.

e For a surface with 8bpp pixels, the boundary byte is replicated. For example, for a
boundary dword BOB1B2B3, to replicate the left boundary byte pixel, the out of
bound dwords have the format of BOBOBOBO, and that for right boundary is
B3B3B3B3.

— This rule applies to all surface formats with BPE of 8. As the data port does
not perform format conversion, the most likely used surface formats are
R8_UINT and R8_SINT.

e For any other surfaces with 16bpp pixels, boundary pixel replication is on words.
For example, for a boundary dword BOB1B2B3, to replicate the left boundary word
pixel, the out of bound dwords have the format of BOB1B0OB1, and that for right
boundary is B2B3B2B3.

— This rule applies to all surface formats with BPE of 16. As the data port does
not perform format conversion, only the formats with integer data types may
be useful in practice.

e For special surfaces with 16bpp pixels YUV422 packed format, there are two basic
cases depending on the Y location: YUYV (surface format YCRCB_NORMAL) and
UYVY (surface format YCRCB_SWAPY). Boundary handling for YVYU (surface
format YCRCB_SWAPUV) is the same as that for YUYV. Similarly, boundary
handling for VYUY (surface format YCRCB_SWAPUVY) is the same as that for
UYVY. Note that these four surface formats have 16bpp pixels, even though the
BPE fields are set to zero according to the table in the Surface Formats Section.
— For a boundary dword YOUOY1VO, to replicate the left boundary, we get

YOUOYOVO, and to replicate the right boundary, we get Y1UOQOY1VO.
— For a boundary dword U0OYOVOQY1, to replicate the left boundary, we get
UQ0YOVOYO, and to replicate the right boundary, we get UOY1VO0Y1.

e For a surface with 32bpp pixels, the boundary dword pixel is replicated.

— This rule applies to all surface formats with BPE of 32. As the data port does
not perform format conversion, some of the formats may not be useful in
practice.

Hardware behavior for any other surface types is undefined.
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5.10.4.1 Message Descriptor

Bit Description

12 Cache Allocation Method
This field is only allowed to be 1 only if resulting Vertical Line Stride (from surface state or being
overridden by this message) is 1.
This field is only valid for Sampler Cache read messages.
This field is ignored for Render Cache messages (read/write).
0 = frame cache lines
1 = field cache lines
this bit is part of the Message Type fields

11 Pixel Scoreboard Clear. Reserved : MBZ

10 Vertical Line Stride Override

Specifies whether the Vertical Line Stride and Vertical Line Stride Offset fields in the surface
state should be replaced by bits 9 and 8 below.

If this field is 1, Height in the surface state (see SURFACE_STATE section of Sampling Engine
chapter) is modified according the following rules:

Vertical Line Override Derived 1-based surface height
Stride Vertical Line
Stride (As a function of the O-based Height in
(in surface state) surface state)
0 0 Height + 1
(Normal)
0 1 (Height +1) / 2
Restriction: (Height + 1) must be an even
number.
1 0 (Height + 1) * 2
1 1 Height + 1
(Normal)

For example, for a 720x480 standard resolution video buffer, if Vertical Line Stride in surface state
is 0, i.e. a frame, Height (of the frame) should be 479. When accessing the bottom field of this
frame video buffer, both Override Vertical Line Stride and Override Vertical Line Stride Offset will be
set to 1, then the derived surface height (of the field) will be 240 ((Height + 1) / 2). In contrary, if
Vertical Line Stride in surface state is 1 and Vertical Line Stride Offset in surface state is 0, the
surface state represents the top field of the video buffer. In this case, Height (of the top field)
should be programmed as 239. Accessing the bottom video field will use the same surface height of
240. Accessing the video frame (with Override Vertical Line Stride and Override Vertical Line Stride
Offset set to 0) will result in a derived surface height of 480 ((Height + 1) * 2).

0 = Use parameters in the surface state and ignore bits 9:8
1 = Use bits 9:8 to provide the Vertical Line Stride and Vertical Line Stride Offset

[DevBW-A] Erratum: This field is ignored by hardware.
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Bit Description
9 Override Vertical Line Stride
Specifies number of lines (0 or 1) to skip between logically adjacent lines - provides support of
interleaved (field) surfaces as textures.
Format = U1 in lines to skip between logically adjacent lines
[DevBW-A] Erratum: This field is ignored by hardware.
8 Override Vertical Line Stride Offset

Specifies the offset of the initial line from the beginning of the buffer. Ignored when Override
Vertical Line Stride is 0.

Format = U1 in lines of initial offset (when Vertical Line Stride == 1)

[DevBW-A] Erratum: This field is ignored by hardware.

5.10.4.2 Message Header

DWord Bit Description
MO.7 31:0 Debug
MO.6 31:0 Debug
MO0.5 31:8 Ignored
7:0 FFTID. This ID is assigned by the fixed function unit and is a unique identifier for the
thread. Itis used to free up resources used by the thread upon thread completion.
MO0.4 31:0 Ignored (reserved for hardware delivery of binding table pointer)
MO0.3 31:5 Ignored
4:3 Ignored
3:2 Ignored
1 Ignored
0 Ignored
MO0.2 31:22 Ignored
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Bit

Description

21:16

Block Height. Height in rows of block being accessed.
Programming Notes:

e  The Block Height is restricted to the following maximum values depending on
the Block Width:

Block Width (bytes) Maximum Block Height
(rows)

1-4 64
5-8 32
9-16 16
17-32 8

Format = U6
Range = [0,63] representing 1 to 64 rows

15:5

Ignored

4:0

Block Width. Width in bytes of the block being accessed.
Programming Notes:
e Must be DWord aligned for the write form of the message.
e This field must also be DWord aligned for the read form of the message.
Format = U5
Range = [0,31] representing 1 to 32 Bytes

MO.1

31:0

Y offset. The Y offset of the upper left corner of the block into the surface.

Format = S31

MO0.0

31:0

X offset. The X offset of the upper left corner of the block into the surface.
Must be DWord aligned (Bits 1:0 MBZ) for the write form of the message.

The X offset field defines the offset in the input message block. This may differ from
the offset in the surface if Color Processing is enabled due to format conversion.

This field must also be DWord aligned for the read form of the message.

Format = S31
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5.10.4.3 Message Payload (Write)
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DWord Bit Description

M1:n Write Data. The format of the write data depends on the Block Height and Block
Width. The data is aligned to the least significant bits of the first register, and the
register pitch is equal to the next power-of-2 that is greater than or equal to the Block

Width.

If Color Processing Enable is enabled, the write data is divided into pixels according
to the Message Format field. The fields within each pixel are defined below. For the

4:2:2 modes, each pixel position includes channels for two pixels.

Message Format 31:24 23:16 15:8 7:0
YUV 4:2:2, 8 bits per channel | Cr (V) right pixel lum Cb (V) left pixel lum (YO)
(Y1)
YUV 4:4:4, 8 bits per channel | Alpha (A) luminance (Y) Cb (V) Cr (V)
Message Format 63:48 47:32 31:16 15:0
YUV 4:2:2, 16 bits per Cr (V) right pixel lum Cb (V) left pixel lum (YO)
channel (Y1)
YUV 4:4:4, 16 bits per Alpha (A) Cr (V) luminance (Y) Cb (L)
channel
5.10.4.4 Writeback Message (Read)
DWord Bit Description
WO:n Read Data. The format of the read data depends on the Block Height and Block

Width.

Width. The data is aligned to the least significant bits of the first register, and the
register pitch is equal to the next power-of-2 that is greater than or equal to the Block
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5.10.5

192

DWord Scattered Read/Write

This message takes a set of offsets, and reads or writes 8 or 16 scattered DWords
starting at each offset. The Global Offset is added to each of the specific offsets.

For read messages with X/Y offsets that are outside the bounds of the surface, the
address is clamped to the nearest edge of the surface. For write messages with X/Y
offsets that are outside the bounds of the surface, the behavior is undefined.

Hardware does not check for or optimize for cases where offsets are equal or
contiguous, thus for optimal performance in these cases a different message may
provide higher performance.

Restrictions:

the only surface type allowed is SURFTYPE_BUFFER.

the surface format is ignored, data is returned from the constant buffer to the
GRF without format conversion.

the surface pitch is ignored, the surface is treated as a 1-dimensional surface.

An element size (pitch) of 16 bytes is used to determine the size of the buffer
for out-of-bounds checking if using the surface state model.

the surface cannot be tiled
the surface base address must be DWord aligned
the Render Cache Read Write Mode field in SURFACE_STATE must be set

to read/write mode when using this message with the render cache in the
surface state model

the Stateless Render Cache Read-Write Mode field in the SVG_WORK_CTL

register must be set to read/write mode when using this message with the
render cache in the stateless model

Applications:

SIMD8/16 constant buffer reads where the indices of each pixel are different
(read one channel per message)

SIMD8/16 scratch space reads/writes where the indices are different
(read/write one channel per message)

general purpose DWord scatter/gathering, used by media

Execution Mask. Depending on the block size, either the low 8 bits or all 16 bits of
the execution mask are used to determine which DWords are read into the destination
GRF register (for read), or which DWords are written to the surface (for write).

Out-of-Bounds Accesses. Reads to areas outside of the surface return 0. Writes to
areas outside of the surface are dropped and will not modify memory contents.



5.10.5.1 Message Descriptor

Bit Description
12 Ignored

11:10 bit 11 is part of the Read Message Type field for the read version of this message)
9:8 Block Size. Specifies the number of DWords to be read or written

10
11

8 DWords
16 DWords

All other encodings are reserved.

5.10.5.2 Message Payload

DWord Bit Description
M1.7 31:0 Offset 7.
Specifies the byte offset of DWord 7 into the surface. Must be DWord aligned (bits 1:0
MBZ).
Format = U32
Range = [0,FFFFFFFCh]
M1.6 31:0 Offset 6
M1.5 31:0 Offset 5
M1.4 31:0 Offset 4
M1.3 31:0 Offset 3
M1.2 31:0 Offset 2
M1.1 31:0 Offset 1
M1.0 31:0 Offset O
M2.7 31:0 Offset 15. This message register is included only if the block size is 16 DWords.
M2.6 31:0 Offset 14
M2.5 31:0 Offset 13
M2.4 31:0 Offset 12
M2.3 31:0 Offset 11
M2.2 31:0 Offset 10
M2.1 31:0 Offset 9
M2.0 31:0 Offset 8
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5.10.5.3 Additional Message Payload (Write)

For the write operation, either one or two additional registers (depending on the block
size) of payload contain the data to be written.

The Offsetn referred to below is the Global Offset added to the corresponding
Offset n and is in units of DWords (discard low 2 bits). The DWord array index is
also in units of DWords.

DWord Bit Description

M3.7 31:0 DWord[Offset7]

M3.6 31:0 DWord[Offset6]

M3.5 31:0 DWord[Offset5]

M3.4 31:0 DWord[Offset4]

M3.3 31:0 DWord[Offset3]

M3.2 31:0 DWord[Offset2]

M3.1 31:0 DWord[Offsetl]

M3.0 31:0 DWord[OffsetO]

M4.7 31:0 DWord[Offset15]. This message register is included only if the block size is 16 DWords
M4.6 31:0 DWord[Offset14]

M4.5 31:0 DWord[Offset13]

M4.4 31:0 DWord[Offsetl2]

M4.3 31:0 DWord[Offset11]

M4.2 31:0 DWord[Offset10]

M4.1 31:0 DWord[Offset9]

M4.0 31:0 DWord[Offset8]
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5.10.5.4 Writeback Message (Read)

For the read operation, the writeback message consists of either one or two registers
depending on the block size.
The Offsetn referred to below is the Global Offset added to the corresponding
Offset n and is in units of DWords (discard low 2 bits). The DWord array index is
also in units of DWords.

DWord Bit Description

WO0.7 31:0 DWord[Offset7]

WO0.6 31:0 DWord[Offset6]

WO0.5 31:0 DWord[Offset5]

WO0.4 31:0 DWord[Offset4]

WO0.3 31:0 DWord[Offset3]

WO0.2 31:0 DWord[Offset2]

WO0.1 31:0 DWord[Offsetl]

WO0.0 31:0 DWord[OffsetO]

W1.7 31:0 DWord[Offset15]. This writeback message register is included only if the block size is

16 DWords.

W1.6 31:0 DWord[Offset14]

W1.5 31:0 DWord[Offset13]

W1.4 31:0 DWord[Offset12]

W1.3 31:0 DWord[Offsetl1l]

W1.2 31:0 DWord[Offset10]

W1.1 31:0 DWord[Offset9]

W1.0 31:0 DWord[Offset8]
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5.10.6

196

Render Target Write

This message takes four subspans of pixels for write to a render target. Depending on
parameters contained in the message and state, it may also perform a depth and
stencil buffer write and/or a render target read for a color blend operation. Additional
operations enabled in the Color Calculator state will also be initiated as a result of
issuing this message (depth test, alpha test, logic ops, etc.). This message is
intended only for use by pixel shader kernels for writing results to render targets.

Restrictions:
¢ All surface types are allowed.
e Dual Source messages are not supported on DevBW and DevCL-A

e For SURFTYPE_BUFFER and SURFTYPE_1D surfaces, only the X coordinate is used
to index into the surface. The Y coordinate must be zero.

e For SURFTYPE_1D, 2D, 3D, and CUBE surfaces, a Render Target Array Index is
included in the input message to provide an additional coordinate. The Render
Target Array Index must be zero for SURFTYPE_BUFFER.

e The surface format is restricted to the set supported as render target. If
source/dest color blend is enabled, the surface format is further restricted to the
set supported as alpha blend render target.

e Only one pair of dual source messages is allowed per thread, as these messages
implicitly clear the pixel scoreboard. In addition, a thread sending dual source
messages is not allowed to send any other render target write messages.

e The last message sent to the render target by a thread must have the End Of
Thread bit set in the message descriptor and the dispatch mask set correctly in
the message header to enable correct clearing of the pixel scoreboard.

The stateless model cannot be used with this message (Binding Table Index
cannot be 255).

This message can only be issued from a kernel specified in WM_STATE or
3DSTATE_WM (pixel shader kernel), dispatched in non-contiguous mode. Any
other kernel issuing this message will cause undefined behavior.

e The dual source message cannot be used if the Antialias Alpha Present to
Render Target bit in the message header is enabled.

The dual source message cannot be used if the Alpha Test Enable bit in
COLOR_CALC_STATE is enabled.

This message cannot be used on a surface in field mode (Vertical Line Stride =
1)

Execution Mask. The execution mask for render target messages is ignored.
Control of which pixels are active is controlled by the Pixel/Sample Enables fields in
the message header.

Out-of-Bounds Accesses. Accesses to pixels outside of the surface are dropped and
will not modify memory contents. However, if the Render Target Array Index is
out of bounds, it is set to zero and the surface write is not surpressed.
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5.10.6.1 Subspan/Pixel to Slot Mapping
The following table indicates the mapping of subspans, pixels, and samples to slots in
the pixel shader dispatch depending on the number of samples and message size.
Pixels are numbered as follows within a subspan:
0 = upper left
1 = upper right
2 = lower left
3 = lower right
sspi = Starting Sample Pair Index (from the message header)
Message Num Slot Mapping
Size Samples
SIMD16 1X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]
Slot[7:4] = Subspan[1].Pixel[3:0].Sample[0]
Slot[11:8] = Subspan[2].Pixel[3:0].Sample[0]
Slot[15:12] = Subspan[3].Pixel[3:0].Sample[0]
SIMDS8 1X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]
Slot[7:4] = Subspan[1].Pixel[3:0].Sample[0]
5.10.6.2 Message Descriptor
Bit Description
11 Last Render Target Select. This bit must be set on the last render target write message sent for

each group of pixels. For single render target pixel shaders, this bit is set on all render target write
messages. For multiple render target pixel shaders, this bit is set only on messages sent to the last
render target.

10:8 Message Type. This field specifies the type of render target message.

For the dual source messages, the low bit indicates which subspan channels to use for the X/Y
addresses, stencil, and antialias alpha data.

Programming Notes:

000 = SIMD16 single source message

001 = SIMD16 single source message with replicated data
010 = SIMDS8 dual source message, use subspan 0 & 1 slots
011 = SIMDS8 dual source message, use subspan 2 & 3 slots
100 = SIMDS single source message, use subspan 0 & 1 slots

101-111: Reserved

. Replicated data (Message Type = 001) is only supported when accessing tiled memory.
Using this Message Type to access linear (untiled) memory is UNDEFINED.

o [DevBW, DevCL-A] Errata: Dual Source messages are not supported

. [DevCL-B]: The SIMDS8 dual source message using subspan 2 & 3 slots (encoding 011) is
not supported
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5.10.6.3 Message Header

The render target write message has a two-register message header.

DWord Bit Description
MO0.7 31:0 Debug
MO0.6 31:0 Debug
MO0.5 31:8 Ignored

7:0 FFTID. The Fixed Function Thread ID is assigned by the fixed function unit and is a
unique identifier for the thread. It is used to free up resources used by the thread upon
thread completion.

MO0.4 31:0 Ignored (reserved for hardware delivery of binding table pointer)

MO0.3 31:0 Ignored

MO0.2 31:0 Ignored

MO.1 31:6 Color Calculator State Pointer. Specifies the 64-byte aligned pointer to the color
calculator state. This pointer is relative to the General State Base Address.
Format = GeneralStateOffset[31:6]

5:0 Ignored

MO0.0 31:16 Dispatched Pixel Enables. One bit per pixel indicating which pixels were originally
enabled when the thread was dispatched. This field is only required for the end-of-
thread message and on all dual-source messages.
The Dispatched Pixel Enables must be unmodified from the ones sent when the pixel
shader thread was initiated. If the Dispatched Pixel Enables are modified, behavior is
undefined.

15:0 Pixel Enables. One bit per pixel indicating which pixels are still lit based on kill
instruction activity in the pixel shader. This mask is used to control actual writes to the
color buffer.

M1.7 31 Ignored
30:27 Viewport Index. Specifies the index of the viewport currently being used.
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DWord Bit Description

26:16 Render Target Array Index. Specifies the array index to be used for the following
surface types:

SURFTYPE_1D: specifies the array index. Range = [0,511]
SURFTYPE_2D: specifies the array index. Range = [0,511]
SURFTYPE_3D: specifies the “z” or “r” coordinate. Range = [0,2047]
SURFTYPE_CUBE: specifies the face identifier. Range = [0,5]
SURFTYPE_BUFFER: must be zero.

fa Render Target Array
ce Index
0
X
F 1
X
2
! 3
Y 4
Z
F 5

Z
Format = Ul1l

The Render Target Array Index used by hardware for access to the Render Target is
overridden with the Minimum Array Element defined in SURFACE_STATE if it is out of
the range between Minimum Array Element and Depth. For cube surfaces, a depth
value of 5 is used for this determination.

15:0 Ignored

M1.6 31 Front/Back Facing Polygon. Determines whether the polygon is front or back facing.
Used by the render cache to determine which stencil test state to use.

0 = Front Facing

1 = Back Facing
30 Ignored
29 Source Depth Present to Render Target. Indicates that source depth is included in

the message. If Destination Depth Present is also set, the depth test and conditional
write of the depth buffer must be performed. If Destination Depth Present is not set,
no depth test is performed but the source depth value is conditionally written to the
depth buffer.

28 Destination Depth Present to Render Target. Indicates that destination depth is
included in the message, and that the depth test and conditional write of the depth
buffer must be performed. It is not valid to have Destination Depth Present without
Source Depth Present.

27 Destination Stencil Present to Render Target. Indicates that destination stencil is
included in the message, and that the stencil test and conditional write of the stencil
buffer must be performed.

26 Antialias Alpha Present to Render Target. Indicates that antialias alpha is included in
the message, and that the antialias function must be performed.

25:0 Ignored
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DWord Bit Description
M1.5 31:16 Y3. Y coordinate for upper-left pixel of subspan 3
Format = U16
15:0 X3. X coordinate for upper-left pixel of subspan 3
Format = U16
M1.4 31:16 Y2
15:0 X2
M1.3 31:16 Y1
15:0 X1
M1.2 31:16 YO
15:0 X0
M1.1 31:0 Ignored
M1.0 31:0 Ignored

5.10.6.4 Stencil and Antialias Alpha Payload

The stencil and antialias alpha registers, if included, appears as message register 2
(M2), immediately following the header.

Note that the Antialias Alpha values are U0.4.

DWord Bit Description

M2.7 31:28 Antialias Alpha for Subspan 3, Pixel 3 (lower right)
Format = U0.4

This register is only included if the Antialias Alpha Present or Destination Stencil
Present bit is set.

27:24 Antialias Alpha for Subspan 3, Pixel 2 (lower left)

23:20 Antialias Alpha for Subspan 3, Pixel 1 (upper right)

19:16 Antialias Alpha for Subspan 3, Pixel O (upper left)

15:12 Antialias Alpha for Subspan 2, Pixel 3 (lower right)

11:8 Antialias Alpha for Subspan 2, Pixel 2 (lower left)

7:4 Antialias Alpha for Subspan 2, Pixel 1 (upper right)

3:0 Antialias Alpha for Subspan 2, Pixel O (upper left)

M2.6 31:28 Antialias Alpha for Subspan 1, Pixel 3 (lower right)

27:24 Antialias Alpha for Subspan 1, Pixel 2 (lower left)

23:20 Antialias Alpha for Subspan 1, Pixel 1 (upper right)

19:16 Antialias Alpha for Subspan 1, Pixel O (upper left)

15:12 Antialias Alpha for Subspan O, Pixel 3 (lower right)

11:8 Antialias Alpha for Subspan O, Pixel 2 (lower left)

7:4 Antialias Alpha for Subspan 0, Pixel 1 (upper right)
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DWord Bit Description
3:0 Antialias Alpha for Subspan O, Pixel O (upper left)
M2.5:4 Reserved
M2.3 31:24 Destination Stencil for Subspan 3, Pixel 3 (lower right)
Format = U8
23:16 Destination Stencil for Subspan 3, Pixel 2 (lower left)
15:8 Destination Stencil for Subspan 3, Pixel 1 (upper right)
7:0 Destination Stencil for Subspan 3, Pixel O (upper left)
M2.2 31:24 Destination Stencil for Subspan 2, Pixel 3 (lower right)
23:16 Destination Stencil for Subspan 2, Pixel 2 (lower left)
15:8 Destination Stencil for Subspan 2, Pixel 1 (upper right)
7:0 Destination Stencil for Subspan 2, Pixel O (upper left)
M2.1 31:24 Destination Stencil for Subspan 1, Pixel 3 (lower right)
23:16 Destination Stencil for Subspan 1, Pixel 2 (lower left)
15:8 Destination Stencil for Subspan 1, Pixel 1 (upper right)
7:0 Destination Stencil for Subspan 1, Pixel O (upper left)
M2.0 31:24 Destination Stencil for Subspan 0, Pixel 3 (lower right)
23:16 Destination Stencil for Subspan 0, Pixel 2 (lower left)
15:8 Destination Stencil for Subspan 0O, Pixel 1 (upper right)
7:0 Destination Stencil for Subspan O, Pixel O (upper left)
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This payload is included if the Message Type is SIMD16 single source. The value of
‘m’ here is equal to 2 if both stencil and antialias alpha are not present, otherwise it is

equal to 3.
DWord Bit Description
Mm.7 31:0 Subspan 1, Pixel 3 (lower right) Red. Specifies the value of the pixel’s red channel.

Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface
being accessed. SINT formats use S31, UINT formats use U32, and all other formats use

Float.

Mm.6 31:0 Subspan 1, Pixel 2 (lower left) Red

Mm.5 31:0 Subspan 1, Pixel 1 (upper right) Red

Mm.4 31:0 Supspan 1, Pixel O (upper left) Red

Mm.3 31:0 Subspan 0O, Pixel 3 (lower right) Red

Mm.2 31:0 Subspan 0, Pixel 2 (lower left) Red

Mm.1 31:0 Subspan O, Pixel 1 (upper right) Red

Mm.O 31:0 Supspan 0, Pixel O (upper left) Red
M(m+1) Subspans 1 and O of Green. See Mm definition for pixel locations
M(m+2) Subspans 1 and O of Blue. See Mm definition for pixel locations
M(m+3) Subspans 1 and O of Alpha

See Mm definition for pixel locations

M(m+4).7 31:0 Subspan 3, Pixel 3 (lower right) Red

M(m+4).6 31:0 Subspan 3, Pixel 2 (lower left) Red

M(m+4).5 31:0 Subspan 3, Pixel 1 (upper right) Red

M(m+4).4 31:0 Supspan 3, Pixel 0 (upper left) Red

M(m+4).3 31:0 Subspan 2, Pixel 3 (lower right) Red

M(m+4).2 31:0 Subspan 2, Pixel 2 (lower left) Red

M(m+4).1 31:0 Subspan 2, Pixel 1 (upper right) Red

M(m+4).0 31:0 Supspan 2, Pixel 0 (upper left) Red

M(m+5) Subspans 3 and 2 of Green. See M3 definition for pixel locations
M(m+6) Subspans 3 and 2 of Blue. See M3 definition for pixel locations
M(m+7) Subspans 3 and 2 of Alpha. See M3 definition for pixel locations
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5.10.6.5 Color Payload: SIMDS8 Single Source

This payload is included if the Message Type is SIMD8 single source. The value of ‘m’
here is equal to 2 if both stencil and antialias alpha are not present, otherwise it is

equal to 3.
DWord Bit Description
Mm.7 31:0 Slot 7 Red. Specifies the value of the slot’s red component.
Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface
being accessed. SINT formats use S31, UINT formats use U32, and all other formats use
Float.
Mm.6 31:0 Slot 6 Red
Mm.5 31:0 Slot 5 Red
Mm.4 31:0 Slot 4 Red
Mm.3 31:0 Slot 3 Red
Mm.2 31:0 Slot 2 Red
Mm.1 31:0 Slot 1 Red
Mm.O 31:0 Slot O Red
M(m+1) Slot[7:0] Green. See Mm definition for slot locations
M(m+2) Slot[7:0] Blue. See Mm definition for slot locations
M(m+3) Slot[7:0] Alpha. See Mm definition for slot locations
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5.10.6.6 Color Payload: SIMD16 Replicated Data
This payload is included if the Message Type specifies single source message with
replicated data. One set of R/G/B/A data is included in the message, and this data is
replicated to all 16 pixels.
This message is legal with color data only. The registers for depth, stencil, and
antialias alpha data cannot be included with this message, and the corresponding bits
in the message header must indicate that these registers are not present.
The value of ‘m’ here is equal to 2.
Programming Notes:
e This message is allowed only on tiled surfaces
DWord Bit Description
Mm.7:4 31:0 Reserved
Mm.3 31:0 Alpha. Specifies the value of all slots” alpha channel.
Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface
being accessed. SINT formats use S31, UINT formats use U32, and all other formats
use Float.
Mm.2 31:0 Blue
Mm.1 31:0 Green
Mm.O 31:0 Red
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5.10.6.7 Color Payload: SIMD8 Dual Source [DevCL-B]
This payload is included if the Message Type specifies dual source message. The
value of ‘m’ here is equal to 2 if both stencil and antialias alpha are not present,
otherwise it is equal to 3.
The dual source message contains only 2 subspans (8 pixels) due to limitations in
message length.
DWord Bit Description
Mm.7 31:0 Slot 7 Source O Red. Specifies the value of the slot’s red component.
Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface
being accessed. SINT formats use S31, UINT formats use U32, and all other formats use
Float.
Mm.6 31:0 Slot 6 Source O Red
Mm.5 31:0 Slot 5 Source O Red
Mm.4 31:0 Slot 4 Source O Red
Mm.3 31:0 Slot 3 Source O Red
Mm.2 31:0 Slot 2 Source O Red
Mm.1 31:0 Slot 1 Source O Red
Mm.O 31:0 Slot O Source O Red
M(m+1) Slot[7:0] Source O Green. See Mm definition for slot locations
M(m+2) Slot[7:0] Source O Blue. See Mm definition for slot locations
M(m+3) Slot[7:0] Source O Alpha. See Mm definition for slot locations
M(m+4) Slot[7:0] Source 1 Red. See Mm definition for slot locations
M(m+5) Slot[7:0] Source 1 Green. See Mm definition for slot locations
M(m+6) Slot[7:0] Source 1 Blue. See Mm definition for slot locations
M(m+7) Slot[7:0] Source 1 Alpha. See Mm definition for slot locations
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5.10.6.8 Depth Payload
The depth registers, if included, appear immediately following the color payload.
For the SIMD8 messages, only slot 7:0 data is sent, or only slot 15:8 depending on
the Message Type encoding. Any complete message register containing ignored data
cannot be delivered.
DWord Bit Description
Mn.7 31:0 Source Depth for Slot 7
Format = IEEE_Float
This and the next register is only included if Source Depth Present bit is set.
Mn.6 31:0 Source Depth for Slot 6
Mn.5 31:0 Source Depth for Slot 5
Mn.4 31:0 Source Depth for Slot 4
Mn.3 31:0 Source Depth for Slot 3
Mn.2 31:0 Source Depth for Slot 2
Mn.1 31:0 Source Depth for Slot 1
Mn.O 31:0 Source Depth for Slot O
M(n+1).7 31:0 Source Depth for Slot 15
M(n+1).6 31:0 Source Depth for Slot 14
M(n+1).5 31:0 Source Depth for Slot 13
M(n+1).4 31:0 Source Depth for Slot 12
M(n+1).3 31:0 Source Depth for Slot 11
M(n+1).2 31:0 Source Depth for Slot 10
M(n+1).1 31:0 Source Depth for Slot 9
M(n+1).0 31:0 Source Depth for Slot 8
MKk.7 31:0 Destination Depth for Slot 7
Format depends on depth buffer surface format. Software should not modify the
destination depth fields from what was delivered in the thread payload.
This and the next register is only included if Destination Depth Present bit is set.
Mk.6 31:0 Destination Depth for Slot 6
Mk.5 31:0 Destination Depth for Slot 5
Mk.4 31:0 Destination Depth for Slot 4
Mk.3 31:0 Destination Depth for Slot 3
Mk.2 31:0 Destination Depth for Slot 2
Mk.1 31:0 Destination Depth for Slot 1
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DWord Bit Description
Mk.O 31:0 Destination Depth for Slot O
M(k+1).7 31:0 Destination Depth for Slot 15
M(k+1).6 31:0 Destination Depth for Slot 14
M(k+1).5 31:0 Destination Depth for Slot 13
M(k+1).4 31:0 Destination Depth for Slot 12
M(k+1).3 31:0 Destination Depth for Slot 11
M(k+1).2 31:0 Destination Depth for Slot 10
M(k+1).1 31:0 Destination Depth for Slot 9
M(k+1).0 31:0 Destination Depth for Slot 8
5.10.6.9 Message Sequencing Summary

This section summarizes the sequencing that occurs for each legal render target write
message. All messages have the MO and M1 header registers, thus they are not
shown in the table. All cases not shown in this table are illegal.

Key:

s0, s1 = source 0, source 1
1/0 = subspan 1 & 0

3/2 = subspan 3 & 2

sZ = source depth

dZ = destination depth

sten = stencil & antialias alpha
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000 0 0 0 1/0R 1/0G 1/0B 1/0A 3/2R 3/2G 3/2B 3/2A
001 0 0 0 RGBA
010 0 0 0 1/0s0R 1/0s0G 1/0s0B 1/0s0A 1/0s1R 1/0s1G 1/0s1B 1/0s1A
011 0 0 0 3/2s0R 3/2s0G 3/2s0B 3/2s0A 3/2s1R 3/2s1G 3/2s1B 3/2s1A
100 0 0 0 R G B A
000 1 0 0 1/0R 1/0G 1/0B 1/0A 3/2R 3/2G 3/2B 3/2A 1/0sZ 3/2sZ
010 1 0 0 1/0s0R 1/0s0G 1/0s0B 1/0s0A 1/0s1R 1/0s1G 1/0s1B 1/0s1A 1/0sz
011 1 0 0 3/2s0R 3/2s0G 3/2s0B 3/2s0A 3/2s1R 3/2s1G 3/2s1B 3/2s1A 3/2sZ
100 1 0 0 R G B A sZ
000 1 0 1 1/0R 1/0G 1/0B 1/0A 3/2R 3/2G 3/2B 3/2A 1/0sZ 3/2sZ 1/0dZ 3/2dz
010 1 0 1 1/0s0R 1/0s0G 1/0s0B 1/0s0A 1/0s1R 1/0s1G 1/0s1B 1/0s1A 1/0sZ 1/0dz
011 1 0 1 3/2s0R 3/2s0G 3/2s0B 3/2s0A 3/2s1R 3/2s1G 3/2s1B 3/2s1A 3/2sZ 3/2dZ
100 1 0 1 R G B A sZ dz
000 1 1 0 sten 1/0R 1/0G 1/0B 1/0A 3/2R 3/2G 3/2B 3/2A 1/0sZ 3/2sZ
010 1 1 0 sten 1/0s0R 1/0s0G 1/0s0B 1/0s0A 1/0s1R 1/0s1G 1/0s1B 1/0s1A 1/0sz
011 1 1 0 sten 3/2s0R 3/2s0G 3/2s0B 3/2s0A 3/2s1R 3/2s1G 3/2s1B 3/2s1A 3/2sZ
100 1 1 0 sten R G B A sZ
000 1 1 1 sten 1/0R 1/0G 1/0B 1/0A 3/2R 3/2G 3/2B 3/2A 1/0sZ 3/2sZ 1/0dz 3/2dz
100 1 1 1 sten R G B A sZ dz
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5.10.7 Flush Render Cache
This message causes a flush of the render cache. The flush occurs in-order relative to
message arrival at the write data port. It is not synchronized with messages to the
read data port.
If the Send Write Commit Message bit in the message descriptor is set for this
message, the writeback message is delivered after the cache flush has been
completed.
5.10.7.1 Message Descriptor
Bit Description
12 Ignored
11:8 Ignored
5.10.7.2 Message Payload
DWord Bit Description
MO.7 31:0 Debug
MO.6 31:0 Debug
MO0.5:0 31:0 Ignored
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Extended Math

The Extended Math (EM) shared function supports math functions not available in the
GEN4 execution units. These math functions include reciprocal, logarithms, square
root, integer divide, and transcendental functions, etc. EM does not use any state: all
information needed to perform its operations is provided in the incoming messages.

The Extended Math operates on one data element per clock through a compute
pipeline. A request message may contain multiple data elements. These data elements
are put in the compute pipeline in series. Data elements from different request
messages are also put in the pipeline. When the computation is completed for all data
elements in a request message, output data are assembled for the request and sent
back to the requesting thread as a writeback message. Many math functions require
data to be processed through the compute pipeline in multiple passes. The throughput
and latency for a given message depends on the math function type and some times
depends on the input data values.

Unlike other shared functions in the GEN4 architecture, when a thread issues multiple
requests to the Extended Math, EM may return the results of those requests out of
order. Note that result register dependency makes this behavior transparent to the
thread (except in the case where the thread manually manages post-destination
register dependency).

Like other shared functions in the GEN4 architecture, EM does not guarantee any
ordering between requests from different threads.
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6.1 Messages

Restrictions:

¢ Use of any message to the Extended Math with the End of Thread bit set in the

message descriptor is not allowed.

e The Extended Math supports vector operations up to 8 channels. It only looks at

the lower 8 channel enables (execution mask bits), and ignores the higher 8.

6.1.1 Initiating Message

6.1.1.1 Message Descriptor

Bit

Description

19

This bit is not part of the shared function specific message descriptor.

18:9

Reserved : MBZ

Bits 18:16 are not part of the shared function specific message descriptor.

Snapshot bit. When set to 1 the EM unit will latch debugging information for this message
into a MMIO register. See the Debugging chapter for a description and layout of bits in the
MMIO

Source Structure. This bit indicates whether the operation is based on vector inputs or
scalar inputs. If this bit is not set, the Extended Math performs the indicated math function
on a channel by channel basis. For an enabled channel, EM takes the input data from the
corresponding channel and outputs the result in the same position. If this bit is set, EM
performs the math function on a 4-channel group basis. If any of the 4 channels within a
group is enabled, the data on the first channel (channel 0) is used as the input. The result is
broadcasted to all enabled channels within the group.

See section 6.1.1.2 below for more details.
0 = vector structure

1 = scalar structure

Saturate Control
0 = no saturate

1 = saturate result to [0,1] range (allowed only on floating point math functions)

Precision. This bit provides a hint whether the indicated math function is performed in full
precision or partial precision. It is only valid for floating point math functions when the
floating point mode is in alternative mode. It is ignored if the floating point mode is in
IEEE754 mode. Floating point mode is selected via the Floating Point Mode bit in CRO.
This bit is also ignored for integer math functions.

See section O for more details.
0 = use full precision

1 = use partial precision
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Bit Description

4 Integer Type. Determines the data type for both source and destination operands of the
INT DIV functions. Ignored for other functions.
0 = unsigned integer
1 = signed integer

3.0 Math Function. For floating point math functions (1h to Ah), the floating point mode signal
in the request message (originated from the Floating Point Mode bit in CRO) determines
whether the operation is in IEEE754 floating point mode or in alternative floating point
mode.
Functions LOG and EXP are base 2. SIN, COS, SINCOS take inputs in radians.
Oh: Reserved
1h: INV (reciprocal)
2h: LOG
3h: EXP
4h: SQRT
5h: RSQ
6h: SIN
7h: COS
8h: SINCOS
9h: Reserved
Ah: POW
Bh: INT DIV - return quotient and remainder
Ch: INT DIV - return quotient only
Dh: INT DIV - return remainder only
Eh: Reserved
Fh: Reserved

6.1.1.2 Scalar and Vector Mode

For a given request message, the Extended Math examines the 8-bit channel enable
field and the Source Structure field in the message descriptor to determine which
dwords contain valid inputs. There are two general cases that EM sees.

e Vector mode: The first case is when the Source Structure is a vector structure.
In this vector mode, 8 input data channels contain 8 unique input values. The
channel enable bits in the sideband determine which one of the 8 input values are
valid and therefore need to be computed and outputted. It is possible that none
of the channels are enabled, or all 8 channels are enabled, or anything in
between. EM only sends the valid input values into the compute pipeline to
achieve higher throughput. As the channel enable field is forwarded to the
writeback message bus, only the resulting values with channel enable bit on are
written back to the requesting thread’s GRF register.

e Scalar mode: The second case is when the Source Structure is a scalar structure.
In this scalar mode, there may be up to 2 unique input values present, one for
each group of 4 channels. The 2 unique input values reside in the first channel of
each group of 4, channel 0 and channel 4, specifically. The computed results of
the two scalar inputs are replicated to the corresponding 4 channels. The sideband
channel enable field determines which channels are enabled at the final output. It
is obvious that as long as any bit out of a group of four channel-enable bits are
set, the corresponding scalar data must be computed. Inversely, if all four channel
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enable bits in a group are zero, computation of the corresponding scalar is
skipped.

A subset of the scalar mode is when there is only one valid input. In this case the
channel enable field will show that one of the two groups of four does not contain
valid data. These three cases are illustrated below:

Channel # Channel # Channel #
: 1
1 1 A 1 -
2 2 A 2 -
3 3 A 3 -
4 1
5 5 B 5 -
Inputs to be sent ~ © 6 B 6 i}
down Eliehne 7 7 B 7 _
8 unique, valid, 2 unique, valid, 1 unique, valid,
inputs (vector) inputs (scalar) input (scalar)
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6.1.1.3 Message Payload
All incoming messages are comprised of a single message register except the POW
function and INT DIV, which consist of two message registers.
The lower 8 bits of the channel enables (execution mask) are used as the (dword)
channel enables for the math function operation.
DWord Bit Description
MO0.7 31:0 OperandO[7]. The value of OperandO for element 7
For the POW function, this operand is the base
For the INT DIV functions, this operand is the denominator
For all other functions, this operand is the single input operand
Format = S31 or U32 depending on Integer Type for INT DIV functions
Format = IEEE Float or Alternative Float depending on floating point mode signal for all
other functions
MO0.6 31:0 OperandO[6]. Refer to Operand0[7] above for the function of this operand.
MO0.5 31:0 OperandO[5]. Refer to Operand0[7] above for the function of this operand.
M0.4 31:0 OperandO[4]. Refer to Operand0[7] above for the function of this operand.
MO0.3 31:0 OperandO[3]. Refer to Operand0[7] above for the function of this operand.
MO0.2 31:0 OperandO[2]. Refer to OperandO[7] above for the function of this operand.
MO.1 31:0 OperandO[1]. Refer to Operand0[7] above for the function of this operand.
MO0.0 31:0 OperandO[0]. Refer to Operand0[7] above for the function of this operand.
M1.7 31:0 Operandl1[7]. The value of Operandl for element 7
For the POW function, this operand is the power
For the INT DIV functions, this operand is the humerator
For all other functions, this data phase of the message is not present
Format = S31 or U32 depending on Integer Type for INT DIV functions
Format = IEEE Float or Alternative Float depending on floating point mode signal for all
other functions
M1.6 31:0 Operandl1[6]. Refer to Operand1[7] above for the function of this operand.
M1.5 31:0 Operandl1[5]. Refer to Operand1[7] above for the function of this operand.
M1.4 31:0 Operandl1[4]. Refer to Operand1[7] above for the function of this operand.
M1.3 31:0 Operandl1[3]. Refer to Operand1[7] above for the function of this operand.
M1.2 31:0 Operandl1[2]. Refer to Operand1[7] above for the function of this operand.
M1.1 31:0 Operandl1[1]. Refer to Operand1[7] above for the function of this operand.
M1.0 31:0 Operandl1[0]. Refer to Operand1[7] above for the function of this operand.
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6.1.2 Writeback Message
Writeback messages for most EM functions contain a single GRF register. The
exceptions to this rule are SINCOS and INT DIV. SINCOS returns two GRF registers,
the first register contains the computed Sine of the inputs, and the second contains
the computed Cosine values. INT DIV returns the quotient in the first GRF register
and the remainder in the second GRF register. The two GRF registers are adjacent.
The lower 8 bits of the channel enables (execution mask) of the writeback bus are the
same 8 (dword) channel enables of the request message. Because EM supports vector
operations with a maximum of 8 channels, the higher 8 bits of the channel enables
are set to 0. The same 16-bit channel enables are repeated for the second GRF
register write, if present.
DWord Bit Description
WO0.7 31:0 ResultO[7]. The value of Result0 for element 7
For the SINCOS function, this result is the sine
For the INT DIV (return quotient and remainder) functions, this result is the quotient
For all other functions, this result is the single output result
Format = S31 or U32 depending on Integer Type for INT DIV functions
Format = IEEE Float or Alternative Float depending on floating point mode signal for all
other functions
WO0.6 31:0 ResultO[6]
WO0.5 31:0 ResultO[5]
WO0.4 31:0 ResultO[4]
WO0.3 31:0 ResultO[3]
W0.2 31:0 ResultO[2]
wo.1 31:0 ResultO[1]
Wo0.0 31:0 ResultO[0]
W1.7 31:0 Result1[7]. The value of Resultl for element 7
For the SINCOS function, this result is the cosine
For the INT DIV (return quotient and remainder) functions, this result is the remainder
For all other functions, this data phase of the message is not present
Format = S31 or U32 depending on Integer Type for INT DIV functions
Format = IEEE Float or Alternative Float depending on floating point mode signal for all
other functions
W1.6 31:0 Resultl[6]
W1.5 31:0 Resultl[5]
W1.4 31:0 Resultl[4]
W1.3 31:0 Result1[3]
W1.2 31:0 Resultl[2]
W1.1 31:0 Resultl[1]
W1.0 31:0 Result1[0]
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Performance

The Extended Math shared function unit supports extended math functions with up to
8 data channels per request. Computations for a vector request are performed channel
by channel on a serial execution pipeline. Most functions require iterative
computations. For example, SQRT takes three rounds of computation in the serial
execution pipeline. The latency for each round is about 22 clocks. Trigonometric
functions may take variable number of rounds depending on the input data. For
certain math functions, the throughput with partial precision computation in
alternative floating point mode is higher than the full precision computation. After
computations for all channels of a request are completed, data vectors (of one or two
phases) are assembled before the writeback message is sent back to the requesting
thread.

The following table shows the humber of rounds per element for each function type.
The table may be used to estimate the utilization of the extended math unit and the
minimal latency of the message.

Function Throughput Note
(rounds/element)
INV 1
LOG Partial: 2 Computes Log base 2
Full: 3
SQRT 3 Implemented as: Vx = x * 1/vx
RSQ 2
EXP Full: 4 Both partial and full precision versions have the same
Partial: 3 throughput.
Computes 2* (anti-log)
POW 8
SIN Min: 5 Trigonometric functions are the only ones with
Max: 12 variable throughput. Throughput depends on the
) input data range.
Typical: 6 Input is in radians
COos Same as SIN Input is in radians
SINCOS See SIN The two-output-phase SINCOS function is
implemented as back to back SIN and COS functions.
Input is in radians
INT DIV Quotient: 3
Remainder: 4

To best utilize the extended math shared function, programmers should consider the
following characteristics of the shared function:

e In vector mode, only the enabled channels consume computation rounds, while
the disabled channels do not.

e In scalar mode, one data element is computed for a group of 4 channels if any of
the 4 channels is enabled. If all 4 channels are disabled, no compute cycle is
wasted for the group.
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6.3

6.3.1

6.3.2
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Function Reference

A math function may take one request message register (srcO) or two request
message registers (src0 and srcl), and may output one writeback message register
(dst0) or two writeback message registers (dst0 and dstl).

Vector mode or scalar mode is determined by the Source Structure field of message
descriptor.

The operations is based on the channel enables as noted by EMask.

INV

Description Computes reciprocal of srcO (32-bit float format) and stores computed
result in dest as a 32-bit float

Format: INV <dstO> <srcO>

Pseudocode: for(n=0;n<8;n++) {
int srcCh = (vector mode) ? n: ((n<4)?0:4)
if (EMask.channel[n] == 1) {
dst0.channel[n] = 1 / srcO.channel[srcCh]

}
}
Precision: 1 ULP
Src-> +inf +0/ -0/ - -inf NaN
+Denorm Denorm
Dest - +0 +inf -inf -0 NaN
IEEE
mode
Dest - +FLT_MA - NaN
ALT X FLT_MA
mode X
LOG
Description: Computes Log, of SrcO and stores computed result in Dest. Both srcO

and dest are 32-bit FP values




6.3.3

Format:

Pseudocode:

Precision:

LOG <dst0> <srcO>

for(n=0;n<8;n++) {

int srcCh = (vector mode) ?n: ((n<4)?0:4)
if (EMask.channel[n] ==1) {

+/- 2-21 max relative error — Full precision
+ / - 2-10 max relative error- partial precision

dst0.channel[n] = Log,(src0.channel[srcCh])

Notes: In ALT mode log is computed as Log, (abs (src0))
Src-> +inf +0/ -0/ - -inf -F NaN
+Deno Denor
rm m
Dest +in -inf -inf NaN NaN NaN
- f
IEEE
mode
Dest - - +F NaN
- ALT FLT_M FLT_M
mode AX AX
EXP
Description: Computes 25° and stores computed result in Dest. Both srcO and

dest are 32-bit FP values

Format:

Pseudocode:

EXP <dst0> <srcO>

for(n=0;n<8;n++) {

int srcCh = (vector mode) ?n: ((n<4)?0:4)
if (EMask.channel[n] ==1) {
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dst0.channel [n] - zsrcO.channeI[srcCh]

Precision: + /- 2-21 max relative error - full precision
+/- 2-10 max relative error — partial precision

Src-> +i +0/ -0/- -inf -F NaN
nf +Denorm Denorm

Dest - +i 1 1 [0} +F NaN

1IEEE nf

mode

Dest - 1 1 +F NaN

ALT mode
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6.3.4 SQRT

Description: Computes square-root of srcO and stores computed result in dest.
Both srcO and dest are 32-bit FP
values
Format: SQRT <dst0> <srcO>
Pseudocode: for(n=0;n<8;n++) {

int srcCh = (vector mode) ? n: ((n<4)?0:4)
if (EMask.channel[n] == 1) {

dst0.channel[n] = \/SRCO.ChanneI[SrCCh]

}
3
Precision: 1 ULP
Notes: In ALT mode SQRT is computed as SQRT(abs (src0))
Src-> + +0/ -0/ - -inf -F NaN
in +Denorm Denorm
f
Dest - + 0 -0 NaN NaN NaN
IEEE i
mode n
f
Dest - (0] (0] +F NaN
ALT mode
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6.3.5

6.3.6
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RSQ

Description: Computes reciprocal square-root of srcO and stores computed result in
dest. Both srcO and dest are

32-bit FP values

Format: RSQ <dst0> <srcO>
Pseudocode: for(n=0;n<8;n++) {
int srcCh = (vector mode) ?n: ((n<4)?0:4)
if (EMask.channel[n] ==1) {
dst.channel[n] = 1/\/SRCO.channeI[n]
}
3
Precision: 1 ULP
Notes: In ALT mode RSQ is computed as RSQ(abs (src0))
Src- +inf +0/ -0/ - -inf -F NaN
> +Denorm Denorm
Dest +0 +inf -inf NaN NaN NaN
IEEE
mod
e
Dest +FLT_MAX +FLT_MAX +F NaN
ALT
mod
e
POW
Description: Computes abs(src0) raised to the srcl power and stores computed
result in dst0. SrcO, srcl, and dstO are 32-bit FP values. Srcl is
always scalar value.
Format: POW <dst0> <srcO> <srcl>
Pseudocode: for(n=0;n<8;n++) {
int srcCh = (vector mode) ?n: ((n<4)?0:4)
if (EMask.channel[n] ==1) {
dst0 channel[n] - zsrcl-logz(abs(srcO.channeI[srcCh]))
}
¥
Precision: 27-15 relative error




Src0->
Srcl

+inf

+0/
Denorm

-0/
Deporm
-in

-F

NaN

+F

Src0->
Srcl
+inf

+0/
Denorm

-0/
Bsporm
-F

NaN

+F

IEEE Mode:

abs(F abs abs(+F +in +0/ -Denorm - N
> 1) (F ==1) f +De /-0 inf a
< NOTTI N
+inf Q) NaN +in 0 +i N
f nf
1 1 1 Na NaN NaN Na E{
N N a
N
1 1 1 Na NaN NaN Na N
N N
0 +in NaN 0 +inf +inf 0 R
f
+F "F +F 0 +inf +inf 0 R
NaN Na NaN Na NaN NaN Na ﬁ]
N N N
+F Yin 0 0 Na N
f N a
N
ALT Mode:
+F +0 / +Denorm -0/ - - -F N
1 1 1 1 N
a
1 1 1 1 N
+F +FLT_MAX +FLT_MAX + N
F
NaN NaN N ﬁ{
a a
+F 0 0 N N
F a
N
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6.3.7
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SIN
Description: Computes the sine of srcO (in radians) and stores computed result in
dst0. SrcO and dstO are 32-bit FP values.
Format: SIN <dst0> <srcO>
Pseudocode: for(n=0;n<8;n++) {
int srcCh = (vector mode) ?n: ((n<4)?0:4)
if (EMask.channel[n] ==1) {
dst.channel[n] = Sin(src0.channel[srcCh])
}
3
Precision: Max absolute error of 0.0008 for the range of +/- 100 * pi
Outside of the above range the function will remain periodic,
producing values between -1 and 1. However, the period of SIN is
determined by the internal representation of Pi, meaning that as the
magnitude of input increases the absolute error will, in general, also
increase.
Src-> +inf +0/ -0/ - -inf -F NaN
+Denorm Denor
m
Dest - NaN +0 -0 NaN -1 NaN
IEEE to1
mode
Dest - +0 -0 -1 NaN
ALT to1
mode




6.3.8

COS
Description: Computes the cosine of srcO (in radians) and stores computed result
in dst0. SrcO and dstO are 32-bit FP values.
Format: SIN <dst0> <srcO>
Pseudocode: for(n=0;n<8;n++) {
int srcCh = (vector mode) ? n: ((n<4)?0:4)
if (EMask.channel[n] == 1) {
dst.channel[n] = Cos(src0.channel[srcCh])
}
}
Precision: Max absolute error of 0.0008 for the range of +/- 100 * pi
Outside of the above range the function will remain periodic,
producing values between -1 and 1. However, the period of COS is
determined by the internal representation of Pi, meaning that as the
magnitude of input increases the absolute error will, in general, also
increase.
Src-> +inf +0/ -0/ - -inf -F NaN
+Denorm Denorm
Dest - IEEE NaN +0 -0 NaN -l1to 1 NaN
mode
Dest - ALT +1 +1 -l1to 1l NaN
mode
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6.3.9
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SINCOS

Description:

Format:

Pseudocode:

Precision:

Notes:

Computes the sine of srcO (in radians) and stores computed result in
dst0. Computes the cosine of srcO (in radians) and returns the result
to dstl. SrcO, dstO and dstl are 32-bit FP values.

SINCOS <dst0> <dstl> <srcO>

for(n=0;n<8;n++) {
int srcCh = (vector mode) ?n: ((n<4)?0:4)
if (EMask.channel[n] ==1) {
if(dst0 = NULL){
dst0.channel[n] = Sin(src0.channel[srcCh])
}
if(dstl = NULL){
dstl.channel[n] = Cos(src0.channel[srcCh])

}
}

Max absolute error of 0.0008 for the range of +/- 100 * pi.

Outside of the above range the function will remain periodic,
producing values between -1 and 1. However, the period of SINCOS
is determined by the internal representation of Pi, meaning that as the
magnitude of input increases the absolute error will, in general, also
increase.

See individual Sin and Cos tables for error handling



6.3.10

INT DIV

Description: Computes src0 divided by srcl and returns an integer result to dstO0.
Src0, srcl and dst0 are 32-bit integers.

Format: INTDIV <dst0> <dstl> <srcO> <srcl>

Pseudocode: for(n=0;n<8;n++) {
int srcCh = (vector mode) ?n: ((n<4)?0:4)
if (EMask.channel[n] ==1) {
if(dst0 = NULL){

dst0.channel[n] = quotient (src0.channel[srcCh] /
srcl.channel[srcCh])

}
if(dstl = NULL){

dstl.channel[n] = remainder (src0.channel[srcCh] /
srcl.channel[srcCh])

Precision: 32-bit integer

For signed inputs, INT DIV behavior is illustrated by the table below:

Inputs: Numerato + + — _
r
Denomina + - + -
tor

Outputs: Quotient + _ _ +
Remainde + + - -
r
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IDIV SRCO
SRC1 + INT - INT 0
+ INT +INT -INT 0
- INT -INT +INT 0
0 Q:0x7FFF FFFF | Q: 0x8000 0000 | Q:0x7FFF FFFF
R:0x7FFF FFFF | R: 0x8000 0000 | R:Ox7FFF FFFF
uDIV SRCO
SRC1 <=0 0
<=0 UINT 0
0 Q: OXFFFF FFFF| Q: OXFFFF FFFF

R: OXFFFF FFFF

R: OXFFFF FFFF
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e

Message Gateway

7.1

230

The Message Gateway shared function provides a mechanism for active thread-to-
thread communication. Such thread-to-thread communication is based on direct
register access. One thread, a requester thread, is capable of writing into the GRF
register space of another thread, a recipient thread. Such direct register access
between two threads in a multi-processor environment some time is referred to as
remote register access. Remote register access may include read or write. GEN4
architecture supports remote register write, but not remote register read (natively).
Message Gateway facilitates such remote register write via message passing. The
requester thread sends a message to Message Gateway requesting a write to the
recipient thread’s GRF register space. Message Gateway sends a writeback message to
the recipient thread to complete the register write on behave of the requester. The
requester thread and the recipient thread may be on the same EU or on different EUs.

Messages

Message Gateway supports such thread-to-thread communication with the following
three messages:

e OpenGateway: opens a gateway for a requester thread. Once a thread
successfully opens its gateway, it can be a recipient thread to receive remote
register write.

e CloseGateway: closes the gateway for a requester thread. Once a thread
successfully closes its gateway, Message Gateway will block any future remote
register writes to this thread.

e ForwardMsg: forwards a formatted message (remote register write) from a
requester thread to a recipient thread.
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Message Descriptor

The following message descriptor applies to all messages supported by Message
Gateway.

Bit

Description

19

This bit is not part of the shared function specific message descriptor)

18:17

Ignored: these bits are not part of the shared function specific message descriptor)

16:15

Notify. Send Notification Signal.

When the low bit of this field is set, the recipient thread’s notification counter is
incremented. The high bit is not part of the shared function specific message descriptor.

This field is only valid for a ForwardMsg message. It is ignored for other messages.

14

AckReq. Acknowledgment Required. When this bit is set, an acknowledgment return
message is required. Message Gateway will send a writeback message containing the error
code to the requester thread using the post destination register address. When this bit is
not set, no writeback message is sent to the requesting thread by Message Gateway, even
if an error occurs.

This field is valid for OpenGateway, CloseGateway, and ForwardMsg messages.

When this bit is set, post destination register must be valid and the response length must
be 1.

When this bit is not set, post destination register must be null and the response length must
be 0.

This bit cannot be set when EOT is set; otherwise, hardware behavior is undefined.
0 = No Acknowledgement is required.

1 = Acknowledgement is required.

13:2

Reserved: MBZ

1:0

SubFunclID. Identify the supported sub-functions by Message Gateway. Encodings are:
00 = OpenGateway. Open the gateway for the requester thread.
01 = CloseGateway. Close the gateway for the requester thread.

10 = ForwardMsg. Forward the formatted message to the recipient thread with the given
offset from the recipient’s register base.

11 = Reserved.

7.1.2

OpenGateway Message

The OpenGateway message opens a communication channel between the requesting
thread and other threads. It specifies a key for other threads to access its gateway,
as well as the GRF register range allowed to be written. The message consists of a
single 256-bit message payload.
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If the AckReq bit is set, a single 256-bit payload writeback message is sent back to
the requesting thread after completion of the OpenGateway function. Only the least
significant DWord in the post destination register is overwritten.

If the EOT is set for this message, Message Gateway will ignore this message; instead,
it will close the gateway for the requesting thread regardless of the previous state of
the gateway.

It is software’s policy to determine how to generate the key.

7.1.2.1 Message Payload

DWord Bit Description
MO0.7 31:0 Debug
MO0.6 31:0 Debug
MO0.5 31:29 Reserved: MBZ

28:21 RegBase: The register base address to be stored in the Message Gateway. It is used to
compute the destination GRF register address from the offset field in ForwardMsg.
RegBase contains 256-bit GRF aligned register address.

Note 1: This field aligns with bits [28:21] of the Offset field of the message payload for
ForwardMsg.

Note 2: the most significant bit of this field must be zero.
Format = U8
Range = [0,127]

20:11 Reserved: MBZ

10:8 Gateway Size: The range limit for messages through the Message Gateway. The
maximal allowed Gateway Size is 32 GRF registers.

000 = 1 GRF Register

001 = 2 GRF Registers

010 = 4 GRF Registers

011 = 8 GRF Registers
100 = 16 GRF Registers
101 = 32 GRF Registers

110 = Reserved
111 = Reserved

7:0 Dispatch ID: This ID is assigned by the fixed function unit and is a unique identifier for
the thread. It is used to free up resources used by the thread upon thread completion.

This field is ignored by Message Gateway

This field is only required for a thread that is created by a fixed function (therefore, not
a child thread) and EOT bit is set for the message.

M0.4 31:16 Reserved: MBZ

15:0 Key: The key to be stored in the thread’s entry at the Message Gateway.

MO0.3:0 Ignored
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7.1.2.2 Writeback Message
The writeback message is only sent if the AckReq bit in the message descriptor is set.
DWord Bit Description
Wo0.7:1 Reserved (not overwritten)
WO0.0 31:20 Reserved
19:16 Shared Function ID: Contains the message gateway’s shared function ID.
15:3 Reserved
2:0 Error Code
000 = Successful. No Error (Normal)
001 = Gateway Size Exceeded. Attempt to open a gateway with a Gateway Size that is
larger than 32 GRF registers
101 = Opcode Error. Attempt to send a message which is not either open/close/forward
other codes: Reserved
7.1.3 CloseGateway Message
The CloseGateway message closes a communication channel for the requesting thread
that was previously opened with OpenGateway. Each thread is allowed to have only
one open gateway at a time, thus no additional information in the message payload is
required to close the gateway. The message consists of a single 256-bit message
payload.
If the AckReq bit is set, a single 256-bit payload writeback message is sent back to
the requesting thread after completion of the CloseGateway function. Only the least
significant DWord in the post destination register is overwritten.
7.1.3.1 Message Payload
DWord Bit Description
MO0.7:6 Ignored
MO0.5 31:8 Ignored
7:0 Dispatch ID: This ID is assigned by the fixed function unit and is a unique identifier for

the thread. It is used to free up resources used by the thread upon thread completion.
This field is ignored by Message Gateway

This field is only required for a thread that is created by a fixed function (therefore, not a
child thread) and EOT bit is set for the message.
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DWord Bit Description
M0.4:0 Ignored
7.1.3.2 Writeback Message
The writeback message is only sent if the AckReq bit in the message descriptor is set.
DWord Bit Description
WO0.7:1 Reserved (not overwritten)
WO0.0 31:20 Reserved
19:16 Shared Function ID: Contains the message gateway’s shared function ID.
15:3 Reserved
2:0 Error Code
000 = Successful. No Error (Normal)
101 = Opcode Error. Attempt to send a message which is not either open/close/forward
other codes: Reserved
7.1.4 ForwardMsg Message

234

The ForwardMsg message gives the ability for a requester thread to write a data
segment in the form of a byte, a dword, 2 dwords, or 4 dwords to a GRF register in a
recipient thread. The message consists of a single 256-bit message payload, which
contains the specially formatted data segment.

The ForwardMsg message utilizes a communication channel previously opened by the
recipient thread. The recipient thread has communicated its EUID, TID, and key to
the requester thread previously via some other mechanism. Generally, this is done
through the thread spawn message from parent to child thread, allowing each child
(requester) to then communicate with its parent through a gateway opened by the
parent (recipient). The child could then use ForwardMsg message to communicate its
own EUID, TID, and key back to the parent to enable bi-directional communication
after opening its own gateway.

If the AckReq bit is set, a single 256-bit payload writeback message is sent back to
the requester thread after completion of the ForwardMsg function. Only the least
significant DWord in the post destination register is overwritten.

If the Notify bit in the message descriptor is set, a ‘notification’ is sent to the recipient
thread in order to increment the recipient thread’s notification counter. This allows
multiple messages to be sent to the recipient without waking up the recipient thread.
The last message, having this bit set, will then wake up the recipient thread.




7.1.4.1 Message Payload
DWord Bit Description
MO0.7 31:0 Debug
MO0.6 31:0 Debug
MO0.5 31:29 Reserved: MBZ
28:16 Offset: It provides the destination register position in the recipient thread GRF register
space as the offset from the RegBase stored in the recipient thread’s gateway entry.
The offset is in unit of byte, such that bits [28:21] is the 256-bit aligned register offset
and bits [4:0] is the sub-register offset. The sub-register offset must be aligned to the
Length field in bits [10:8]. The subfields of Offset are further illustrated as the
following.
Offset[28:21]: Register offset from the gateway base (Range [0, 127]: bit 12 MBZ)
Offset[20:18]: DW offset
Offset[17:16]: Byte offset (must be 00 for all DW length cases)
15:11 Reserved: MBZ
10:8 Length: The length of the data segment.
000 = 1 byte
001 = Reserved
010 = 1 dword
011 = 2 dwords
100 = 4 dwords
101-111: Reserved
7:0 Dispatch ID: This ID is assigned by the fixed function unit and is a unique identifier for
the thread. It is used to free up resources used by the thread upon thread completion.
This field is ignored by Message Gateway
This field is only required for a thread that is created by a fixed function (therefore, not
a child thread) and EOT bit is set for the message.
MO0.4 31:28 Ignored
27:24 EUID: The Execution Unit ID as part of the Recipient field is used to identify the
recipient thread to whom the message is forwarded.
23:18 Ignored
17:16 TID: The Thread ID as part of the Recipient field is used to identify the recipient thread
to whom the message is forwarded.
15:0 Key
The key to match with the one stored in the recipient thread’s entry in Message
Gateway.
MO0.3 31:0 Data Segment DWord 3: valid only for the 4-DWord data segment length
MO0.2 31:0 Data Segment DWord 2: valid only for the 4-DWord data segment length
MO.1 31:0 Data Segment Dword 1: valid only for the 2- and 4-DWord data segment lengths
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DWord Bit Description
MO0.0 31:24 Data Segment Byte O: the same byte Data Segment Dword O: valid only for
must be copied to all four positions within the 1-, 2- and 4-Dword data segment
this DWord. Valid only for the 1-Byte data lengths
segment length.
23:16 Data Segment Byte O
15:8 Data Segment Byte O
7:0 Data Segment Byte O
7.1.4.2 Writeback Message to Requester Thread
The writeback message is only sent if the AckReq bit in the message descriptor is set.
DWord Bit Description
WO0.7:1 Reserved (not overwritten)
WO0.0 31:20 Reserved
19:16 Shared Function ID: Contains the message gateway’s shared function ID.
15:3 Reserved
2:0 Error Code
000 = Successful. No Error (Normal)
001 = Reserved
010 = Gateway Closed. Attempt to send a message through a closed gateway
011 = Key Mismatched. Attempt to send a message with a mismatching key
100 = Limit Exceeded. Attempt to send a message with offset beyond the gateway limit
101 = Opcode Error. Attempt to send a message which is not either open/close/forward
110 = Invalid Message Size. Attempt to forward a message with length greater than 4
DwW
111 = Reserved
7.1.4.3 Writeback Message to Recipient Thread
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7.1.5 GetTimeStamp Message
The GetTimeStamp message gives the ability for a requester thread to read the
timestamps back from the message gateway. The message consists of a single 256-bit
message payload.
AbsoluteTimelap is based on an absolute wall clock in unit of nSec/uSec that is
independent of context switch or GPU frequency adjustment. Message Gateway shares
the same GPU timestamp. Details can be found in the TIMESTAMP register section in
voll Memory Interface and Command Stream.
RelativeTimeLap is based on a relative time count that is counting the GPU clocks for
the context. The relative time count is saved/restored during context switch.
7.1.5.1 Message Payload
DWord Bit Description
MO0.7 31:0 Debug
MO0.6 31:0 Debug
MO0.5 31 Return to High GRF:
0: the return 128-bit data goes to the first half of the destination GRF register
1: the return 128-bit data goes to the second half of the destination GRF register
30:8 Reserved : MBZ
7:0 Dispatch ID: This ID is assigned by the fixed function unit and is a unique identifier for
the thread. It is used to free up resources used by the thread upon thread completion.
This field is ignored by Message Gateway
This field is only required for a thread that is created by a fixed function (therefore, not a
child thread) and EOT bit is set for the message.
M0.4 31:0 Ignored
MO0.3 31:0 Ignored
MO0.2 31:0 Ignored
MO.1 31:0 Ignored
MO0.0 31:0 Ignored
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7.1.5.2 Writeback Message to Requester Thread
As the writeback message is only sent if the AckReq bit in the message descriptor is
set, AckReq bit must be set for this message.
Only half of the destination GRF register is updated (via write-enables). The other half
of the register is not changed. This is determined by the Return to High GRF control
field.
Writeback Message if Return to High GRF is set to O:
DWord Bit Description
WO0.7:4 Reserved (not overwritten)
WO0.3 31:0 RelativeTimeLapHigh: This field returns the MSBs of time lap for the relative clock
since the previous reset. This field represents 1.024 uSec increment of the time stamp.
Hardware handles the wraparound (over 64 bit boundary) of the timestamp.
Format: U12
WO0.2 31:20 RelativeTimelLapLow: This field returns the LSBs of time lap for the relative clock since
the previous reset. This field represents 1/4 nSec increment of the time stamp.
Hardware handles the wraparound (over 64 bit boundary) of the timestamp.
Format: U12
19:0 Reserved : MBZ
Wo.1 31:0 AbsoluteTimeLapHigh: This field returns the MSBs of time lap for the absolute clock
since the previous reset. This field represents 1.024 uSec increment of the time stamp.
Hardware handles the wraparound (over 64 bit boundary) of the timestamp.
Format: Ul12
WO0.0 31:20 AbsoluteTimeLapLow: This field returns the LSBs of time lap for the absolute clock
since the previous reset. This field represents 1/4 nSec increment of the time stamp.
Hardware handles the wraparound (over 64 bit boundary) of the timestamp.
Format: U12
19:0 Reserved : MBZ
Writeback Message if Return to High GRF is set to 1:
DWord Bit Description
WO0.7 31:0 RelativeTimeLapHigh
WO0.6 31:20 RelativeTimelLapLow
19:0 Reserved : MBZ
WO0.5 31:0 AbsoluteTimelLapHigh
WO0.4 31:20 AbsoluteTimeLapLow
19:0 Reserved : MBZ
WO0.3:0 Reserved : MBZ
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8 Unified Return Buffer (URB)

The Unified Return Buffer (URB) is a general-purpose buffer used for sending data
between different threads, and, in some cases, between threads and fixed-function
units (or vice-versa). A thread accesses the URB by sending messages.

8.1 URB Size

The URB provides 16KB of storage, arranged as 512 256-bit rows. A row corresponds
in size to an EU GRF register. Read/write access to the URB is generally supported on
a row-granular basis.

A URB entry is a logical entity within the URB, referenced by an entry handle and
comprised of some number of consecutive rows.

8.2 URB Access

The URB can be written by the following agents:

¢ Command Stream (CS) can write constant data into Constant URB Entries
(CURBES) as a result of processing CONSTANT_BUFFER commands.

e The Video Front End (VFE) fixed-function unit of the Media pipeline can write
thread payload data in to its URB entries.

e The Vertex Fetch (VF) fixed-function unit of the 3D pipeline can write vertex data
into its URB entries

e GEN4 threads can write data into URB entries via URB_WRITE messages sent to
the URB shared function.

The URB can be read by the following agents:

e The Thread Dispatcher (TD) is the main source of URB reads. As a part of
spawning a thread, pipeline fixed-functions provide the TD with a number of URB
handles, read offsets, and lengths. The TD reads the specified data from the URB
and provide that data in the thread payload pre-loaded into GRF registers.

e The Geometry Shader (GS) and Clipper (CLIP) fixed-function units of the 3D
pipeline can read selected parts of URB entries to extract vertex data required by
the pipeline.

e The Windower (WM) FF unit reads back depth coefficients from URB entries
written by the Strip/Fan unit.

Note that neither the CPU nor EU threads can read the URB directly.
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8.4

8.4.1

State

The URB function is stateless, with all information required to perform a function being
passed in the write message.

See URB Allocation (Graphics Processing Engine ) for a discussion of how the URB is
divided amongst the various fixed functions.

Messages

There is only one type of message supported by the URB shared function:
URB_WRITE. It is primarily used by a thread to write data in to an entry in the URB,
as referenced by the passed handle. FF units of the 3D pipeline snoop these
messages, and a side effect of the message may be some information being passed to
the FF unit which spawned the thread.

This section documents the global aspects of the URB write messages. The actual
data contained in the message differs for each fixed function - refer to 3D Pipeline and
the fixed-function chapters or details on 3D URB data formats, Media for media-
specific URB data formats, and Graphics Processing Engine for details on Constant
URB Entries (CURBES).

Programming Notes:

e The End of Thread bit in the message descriptor may be set on URB messages
only in threads dispatched by the vertex shader (VS), geometry shader (GS),
clipper, and strips and fans (SF) units.

Execution Mask

The Execution Mask specified in the ‘send’ instruction determines which DWords within
each message register are written to the URB.
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8.4.2 Message Descriptor
Bit Description
19 This bit is not part of the shared function specific message descriptor)
18:16 Ignored

15 Complete
If clear, this signals that the URB entry(s) referenced by the handle(s) are not yet completely
specified. This setting is used to perform partial writes to URB entries, as would be required when
writing an entry larger than the maximum single message payload can accommodate. Only the final
write would be marked “complete”. Partial writes may be unordered.
If set, this signals that there will be no further writes (past this one) to the specific URB entry(s) by
the thread. A snooping FF unit uses this to identify when the corresponding URB entry(s) are
completely specified, at which point the FF unit can initiate further operations the entry(s) (either a
readback, passing the handle(s) down the pipeline, or immediate deallocation if the entry is
“unused”).
This bit is strictly control information passed to snooping FF units. The URB shared function itself
does not use this bit for any purpose.
Programming Notes:
The following message descriptor fields are only valid when Complete is set: Used
The following message header fields are only valid when Complete is set: Handle O PrimType,
Handle O PrimStart, Handle O PrimEnd.

14 Used

If set, this signals that the URB entry(s) referenced by the handle(s) are valid outputs of the thread.
In all likelihood this means that that entry(s) contains complete & valid data to be subject to further
processing by the pipeline.

If clear, this signals that the URB entry(s) referenced by the handle(s) are not valid outputs of the
thread. Use of this setting will result in the handle(s) being immediately dereferenced by the owning
FF unit. This setting is to be used by GS or CLIP threads to dereference handles it obtained (either
in the initial thread payload or subsequent allocation writebacks) but subsequently determined were
not required (e.g., the object was completely clipped out).

Programming Notes:

e Only GS and CLIP threads are permitted to utilize Used==0. All other threads are required (by
design) to generate valid outputs in all cases.

e This bit is strictly control information passed to snooping FF units. The URB shared function
itself does not use this bit for any purpose.

e This bit is only valid when Complete is set, i.e., it is ignored on partial writes.
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Bit Description

13 Allocate
If set, this requests that an additional destination URB entry be allocated to the thread by the
spawning FF unit. The FF unit will return the handle to this URB entry via a message writeback
operation in response to this message (see writeback format below). Therefore, threads must
specify a writeback register in ‘send’ instructions issuing messages with this bit set.
If clear, an additional allocation is not requested.
Programming Notes:

e This bit is strictly control information passed to snooping FF units. The URB shared function
itself does not use this bit for any purpose.

e This bit is valid on all URB_WRITE messages, e.g., it could be used to allocate a new handle on a
partial write (Complete not set).

e Only one Allocate request (per thread) can be outstanding. Upon requesting an allocation, the
thread must wait for the handle to be returned (written back) before another allocation can be
requested.

12 Fast Composite Restriction Check Pass
Ignored
11:10 Swizzle Control. This field is used to specify which “swizzle” operation is to be performed on the
write data. It indirectly specifies whether one or two handles are valid.
00 = URB_NOSWIZZLE
The message data is to be written directly to a single URB entry (Handle 0).
01 = URB_INTERLEAVED
The message contains data to be written to two URB entries. The message data provided is
interleaved such that the upper DWords (7:4) of each 256-bit unit contain data to be written to
Handle 1, and the lower DWords (3:0) contain data to be written to Handle 0. The URB shared
function will de-interleave this data and write the two separate data streams to the two entries
using the single Offset value (see Offset below for more details).
10 = URB_TRANSPOSE
This message contains data that is to be “transposed” before being written to the URB. The
transpose applied is tailored to the passing of data between the SF and WM stages - it is not a
generic transpose. (See description below). Therefore, the assumption is that this mode will
only be used by Setup threads, where the setup-result data is swizzled before being written to
the URB in order to provide a more optimal format for use in a subsequent PS thread. (See
Strip/Fan, Windower chapters).
See Programming Restrictions in the URB_TRANSPOSE subsection below.
11 = Reserved
9:4 Offset. This field specifies a destination offset (in 256-bit units) from the start of the URB entry(s),
as referenced by URB Return Handle n, at which the data (if any) will be written.
When URB_INTERLEAVED is used, this field provides a 256-bit granular offset applied to both URB
entry destinations.
When URB_TRANSPOSE is used, this field provides a 256-bit granular offset applied to the URB entry
destination. The least significant bit of Offset must be zero.
3.0 URB Opcode

0 = URB_WRITE

all other codes are Reserved
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The following table lists the valid and invalid combinations of the Complete, Used,

Allocate and EOT bits:

Complete Used Allocate EOT Valid? Usage

0 d/c 0 0 Valid. Normal partial-
write or non-write
of URB.

0 d/c 0 1 Valid only if any and all Thread terminate
preceding URB entries w/ non-write of
have been marked as URB
“complete” and there is
no outstanding Allocate
request.

0 d/c 1 0 Valid only if any and all Non-write of URB
preceding URB entries with request for an
have been marked as additional handle.
“complete” and there is
no outstanding Allocate
request.

0/1 d/c 1 1 Invalid. Thread must n/a
never terminate with an
outstanding writeback
request.

1 0 0/1 0 Valid Dereference of
URB entry
without/with new
allocation request.

1 0 0 1 Valid Dereference of
URB entry and
thread termination.

1 1 0/1 0 Valid Completion of URB
entry output
without/with new
allocation request.

1 1 0 1 Valid Completion of URB
entry output and
thread termination.
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8.4.3

URB_WRITE

8.4.3.1 URB_WRITE Message Header
DWord Bit Description
MO0.7 31:0 Debug
MO0.6 31:0 Debug
MO0.5 31:8 Ignored
7:0 FFTID. The Fixed Function Thread ID is assigned by the fixed function unit and is a
unique identifier for the thread. It is used to free up resources used by the thread upon
thread completion.
M0.4 31:0 Ignored
MO0.3 31:0 Ignored
MO0.2 31:26 Ignored
25:16 Ignored (SO_NUM_PRIMS_WRITTEN is incremented via SVBWrite messages to the
DataPort).
15:7 Ignored
6:2 Handle O PrimType. This field associates a primitive type with the vertex written at
Handle 0.
NOTE: This field is only defined when the GS or Clipper FF unit is the target FF unit.
Otherwise it is Reserved:MBZ.
1 Handle O PrimStart. This field is used to indicate that the vertex written at Handle 0 is
the first vertex of a primitive.
NOTE: This field is only defined when the GS or Clipper FF unit is the target FF unit.
Otherwise it is Reserved:MBZ.
0 Handle O PrimEnd. This field is used to indicate that the vertex written at Handle 0 is
the last vertex of a primitive.
NOTE: This field is only defined when the GS or Clipper FF unit is the target FF unit.
Otherwise it is Reserved:MBZ.
MO.1 31:16 Handle ID 1. This ID is assigned by the fixed function unit and links the work in channel
1 to a specific entry within the fixed function unit. This field is ignored unless Swizzle
Control indicates Interleave mode.
15:0 URB Return Handle 1. This is the URB handle where channel 1’s results are to be
placed. This field is ignored unless Swizzle Control indicates interleave mode.
MO0.0 31:16 Handle ID O. This ID is assigned by the fixed function unit and links the work in channel
0 to a specific entry within the fixed function unit.
15:0 URB Return Handle 0. This is the URB handle where channel 0’s results are to be

placed.
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8.4.3.2 URB_WRITE Message Payload

For the URB message, the message payload will be written to the URB entries
indicated by the URB return handles in the message header.

While GS and CLIP threads will write one vertex at a time to the URB, the VS will write
two interleaved vertices. The description of the URB write messages will refer to the
per-vertex DWords described in the Vertex URB Entry Formats section of the 3D
Overview chapter.

Payload

Usage

URB_NOSWIZZLE

The message payload contains data to be written to a single URB entry (e.g.,
one Vertex URB entry). The Swizzle Control field of the message
descriptor must be set to ‘NoSwizzle'.

URB_INTERLEAVED

The message payload contains data to be written to two separate URB
entries. The payload data is provided in a high/low interleaved fashion. The
Swizzle Control field of the message descriptor must be set to ‘Interleave’.

URB_TRANSPOSE

The message payload contains data that is to be transposed before being
written to the URB. See the Strip & Fan (SF) Unit chapter for details on the
source and destination data layouts and intended usage model.
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8.4.3.2.1 URB_NOSWIZZLE
URB_NOSWIZZLE is used to simply write data into consecutive URB locations (no data
swizzling or transposition applied).
Programming Notes:
e The URB function will ignore the Channel Enables associated with this
message and write all channels into the URB.
When URB_NOSWIZZLE is used to write vertex data, the following table shows an
example layout of a URB_NOSWIZZLE payload containing one (non-interleaved)
vertex containing n pairs of 4-DWord vertex elements (where for the example, n is
>2).
DWord Bit Description

M1.7 31:0 Vertex Data [7]

M1.6 31:0 Vertex Data [6]

M1.5 31:0 Vertex Data [5]

M1.4 31:0 Vertex Data [4]

M1.3 31:0 Vertex Data [3]

M1.2 31:0 Vertex Data [2]

M1.1 31:0 Vertex Data [1]

M1.0 31:0 Vertex Data [0]

M2.7 31:0 Vertex Data [15]

M2.6 31:0 Vertex Data [14]

M2.5 31:0 Vertex Data [13]

M2.4 31:0 Vertex Data [12]

M2.3 31:0 Vertex Data [11]

M2.2 31:0 Vertex Data [10]

M2.1 31:0 Vertex Data [9]

M2.0 31:0 Vertex Data [8]

Mn.7 31:0 Vertex Data [8(n-2)+7]

Mn.6 31:0 Vertex Data [8(n-2)+6]

Mn.5 31:0 Vertex Data [8(n-2)+5]

Mn.4 31:0 Vertex Data [8(n-2)+4]

Mn.3 31:0 Vertex Data [8(n-2)+3]

Mn.2 31:0 Vertex Data [8(n-2)+2]

Mn.1 31:0 Vertex Data [8(n-2)+1]

Mn.0 31:0 Vertex Data [8(n-2)+0]
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8.4.3.2.2 URB_INTERLEAVED

The following table shows an example layout of a URB_INTERLEAVED payload
containing two interleaved vertices, each containing n 4-DWord vertex elements
(n>1).

Programming Restrictions:

e At least 256 bits per vertex (512 bits total, M1 & M2) must be written. Writing
only 128 bits per vertex (256 bits total, M1 only) results in UNDEFINED operation.

e The URB function will use (not ignore) the Channel Enables associated with this

message.
DWord Bit Description
M1.7 31:0 Vertex 1 Data [3]
M1.6 31:0 Vertex 1 Data [2]
M1.5 31:0 Vertex 1 Data [1]
M1.4 31:0 Vertex 1 Data [0O]
M1.3 31:0 Vertex O Data [3]
M1.2 31:0 Vertex O Data [2]
M1.1 31:0 Vertex O Data [1]
M1.0 31:0 Vertex O Data [0O]
M2.7 31:0 Vertex 1 Data [7]
M2.6 31:0 Vertex 1 Data [6]
M2.5 31:0 Vertex 1 Data [5]
M2.4 31:0 Vertex 1 Data [4]
M2.3 31:0 Vertex O Data [7]
M2.2 31:0 Vertex O Data [6]
M2.1 31:0 Vertex O Data [5]
M2.0 31:0 Vertex O Data [4]
Mn.7 31:0 Vertex 1 Data [4(n-2)+3]
Mn.6 31:0 Vertex 1 Data [4(n-2)+2]
Mn.5 31:0 Vertex 1 Data [4(n-2)+1]
Mn.4 31:0 Vertex 1 Data [4(n-2)+0]
Mn.3 31:0 Vertex O Data [4(n-2)+3]
Mn.2 31:0 Vertex O Data [4(n-2)+2]
Mn.1 31:0 Vertex O Data [4(n-2)+1]
Mn.0 31:0 Vertex O Data [4(n-2)+0]
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8.4.3.2.3

URB_TRANSPOSE

The following table shows an example layout of a URB_TRANSPOSE payload and how
the data is transposed and stored in the destination URB entry. Note that Source Row
0, Source Row 1, and implied row of all-zero, and Source Row 3 is transposed and
stored in successive 4-DW locations in the destination. This is then repeated for the
next 3 rows of the source payload. For the intended usage model in the Setup
thread, Source Row 0 would contain “Cx” coefficients for the first 8 attributes, Source
Row 1 would contain “Cy"” coefficients for the first 8 attributes, and Source Row 2
would contain “C0” coefficients for the first 8 attributes, then repeating for the next 8
attributes. Insertion of the implied all-zero row is required to align the Cx,Cy and CO
attributes into half-rows within the URB. This permits the used of the “"LINE”
instruction to initiate attribute interpolation in the subsequent PS thread.

Programming Notes:

¢ The message payload must contain a multiple of 3 Source Rows of data
(excluding the message header).

e The URB function will ignore the Channel Enables associated with this
message and write all channels into the URB.

Table 8-1. URB_TRANSPOSE Payload

DWord Bit Description

M1.0-7 31:0 Source Row O (e.g., Cx coeffs for the 1°' set of 8 attributes)
M2.0-7 31:0 Source Row 1 (e.g., Cy coeffs for the 1°* set of 8 attributes)
M3.0-7 31:0 Source Row 2 (e.d., CO coeffs for the 1° set of 8 attributes)
M4.0-7 31:0 Source Row 3 (e.g., Cx coeffs for the 2" set of 8 attributes)
M5.0-7 31:0 Source Row 4 (e.g., Cy coeffs for the 2™ set of 8 attributes)
M6.0-7 31:0 Source Row 5 (e.g., CO coeffs for the 2" set of 8 attributes)

31:0
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Table 8-2.URB_TRANSPOSE URB Destination Layout

URB DW

URB 7 6 5 4 3 2 1 (¢}
Row

n+0 M3.1 0 M2.1 M1.1 M3.0 0 M2.0 M1.0
n+1 M3.3 0 M2.3 M1.3 M3.2 0 M2.2 M1.2
n+2 M3.5 0 M2.5 M1.5 M3.4 0 M2.4 M1.4
n+3 M3.7 0 M2.7 M1.7 M3.6 0 M2.6 M1.6
n+4 M6.1 0 M5.1 M4.1 M6.0 0 M5.0 M4.0
n+5 M6.3 0 M5.3 M4.3 M6.2 0 M5.2 M4.2
n+6 M6.5 0 M5.5 M4.5 M6.4 0 M5.4 M4.4
n+7 M6.7 0 M5.7 M4.7 M6.6 0 M5.6 M4.6

8.4.3.3 Writeback Message for URB Entry Allocate
A writeback only occurs if the Allocate bit is set in the message descriptor. A single
register is returned containing the URB Return Handle and Handle ID for the allocated
handle in the low DWord is returned. All high DWords contain zero.
DWord Bit Description
WO0.7:1 Reserved : MBZ
WO0.0 31:16 Handle ID. This ID is assigned by the fixed function unit and links the thread to a

specific entry within the fixed function unit.
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9 Execution Unit I1SA

9.1 Introduction

9.1.1 Objective and Scope

The core of GEN4 architecture consists of an array of multi-threaded processors, also
referred to as Execution Units (EU). This Instruction Set Architecture (ISA) document
specifies the instructions executable on the EUs of the GEN4 architecture. It defines
the data types in the GEN4 architecture. It includes the binary format (machine code)
and ASCII format (native syntax) of each instruction. It also provides example usages
of instructions and modes of instructions, and certain data formats. The programming
guideline in appendix provides information to help developers to understand the usage
of GEN4 ISA. However, it is not intended to be a comprehensive tutorial.

9.1.2 Terms and Acronyms

AIP Application IP. This is part of the control registers for
exception handling for a thread. Upon an exception, hardware
moves the current IP into this register and then jumps to SIP.

ARF Architecture Register File. It is a collection of architecturally
visible registers for a thread such as address registers,
accumulator, flags, notification registers, IP, null, etc. ARF
should not be mistaken as just the address registers.

B Byte. As a numerical data type of 8 bits, B represents a signed
byte integer. It is used to specify the type of an operand in an
instruction.

BNF Backus Naur Form, a formal notation to describe the syntax of

a given language. The meta symbols of BNF include “::=", “|”,
and "< =", where “::=" means “is defined as”; “|” means
“or”; and angle brackets “<” and “>" are used to surround
category names.

CR Control Register. These read-write registers are used for
thread mode control and exception handling for a thread.

D Double word (DWord). As a fundamental data type, D or DW

represents 4 bytes. It may be used to specify the type of an
operand in an instruction.
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EOT

EU

EUID

ExecSize

Execution Size

FLT_MAX

fmax

GEN4 Core

GRF

ISA

JIT

LSB

Message

MRF

MSB

End Of Thread. This is a message sideband signal on the
Output message bus signifying that the message requester
thread is terminated. A thread must have at least one SEND
instruction with the EOT bit in the message descriptor field set
in order to properly terminate.

Execution Unit. An EU is a multi-threaded processor within the
GEN4 multi-processor system. Each EU is a fully-capable
processor containing instruction fetch and decode, register
files, source operand swizzle and SIMD ALU, etc. An EU is also
referred to as a GEN4 Core.

Execution Unit Identifier. The 4-bit field within a thread state
register (SR0O) that identifies the row and column location of
the EU where a thread is located. A thread can be uniquely
identified by the EUID and TID.

Execution Size.

Execution Size indicates the number of data elements
processed by a GEN4 SIMD instruction. It is one GEN4
instruction field and can be changed at a per instruction level.

The magnitude of the maximum represent-able single-
precision floating number according to IEEE-754 standard.
FLT_MAX has an exponent of OxFE and a mantissa of all one’s.

Same as FLT_MAX.

Alternative name for an EU in the GEN4 multi-processor
system.

General Register File. This is the most commonly used read-
write register space organized as an array of 256-bit registers
for a thread.

Instruction Set Architecture. The GEN4 ISA describes the
instructions supported by a GEN4 EU. A sequence of GEN4
instructions forms a thread executed on an EU.

Just-In-Time compiler

Least Significant Bit

Messages are data packages transmitted from a thread to
another thread, to another shared function or to another fixed
function. Message passing is the primary communication
mechanism of the GEN4 architecture.

Message Register File. This is the write-only register space,
organized as an array of 256-bit registers, for a thread to
communicate with shared functions or other threads.

Most Significant Bit
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Sub-Register

SIMD

SIP

SR

Thread

TID

TS
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Double Quad word (DQword). As a fundamental data type, DQ
represents 16 bytes.

Plan Of Record

Quad Word (QWord). As a fundamental data type, QW
represents 8 bytes.

Quad Quad word (QQword). As a fundamental data type, QQ
represents 32 bytes.

Subfield of a SIMD register. A SIMD register is an aligned fixed
size register for a register file or a register type. For example,
a GRF register, r2, is a 256-bit wide, 256-bit aligned register.
A sub-register, r2.3:d, is the fourth dword of GRF register r2.

Single Instruction Multiple Data. The term SIMD can be used
to describe the kind of parallel processing architecture that
exploits data parallelism at the instruction level. It can also be
used to describe the instructions in such an architecture.

System IP. There is one global System IP register for all the
threads. From a thread’s point of view, this is a virtual read-
only register. Upon an exception, hardware performs certain
book-keeping functions and then jumps to SIP.

State Register. The read-only registers containing the state
information of the current thread, including the EUID/TID,
Dispatcher Mask, and System IP.

A thread is an instance of a kernel program executed on an
EU. The life cycle for a thread starts from the executing the
first instruction after being dispatched from Thread Dispatcher
to an EU to the execution of the last instruction - a send
instruction with EOT that signals the thread termination.
Threads in the GEN4 system may be independent from each
other or communicate with each other through the Message
Gateway share function.

Thread Identifier. The 2-bit field within a thread state register
(SRO0) that identifies which out of the four possible thread slots
on the EU is executing that thread. A thread can be uniquely
identified by the EUID and TID.

Thread Spawner. TS is the second and the last fixed function
stage of the media pipeline.

Immediate integer vector. As a numerical data type of 32 bits,
an immediate integer vector of type V contains 8 signed
integer elements with 4 bits each. The 4-bit integer element is
in 2's complement form. It may be used to specify the type of
an immediate operand in an instruction.



9.1.3

VF Immediate floating point vector. As a numerical data type of
32 bits, an immediate floating point vector of type VF contains
4 floating point elements with 8-bit each. The 8-bit floating
point element contains a sign field, a 3-bit exponent field and
a 4-bit mantissa field. It may be used to specify the type of an
immediate operand in an instruction.

w Word. As a numerical data type of 16 bits, W represents a
signed word integer. It is used to specify the type of an
operand in an instruction.

URB Unified Return Buffer. The on-chip memory managed/shared
by GEN4 Fixed Functions. Threads use the URB to return data
that will be consumed either by a Fixed Function or other
threads.

uB Unsigned Byte integer. A numerical data type of 8 bits. It may
be used to specify the type of an operand in an instruction.

ub Unsigned Double Word integer. A numerical data type of 32
bits. It may be used to specify the type of an operand in an
instruction.

uw Unsigned Word integer. A numerical data type of 16 bits. It
may be used to specify the type of an operand in an
instruction.

VFE Video Front End. VFE is the first fixed function stage of the
media pipeline.

Formats and Conventions

In order to conveniently (and without ambiguity) describe the register files with 256-
bit wide registers that may contain various data types with different data element
widths, it is important to use a consistent table format to represent the registers.
Throughout this document, we will adopt the following table formats and conventions.
When a register or a number is presented by a row, increasing order is always from
right to left and then top down pictorially. In other words, for a bit field, the LSB to
MSB is from right to left; for a byte sequence, the least significant byte to the most
significant byte is also from right to left. This is consistent with the ‘Little Endian’
convention used by IA-32 machines. The following tables depict the layout formats for
different data units.
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15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Byte 1 Byte 0
31 24 23 15
Byte 4 Byte 2 Byte 1 Byte O

31|30 | 29 3|2
15 14 13 12 11 10 9 7 6 5 2 1

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8

Bits

A Byte

Bits

A Word

Bits

A DWord

32 Bytes

16 Words

8 DWords

16 DWords

With this convention, we note that the execution channels are logically viewed as from
right to left too, which is a little bit unconventional. However, as shown in the GEN4
Execution Environment Chapter, it matches with the bit order of the flag registers.
This also impacts the view of a GRF register region, now the region origin is located at
the upper-right corner and a region row is viewed from right to left.
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EU Data Types

10.1

Fundamental Data Types

The fundamental data types in the GEN4 architecture are halfbyte, byte, word,
doubleword (DW), quadword (QW), double quadword (DQ) and quad quadword (QQ).
They are defined based on the number of bits of the data type, ranging from 4 bits to
256 bits. As shown in Figure 10-1, a halfbyte contains 4 bits, a byte contains 8 bits, a
word contains two bytes, and a doubleword (dword) contains two words, and so on.
Halfbyte is a special data type such that it cannot be accessed directly as standalone
data element. It is only allowed as a subfield of the numerical data type of “packed
signed halfbyte integer vector” described in the next section.

Figure 10-1. Fundamental data types
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30

D Halfbyte*
7 0

15 8 7 0
‘ High byte ‘ Low byte ‘ Word

31 16 15 0
High word ‘ Low word ?DOVL:/‘;'EWOVd
6 ([ .
‘ \\\ ‘ Quadword
Qw)
J

Double Quadword
(bQ)

Quad Quadword
(QQ)

Pam

With the exception of halfbyte, the access of a data element to/from a GEN4 register
or to/from memory must be aligned on the natural boundaries of the data type. The
natural boundary for a word has an even-numbered address in unit of byte. The
natural boundary for a doubleword has an address divisible by 4 bytes. Similarly, the
natural boundary for a quadword, double quadword and quad quadword has an
address divisible by 8, 16, and 32 bytes, respectively. Quadword, double quadword
and quad quadword do not have corresponding numerical data type. Instead, they are
used to describe a group (a vector) of numerical data elements of smaller size align to
larger natural boundaries.
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10.2 Numerical Data Types

The numerical data types defined in the GEN4 architecture include signed and
unsigned integers and floating-point numbers (floats) of various numbers of bits.
These numerical data types are pictorially illustrated in Figure 10-2 and Figure 10-3.
Table 10-1 details the notation, size and numerical range of each data type. The
largest numerical data type has 32 bits.

Figure 10-2. Integer numerical data types

312 0
‘ Signed Halfbyte Integef
sign
7 9 0
|:| Unsigned Byte Integer
7/6 0
[ Signed Byte Integer
sign
15 0
Unsigned Word Integer
1914 0
‘ ‘ Signed Word Integer
sign
31 9 0
‘ ‘ Unsigned DWord Integer
3130 0
‘ ‘ Signed DWord Integer
sign
31 2827 43 0
‘ ‘ Packed Signed Halfbyte Integer Vector

Figure 10-3. Floating point numerical data types

Restricted 8-bit Float

s exp fraction

3130 2322 0

‘ 32-bit Single Precision Float
sign exponent fraction

31 24|23 16 | 15 8|7/6 4|3 0

‘ Packed 8-bit Restricted Float

s exp fraction
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Table 10-1. Formats and ranges of numerical data types

Notation Numerical Data Types Fundamental Range
Data Type

uB Unsigned Byte Integer Byte [0, 255]

B Signed Byte Integer Byte [-128, 127]

uw Unsigned Word Integer Word [0, 65535]

w Signed Word Integer Word [-32768, 32767]

ub Unsigned Doubleword Integer Doubleword [0, 232 - 1]

D Signed Doubleword Integer Doubleword [-23%, 2% - 1]

F Single Precision Float Doubleword [-(2-25)1%7 =271 0.0, 27, (2-2

23)127]

n/a Signed Halfbyte Integer Halfbyte [-8, 7]

\Y Packed Signed Halfbyte Integer Vector | Doubleword [-8, 7]

n/a Restricted 8-bit Float Byte [-31..-0.125, 0, 0.125... 31]

VF Packed Restricted Float Vector Doubleword [-31..-0.125, 0, 0.125... 31]

10.2.1 Unsigned Integers
Unsigned integers are unsigned binary numbers contained in a byte, a word or a
doubleword. The range for an unsigned byte integer is from 0 to 255. The range for an
unsigned word integer is from 0 to 65535. The range for an unsigned doubleword
integer is from 0 to 232 - 1.
The short hand notation for an unsigned byte integer, an unsigned word integer, and
an unsigned doubleword integer is UB, UW, UD, respectively.

10.2.2 Signhed Integers

260

Signed integers are signed binary nhumber in 2’s complement form contained in a
halfbyte, a byte, a word or a doubleword. A signed halfbyte integer has a numerical

range from -8 to 7 with the sign bit at bit 3.

A signed byte integer has a range from

-128 to 127 with the sign at bit 7. A signed word integer is has a range from -32768
to 32767 with the sign at bit 15. A signed doubleword integer has a range from -23!

to 23! - 1 with the sign at bit 31.

The short hand notation for a signed byte integer, a signed word integer, and a signed
doubleword integer is B, W, D, respectively.




10.2.3 Single Precision Floating-Point Numbers

The single precision floating point numbers is contained in a doubleword. Floating
point format is as defined in IEEE Standard 754 for Binary Floating-Point Arithmetic.
Maximal representable number is (2-22%)'?” and the minimal number is - (2-2723)%7,
The smallest fractional negative number -271*° and the smallest fractional positive
number is 271°, Value 0.0 has no fractional parts.

The short hand format notation for a single precision floating-point number is F.

10.2.4 Packed Signed Half-Byte Integer Vector

A packed signed halfbyte integer vector consists of 8 signed halfbyte integers
contained in a doubleword. Each signed halfbyte integer element has a range from -8
to 7 with the sign on bit 3. This numerical data type is only used by an immediate
source operand of doubleword in a GEN4 instruction. It cannot be used for the
destination operand or a non-immediate source operand. GEN4 hardware converts the
32-bit vector into 8-element signed word vector by sign extension. This is illustrated
in Figure 10-4.

The short hand format notation for a packed signed half-byte vector is V.

Figure 10-4. Converting a Packed Half-byte Vector to a 128-bit Signed Integer Vector

3
F c| b a Signed Halfbyte Integer

sign

fYyvyvyvy \ A 4 A\ A 4
s‘ s‘ s‘ s‘ s‘ s‘ s‘ s‘ s‘ s‘ s‘ s‘ c‘ b‘ a‘ Expanded halfbyte integer

12}

sign
31 28|27 ([ 4(3 0
\\ Packed Signed Halfbyte Integer Vector
JJ
127 112 | 111 a4 32|31 16 (/15 0
\\\ 128-bit expanded V data
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10.2.5

Packed 8-bit Restricted Float Vector

A packed restricted float vector consists of 4 8-bit restricted floats contained in a
doubleword. Each restricted float has the sign at bit 7, a 3-bit coded exponent in bits
4 to 6, a 4-bit fraction in bits 0 to 3, and an implied integer 1. The exponent is in
excess-3 format - having a bias of 3. Restricted float provides zero, positive/negative
normalized numbers with a small range (3-bit exponent) and small precision (4-bit
fraction). This numerical data type is only used by an immediate source operand of
doubleword in a GEN4 instruction. It cannot be used for the destination operand, or a
non-immediate source operand.

Figure 10-5 shows how to convert an 8-bit restricted float into a single precision float.
Converting a 3-bit exponent with a bias of 3 to an 8-bit exponent with a bias of 127 is
by adding 4, or equivalently copying bit 2 to bit 7 and putting the inverted bit 2 to bits
6:2. A special logic is also needed to take care of positive/negative zeros.

Figure 10-5. Conversion from a Restricted 8-bit Float to a Single-Precision Float
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sign|6 4|3 0

‘ s g‘ f‘ e d‘ c‘ b‘ a Restricted 8-bit float
| C
\\:\?
N
NP
NP

]

31
sign exponent fraction

\ A
g‘ﬁ‘ﬁ‘ﬁ‘ﬁ‘ﬁ‘f‘e d‘c‘b‘a‘0‘0‘0‘0‘0‘O‘0‘0‘0‘0‘0‘0‘0‘0‘0‘0‘0‘0‘0 Expanded single precision float
30 23|22 0

Table 10-2 shows all possible numbers of the restricted 8-bit float. Only normalized
float numbers can be represented, including positive and negative zero, and positive
and negative finite numbers. Normalized infinites, NaN and denormalized float
numbers cannot be represented by this type. It should be noted that this 8-bit floating
point format does not follow IEEE-754 convention in describing numbers with small
magnitudes. Specifically, when the exponent field is zero and the fraction field is not
zero, an implied one is still present instead of taking a denormalized form (without an
implied one). This results in a simple implementation but with a smaller dynamic
range - the magnitude of the smallest non-zero number is 0.125.



Table 10-2. Example of restricted 8-bit float numbers

ntel)

Class Restricted 8-bit Float Extended 8- Floating number
bit Exponent in decimal
Hex # Sign Exponent Fraction [3:0]
[7] [6:4]
Positiv 0x70- 0 111 0000 ... 1000 16 .. 31
e OX7F TIIT 001T
Norma 0x60- 0 110 0000 ... 1000 8 ..15.5
lized OX6F TIIT 0010
0x50- 0 101 0000 ... 1000 4..7.75
Float OX5F TIIT 0001~
0x40- 0 100 0000 ... 1000 2..3.875
OX4f TIIT 0000
0x30- 0 011 0000 ... 0111 1..1.9375
OX3F TIIT TITT
0x20- 0 010 0000 ... 0111 0.5 ... 0.96875
OX2F TIIT TTTO
0x10- 0 001 0000 ... 0111 0.25 ...
OX1f TIIT TTOT 0.484375
0x01- 0 000 0001 ... 0111 0.125 ...
OXOF TIIT 1100 0.2421875
0x00 0 000 0000 0000 0 (+zero)
0000
Negati OxFO- 1 111 0000 ... 1000 -16 ... -31
ve OXFF TTIIT 001T
Norma OxEO- 1 110 0000 ... 1000 -8 ... -15.5
lized OXEF TIIT 0010
0xDO0- 1 101 0000 ... 1000 -4 ..-7.75
Float OXDF TIIT 0001~
0xCO- 1 100 0000 ... 1000 -2 ..-3.875
OXCF TIIT 0000
0xBO- 1 011 0000 ... 0111 -1..-1.9375
OXBF TIIT TITT
O0xAO0- 1 010 0000 ... 0111 -0.5 ... -
OXAF TIIT TTTO 0.96875
0x90- 1 001 0000 ... 0111 -0.25 ... -
OxX9F TIIT TTOT 0484375
0x81- 1 000 0001 ... 0111 -0.125 ... -
Ox8F 1111 1100 0.2421875
0x80 1 000 0000 0000 -0 (-zero)
0000

Figure 10-6 shows the conversion of a packed exponent-only float to a 4-element

vector of single precision floats.

The short hand format notation for a packed signed half-byte vector is VF.
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Figure 10-6. Converting a Packed Restricted Float Vector to a 128-bit Float Vector

31 24|23 8|7 0

Packed restricted float vector

‘ 128-bit expandedVF data

10.3 Floating Point Modes

GEN4 architecture supports two floating point operation modes, namely IEEE floating
point mode (IEEE mode) and alternative floating point mode (ALT mode). Both modes
follow mostly the requirements in IEEE-754 but with different deviations. The
deviations will be described in details in later sections. The primary difference between
these modes is on the handling of Infs, NaNs and denorms. The IEEE floating point
mode may be used to support newer versions of 3D graphics API Shaders and the
alternative floating point mode may be used to support early Shader versions.

These two modes are supported by all units that perform floating point computations,
including GEN4 execution units, GEN4 shared functions like Extended Math, the
Sampler and the Render Cache color calculator, and fixed functions like VF, Clipper,
SF and WIZ. Host software sets floating point mode through the fixed function state
descriptors for 3D pipeline and the interface descriptor for media pipeline. Therefore
different modes may be associated with different threads running concurrently.
Floating point mode control for EU and shared functions are based on the floating
point mode field (bit 0) of crO register.

10.3.1 IEEE Floating Point Mode

10.3.1.1 Partial Listing of Honored IEEE-754 Rules

Here is a summary of expected 32-bit floating point behaviors in GEN4 architecture.
Refer to IEEE-754 for topics not mentioned.

e INF - INF = NaN

e 0 * (+/-)INF = NaN

e 1/ (+INF) =+0and 1/ (-INF) =-0

(+/-)INF / (+/-)INF = NaN as A/B = A * (1/B)

INV (+0) = RSQ (+0) = +INF, INV (-0) = RSQ (-0) = -INF, and SQRT (-0) = -0
RSQ (-finite) = SQRT (-finite) = NaN

LOG (+0) = LOG (-0) = -INF, LOG (-finite) = LOG (-INF) = NaN

NaN (any OP) any-value = NaN with one exception for min/max mentioned below.
Resulting NaN may have different bit pattern than the source NaN.
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Normal comparison with conditional modifier of EQ, GT, GE, LT, LE, when either or

both operands is NaN, returns FALSE. Normal comparison of NE, when either or

both operands is NaN, returns TRUE.

— Note: Normal comparison is either a cmp instruction or an instruction with
conditional modifier

Special comparison cmpn with conditional modifier of EQ, GT, GE, LT, LE, when
the second source operand is NaN, returns TRUE, regardless of the first source
operand, and when the second source operand is not NaN, but first one is, returns
FALSE. Cmpn of NE, when the second source operand is NaN, returns FALSE,
regardless of the first source operand, and when the second source operand is not
NaN, but first one is, returns TRUE.
— This is used to support the proposed IEEE-754R rule on min or max
operations. For which, if only one operand is NaN, min and max operations
return the other operand as the result.

Both normal and special comparisons of any non-NaN value against +/- INF
return exact result according to the conditional modifier. This is because that
infinities are exact representation in the sense that +INF = +INF and -INF = -
INF.

— NaN is unordered in the sense that NaN != NaN.

Complete Listing of Deviations or Additional Requirements vs.
IEEE-754

For a result that cannot be represented precisely by the floating point format, GEN4
execution unit uses rounding toward zero (which is a bit-field truncation of the
magnitude portion of a floating point data in sign-magnitude form) to produce a result
to the closest representable value. This ends up with a result that is within 1 Unit-
Last-Place (1 ULP) of the infinitely precise result.

GEN4 execution unit can report floating point overflow and NaN into conditional
flags. Hewever, there is no support for floating point exceptions, status bits or
traps.

Denorms are flushed to sign-preserved zero on input and output of any floating

point mathematical operation.

— The exception to the above point about flushing denorms is that any I/0 or
data movement operation that does not manipulate the data (such as point
sampling float data, or executing any raw “mov” instruction, or any sort of
conditional raw “mov” if present) must not alter data at all (so a denorm
remains denorm). Note that doing something that amounts to just moving
data, but isn’t explicitly, such as multiplying a number by 1.0f is not detected
as just a raw "mov”, and in this case a denorm flush would happen.

NaN input to an operation obviously always produces NaN on output, however the
exact bit pattern of the NaN is not required to stay the same (unless the operation
is a raw “mov” instruction which does not alter data at all.)

x*1.0f must always result in x (except denorm flushed and possible bit pattern
change for NaN).

x +/- 0.0f must always result in x (except denorm flushed and possible bit pattern
change for NaN). But -0 + 0 = +0.

Fused operations (such as mac, dp4, dp3, etc.) may produce intermediate results
out of 32-bit float range, but whose final results would be within 32-bit float range
if intermediate results were kept at greater precision. In this case,
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implementations are permitted to produce either the correct result, or else +/-INF.
Thus, compatibility between a fused operation, such as "mac”, with the unfused

equivalent, “mul” followed by “add” in this case, is not guaranteed.
— As the accumulator registers have more precision than 32-bit float, any

instruction with accumulator as a source/destination operand may produce a
different result than that using GRF/MRF registers.

e API Shader divide operations are implemented as x*(1.0f/y). With the two-step
method, x*(1.0f/y), the multiply and the divide each independently operate at the
32-bit floating point precision level (accuracy to 1 ULP).

e See the Type Conversion section below for rules on converting to/from float

representations.

10.3.1.3 Comparison of Floating Point Numbers

The following tables (Table 10-3 through Table 10-8) detail the rules for floating point
comparison. In the tables, “+/-Fin” stands for a positive or negative finite precision

floating point number. Result is either a true (T) or false (FALSE or F). Each row

corresponds to a fixed <srcO> and each column corresponds to a fixed <srcl1>. When
comparing two positive finite numbers (or two negative finite numbers), the result can
be T or F depending on the values. Therefore, the corresponding fields in the following
tables are marked as T/F.

Table 10-3. Results of “Greater-Than” Comparison — CMP.G

srcO  srcl -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN
-inf FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
-Fin T T/F FALSE FALSE FALSE FALSE FALSE FALSE FALSE
-denorm T T FALSE FALSE FALSE FALSE FALSE FALSE FALSE
-0 T T FALSE FALSE FALSE FALSE FALSE FALSE FALSE
+0 T T FALSE FALSE FALSE FALSE FALSE FALSE FALSE
+denorm T T FALSE FALSE FALSE FALSE FALSE FALSE FALSE
+Fin T T T T T T T/F FALSE FALSE
+inf T T T T T T T FALSE FALSE
NaN FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
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Table 10-4. Results of “Less-Than” Comparison — CMP.L

srcO  srcl -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN
-inf FALSE T T T T T T T FALSE
-Fin FALSE TIF T T T T T T FALSE
-denorm FALSE | FALSE FALSE FALSE | FALSE FALSE T T FALSE
-0 FALSE | FALSE FALSE FALSE | FALSE FALSE T T FALSE
+0 FALSE | FALSE FALSE FALSE | FALSE FALSE T T FALSE
+denorm FALSE | FALSE FALSE FALSE | FALSE FALSE T T FALSE
+Fin FALSE | FALSE FALSE FALSE | FALSE FALSE TIF T FALSE
+inf FALSE | FALSE FALSE FALSE | FALSE FALSE FALSE | FALSE FALSE
NaN FALSE | FALSE FALSE FALSE | FALSE FALSE FALSE | FALSE FALSE
Table 10-5. Results of “Equal-To” Comparison — CMP.E
srcO  srcl -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN
-inf T FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
-Fin FALSE T/F FALSE FALSE FALSE FALSE FALSE FALSE FALSE
-denorm FALSE FALSE T T T T FALSE FALSE FALSE
-0 FALSE FALSE T T T T FALSE FALSE FALSE
+0 FALSE FALSE T T T T FALSE FALSE FALSE
+denorm FALSE FALSE T T T T FALSE FALSE FALSE
+Fin FALSE FALSE FALSE FALSE FALSE FALSE T/F FALSE FALSE
+inf FALSE FALSE FALSE FALSE FALSE FALSE FALSE T FALSE
NaN FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
Table 10-6. Results of “Not-Equal-To” Comparison — CMP.NE

srcO  srcl -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN
-inf FALSE T T T T T T T T
-Fin T T/F T T T T T T T
-denorm T T FALSE FALSE FALSE FALSE T T T
-0 T T FALSE FALSE FALSE FALSE T T T
+0 T T FALSE FALSE FALSE FALSE T T T
+denorm T T FALSE FALSE FALSE FALSE T T T
+Fin T T T T T T T/F T T
+inf T T T T T T T FALSE T
NaN T T T T T T T T T
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Table 10-7. Results of “Less-Than Or Equal-To” Comparison — CMP.LE

srcO  srcl -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN

-inf T T T T T T T T FALSE
-Fin FALSE T/F T T T T T FALSE
-denorm FALSE FALSE T T T T T T FALSE
-0 FALSE FALSE T T T T T T FALSE
+0 FALSE FALSE T T T T T T FALSE
+denorm FALSE FALSE T T T T T T FALSE
+Fin FALSE FALSE FALSE FALSE FALSE FALSE T/F T FALSE
+inf FALSE FALSE FALSE FALSE FALSE FALSE FALSE T FALSE
NaN FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

Table 10-8. Results of “Greater-Than or Equal-To” Comparison — CMP.GE

srcO  srcl -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN

-inf T FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
-Fin T T/F FALSE FALSE FALSE FALSE FALSE FALSE FALSE
-denorm T T T T T T FALSE FALSE FALSE
-0 T T T T T T FALSE FALSE FALSE
+0 T T T T T T FALSE FALSE FALSE
+denorm T T T T T T FALSE FALSE FALSE
+Fin T T T T T T T/F FALSE FALSE
+inf T T T T T T T T FALSE
NaN FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
10.3.1.4 Min/Max of Floating Point Numbers
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A special comparison called Compare-NaN is introduced in GEN4 architecture to
handle the difference of above mentioned floating point comparison and the rules on
supporting MIN/MAX. To compute the MIN or MAX of two floating point numbers, if
one of the numbers is NaN and the other one is not, MIN or MAX of the two numbers
returns the one that is not NaN. When two numbers are NaN, MIN or MAX of the two
numbers returns a NaN, which may not have the same binary form as any of the two
numbers.
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When using CMPN for MIN/MAX, the flag polarity for CMPN and SEL instructions must
be the same:

Evaluations

GEN4 Instructions

MIN(src0, srcl) = (srcO < srcl) ? srcO : srcl

cmpn.l.f0.0 null src0O srcl

(f0.0) sel dst src0 srcl

MAX(src0, srcl) = (srcO >= srcl) ? srcO : srcl

cmpn.ge.f0.0 null srcO srcl

(f0.0) sel dst src0 srcl

The following tables (Table 10-9 through Table 10-14) detail the rules for this special

compare-NaN operation for floating point numbers. Notice that excepting “"Not-Equal-

To"” comparison-NaN, last columns in all other tables have ‘T".

Table 10-9. Results of “Greater-Than” Comparison-NaN — CMPN.G

srcO  srcl -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN
-inf FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE T
-Fin T T/F FALSE FALSE FALSE FALSE FALSE FALSE T
-denorm T T FALSE FALSE FALSE FALSE FALSE FALSE T
-0 T T FALSE FALSE FALSE FALSE FALSE FALSE T
+0 T T FALSE FALSE FALSE FALSE FALSE FALSE T
+denorm T T FALSE FALSE FALSE FALSE FALSE FALSE T
+Fin T T T T T T T/F FALSE T
+inf T T T T T T T FALSE T
NaN FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE T
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Table 10-10. Results of “Less-Than” Comparison-NaN — CMPN.L

srcO  srcl -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN
-inf FALSE T T T T T T T T
-Fin FALSE T/F T T T T T T T
-denorm FALSE FALSE FALSE FALSE FALSE FALSE T T T
-0 FALSE FALSE FALSE FALSE FALSE FALSE T T T
+0 FALSE FALSE FALSE FALSE FALSE FALSE T T T
+denorm FALSE FALSE FALSE FALSE FALSE FALSE T T T
+Fin FALSE FALSE FALSE FALSE FALSE FALSE T/F T T
+inf FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE T
NaN FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE T
Table 10-11. Results of “Equal-To” Comparison-NaN — CMPN.E
srcO srcl -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN
-inf T FALSE FALSE FALSE FALSE FALSE FALSE FALSE T
-Fin FALSE T/F FALSE FALSE FALSE FALSE FALSE FALSE T
-denorm FALSE FALSE T T T T FALSE FALSE T
-0 FALSE FALSE T T T T FALSE FALSE T
+0 FALSE FALSE T T T T FALSE FALSE T
+denorm FALSE FALSE T T T T FALSE FALSE T
+Fin FALSE FALSE FALSE FALSE FALSE FALSE T/F FALSE T
+inf FALSE FALSE FALSE FALSE FALSE FALSE FALSE T T
NaN FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE T
Table 10-12. Results of “Not-Equal-To” Comparison-NaN — CMPN.NE

srcO srcl -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN
-inf FALSE T T T T T T T FALSE
-Fin T T/F T T T T T T FALSE
-denorm T T FALSE FALSE FALSE FALSE T T FALSE
-0 T T FALSE FALSE FALSE FALSE T T FALSE
+0 T T FALSE FALSE FALSE FALSE T T FALSE
+denorm T T FALSE FALSE FALSE FALSE T T FALSE
+Fin T T T T T T T/F T FALSE
+inf T T T T T T T FALSE FALSE
NaN T T T T T T T T FALSE
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Table 10-13. Results of “Less-Than Or Equal-To” Comparison-NaN — CMPN.LE

I:ﬁ)

srcO  srcl -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN
-inf T T T T T T T T T
-Fin FALSE T/F T T T T T T T
-denorm FALSE FALSE T T T T T T T
-0 FALSE FALSE T T T T T T T
+0 FALSE FALSE T T T T T T T
+denorm FALSE FALSE T T T T T T T
+Fin FALSE FALSE FALSE FALSE FALSE FALSE T/F T T
+inf FALSE FALSE FALSE FALSE FALSE FALSE FALSE T T
NaN FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE T
Table 10-14. Results of “Greater-Than or Equal-To” Comparison-NaN — CMPN.GE
+denor
srcO  srcl -inf -Fin -denorm -0 +0 m +Fin +inf NaN
-inf T FALSE FALSE FALSE FALSE FALSE FALSE FALSE T
-Fin T T/F FALSE FALSE FALSE FALSE FALSE FALSE T
-denorm T T T T T T FALSE FALSE T
-0 T T T T T T FALSE FALSE T
+0 T T T T T T FALSE FALSE T
+denorm T T T T T T FALSE FALSE T
+Fin T T T T T T T/F FALSE T
+inf T T T T T T T T T
NaN FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE T
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10.3.2

Alternative Floating Point Mode

The key characteristics of the alternative floating point mode is that NaN, Inf and
denorm are not expected for an application to pass into the graphics pipeline, and the
graphics hardware must not generate NaN, Inf or denorm as computation result. For
example, a result that is larger than the maximum representable floating point
number is expected to be flushed to the largest representable floating point number,
i.e., +FLT_MAX. The FLT_MAX has an exponent of OXFE and a mantissa of all one’s,
which is the same for IEEE floating point mode.

Here is the complete list of the differences of legacy graphics mode from the relaxed
IEEE-754 floating point mode.

e Any +/- INF result must be flushed to +/- FLT_MAX, instead of being output as
+/- INF.

¢ Extended mathematics functions of log(), rsq() and sqrt() take the absolute value
of the sources before computation to avoid generating INF and NaN results.

Table 10-15 shows the support of these differences in various hardware units.

Table 10-15. Supported Legacy Float Mode and Impacted Units

VF Clippe SF Wiz EU Sample RC
IEEE-754 Deviations r EM r
Any +/- INF result flushed to Y Y Y Y Y Y Y Y
+/- FLT_MAX
Log, rsq, sqrt take abs() of N/A N/A N/A N/A N/A Y N/A N/A
sources
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Table 10-16 shows some of the desired or recommended alternative floating point
mode behaviors that do not have hardware design impact. The reasons of not needing
special hardware support for these items are also provided.



Table 10-16. Dismissed legacy behaviors

Suggested IEEE-754 Deviations

Reason for Dismiss

Mov forces (+/-)INF to (+/-)FLT_MAX

(+/-)INF is never present as input

(+/-)INF = (+/-)INF = +/- FLT_MAX
instead of NaN

(+/-)INF is never present as input

Denorm must be flushed to zero in all
cases (including trivial mov and point
sampling)

Denorm is never present as input

Anything*0=0 (including NaN*0=0 and
INF*0=0)

NaN and INF are never present as input

Except propagated NaN, NaN is never
generated

NaN is never present as input and GEN4 never
generates NaN based on rules in the previous table

An input NaN gets propagated excepting
(a)-(d)

NaN is never present as input

(a) Rcp (and rsq) of 0 yields FLT_MAX

N/A, as it is already covered by the general rule
“Any +/- INF result flushed to +/- FLT_MAX"

(b) Sampler honors 0/0 = 0 as if (1/0)*0

There is no divide in Sampler

I Rep (and rsq) of INF yields +/- 0

(+/-)INF is never present as input

(d) Sampler honors INF/INF = 0 as if
(1/INF)=0 followed by Anything*0 = 0

There is no divide in Sampler
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10.4

10.4.1

Type Conversion

Float to Integer

Converting from float to integer is based on rounding toward zero. If the floating point
value is +0, -0, +Denorm, -Denorm, +NaN -r -NaN, the resulting integer value is
always 0. If the floating point value is positive infinity (or negative infinity), the
conversion result takes the largest (or the smallest) represent-able integer value. If
the floating point value is larger (or smaller) than the largest (or the smallest)
represent-able integer value, the conversion result takes the largest (or the smallest)
represent-able integer value. The following table shows these special cases. The last
two rows are just examples. They can be any number outside the represent-able
range of the output integer type (UD, D, UW, W, UB and B).

Input Format Output Format
F ub D uw W uB B

+/- Zero 00000000 00000000 00000000 00000000 | HNN00000 | 00000000
+/- Denorm 00000000 00000000 00000000 00000000 | 90000000 | 00000000
NAN 00000000 00000000 00000000 00000000 | DDD00000 | 00000000
-NAN 00000000 00000000 00000000 00000000 | HND00000 | 00000000
INF FFFFFFFF 7FFFFFFF 0000FFFF 00007FFF | 00000OFF | 0000007F
-INF 00000000 80000000 00000000 00008000 | HNN00000 | 00000080
+232 (%) FFFFFFFF 7FFFFFFF 0000FFFF 00007FFF | 00000OFF | 0000007F
-232-1 (%) 00000000 80000000 00000000 00008000 | HND00000 | 00000080

10.4.2 Integer to Integer with Same or Higher Precision
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Converting an unsigned integer to a signed or an unsigned integer with higher
precision is based on zero extension.

Converting an unsigned integer to a signed integer with the same precision is based
on modular wrap-around. Without saturation, a larger than represent-able number
becomes a negative number. With saturation, a larger than represent-able number is
saturated to the largest positive represent-able number.

Converting a signed integer to a signed integer with higher precision is based on sign
extension.

Converting a signed integer to an unsigned integer with higher precision is based on
zero extension. Without saturation, a negative number becomes a large positive
number with the sign bit wrapped-up. With saturation, a negative nhumber is saturated
to zero.




10.4.3 Integer to Integer with Lower Precision

Converting a signed or an unsigned integer to a signed or an unsigned integer with

lower precision is based on bit truncation. Without saturation, only the lower bits are
kept in the output regardless of the sign-ness of input and output. With saturation, a
number that is outside the represent-able range is saturated to the closest represent-

able value.

10.4.4 Integer to Float

Converting a signed or an unsigned integer to a single precision float number is to
round to the closest representable float number. For any integer nhumber with
magnitude less than or equal to 24 bits, resulting float number is a precise
representation of the input. However, if it is more than 24 bits, LSBs are truncated.
This truncation is performed in sign-magnitude domain, thus, is equivalent to floating
point rounding toward zero operation.
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11

Execution Environment

11.1
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Overview

GEN4 instruction set is a general-purpose data-parallel instruction set optimized for
graphics and media computations. Supports for 3D graphics API (application program
interface) Shader instructions are mostly native, meaning that GEN4 provides efficient
execution for Shader programs. Depending on the Shader program operation modes
(for example, a Vertex Shader may be executed on a base of a vertex-pair, while a
Pixel Shader may be executed on a base of a 16-pixel group), translation from 3D
graphics API Shader instruction streams into GEN4 native instructions may be
required. In addition, there are many specific capabilities to accelerate media
applications. The following list provides a summary of the GEN4 instruction set.

e GEN4 ISA support SIMD (single instruction multiple data) instructions. The
number of data elements per instruction depends on the data type.

e GEN4 ISA supports SIMD parallel arithmetic, vector arithmetic, logical, and SIMD
control/branch instructions.

e GEN4 ISA supports instruction level variable-width SIMD execution.

e GEN4 ISA supports conditional SIMD execution via destination mask, predication,
and execution mask.

e GEN4 ISA supports in-place format conversion and mixed data type computations.
e GEN4 ISA supports instruction compression.

¢ A GEN4 instruction may be executed in multiple cycles over a SIMD execution
pipeline.

e Most GEN4 instructions have three operands. Some instructions have additional
implied source and destination operands. Some instructions have explicit dual
destinations.

e GEN4 ISA supports region-based register addressing.

e GEN4 ISA supports direct and indirect (indexed) register addressing.

e GEN4 instructions may have a scalar and vector immediate source operand.
e Higher precision accumulator registers are architecturally visible.

¢ Self-modifying code is not allowed (instruction streams, including instruction
caches, are read-only).



11.2

11.2.1

Primary Usage Models

In describing the usage models of GEN instruction set, it is inevitable to forward
reference terminology, syntax and instructions detailed later in this specification. For
clarity reasons, not all forward references will be provided in this section as well as
subsequent sections. For example, reference to binary instruction fields such as
Align1, Alignl16, Compr, SecHalf, etc., can be found in the Instruction Summary
chapter. And assembly instruction syntax can be found in the Instruction Summary
chapter and Instruction Reference chapter.

AOS and SOA Data Structures

With the Alignl and Align16 access modes, GEN4 instruction set provides effective
SIMD computation regardless whether data are arranged in array of structure (AOS)
form or in structure of array (SOA) form. The AOS and SOA data structures are
illustrated by the examples in Figure 11-1. The example shows two different ways of
storing four vectors in four SIMD registers. For simplicity, data vector and SIMD
register both have four data elements. The four data elements in a vector are denoted
by X, Y, Z and W just as for a vertex in 3D geometry. The AOS structure stores one
vector in a register and the next vector in another register. The SOA structure stores
one data element of each vector in a register and the next element of each vector in
the next register and so on. It is obvious in this case the two structures can be related
by a matrix transpose operation.

Figure 11-1. AOS and SOA data structures

AOS — Array of Structure SOA — Structure of Array

Vectoro‘ w [z [ v [ x| ‘ Register 0 ‘ ‘

Vectorl‘ w |z [ v [ x| ‘ Register 1 ‘5«?55‘

Vectorz‘ w [z | v [ x| ‘ Register 2 ‘2552‘

Vectora| [ W | z | Y | x | | Registers | w]]
Transpose

GEN4 3D and media applications take advantage of such broad architecture support
and use both AOS and SOA data arrangements.

e Vertices in 3D Geometry (Vertex Shader and Geometry Shader) are arranged in
AQOS structure and run on SIMD4x2 and SIMD4 modes, respectively, as detailed
below.

e Pixels in 3D Rasterization (Pixel Shader) are arranged in SOA structure and run on
SIMD8 and SIMD16 modes as detailed below.

¢ Pixels in media are primarily arranged in SOA structure, and occasionally in AOS
structure with possible mixed mode of operations that use region-based
addressing extensively.
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11.2.2
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These are preferred methods; alternative arrangements may also be possible. Shared
function resources provide data transpose capability to support both modes of
operations: The sampler has a transpose for sample reads, the data port has a
transpose for render cache writes, and the URB unit has a transpose for URB writes.

The following 3D graphics API Shader instruction will be used in the following sections
to illustrate various modes of operations:

add <dst>xyz <srcO>.yxzw <srcl>.zwxy

This example is an SIMD instruction that takes two source operands <srcO> and
<srcl>, performs addition operation (add), and store the additions to the destination
operand <dst>. Each operand contains four floating point data elements. The data
type is determined by the instruction opcode. This instruction also uses source swizzle
modifier (.yxzw for <srcO> and .zwxy for <srcl> and destination mask modifier
(-xyz). Please refer to programming specifications of 3D graphics API Shader
instructions for more details.

A physical GRF register has 256 bits, which may be used to store 8 floating point data
elements. For 3D graphics usage, the mode of operation is (loosely) termed after the
data structure as SIMDmxn, where *m” is a numerical term describing the size of
vector and “n” is the number of concurrent program flows executed in SIMD.

e Execution with AOS data structures
— SIMD4 (short for SIMD4x1) stands for the mode of operation where a
SIMD instruction operates on 4-element vectors stored packed in the
registers. There is only one program flow.
— SIMD4x2 standards for the SIMD operation based on a pair of 4-element
vectors stored in a register. There are effectively two programs running side
by side with one vector per program.

e Execution with SOA data structures - also referred to as “channel serial” execution

— SIMDS8 (short for SIMD1x8) standards for the SIMD operation based on the
SOA data structure where one register contains one data element (the same
one) of 8 vectors. Effectively, there are 8 concurrent program flows.

— SIMD16 (short for SIMD1x16) is a special term indicating the use of
instruction compression whereas each compressed SIMD instruction operates
on a pair of registers that contains one data element (the same one) of 16
vectors. SIMD16 has 16 concurrent program flows.

SIMD4 Mode of Operation

With a register mapping of <srcO> to doublewords 0-3 of r2, <srcl> to doublewords
4-7 of r2 and <dst> to doublewords 0-3 of r3, the example 3D graphics API Shader
instruction can be translated into the following GEN4 instruction:

add (4) r3<d>xyz:f r2<d>yzwx:f r2.4<4>zwxy:f {NoMask}

Without diving too much into the syntax definition of a GEN4 instruction, it is clear
that a GEN4 instruction also takes two source operands and one destination operands.
The second term, (4), is the execution size that determines the number of data
elements processed by the SIMD instruction. It is similar to the term SIMD Width used
in the literature. Each operand is described by the register region parameters such as
‘<4>"and data type (e.g. “:f”). These will be detailed in Section 11.3. The instruction
option field, {NoMask?}, ensure that the execution occurs for the execution channels
shown in the instruction, instead of, possibly, being masked out by the conditional



masks of the thread (See Instruction Summary chapter for definition of MaskCtrl
instruction field).

The operation of this GEN4 instruction is illustrated in Figure 11-2. In this example,
both source operands share the same physical GRF register r2. The two are
distinguished by the subregister number. The source swizzles control the routing of
source data elements to the parallel adders corresponding to the destination data
elements. The shaded areas in the destination register r3 are not modified. In
particular, doublewords 4-7 are unchanged as the execution size is 4; doubleword 3 is
unchanged due to the destination mask setting.

In this mode of operation, there is only one program flow — any branch decision will
be based on a scalar condition and apply to the whole vector of four elements. Option
{NoMask?} ensures that the instruction is not subject to the masks. In fact, most of
the instructions in a thread should have {NoMask} set.

Even though the execution only performs four parallel add operations, the GEN4
instruction still executes in 2 cycles (with no useful computation in the second cycle).

Figure 11-2. A SIMD4 Example

11.2.3

255 0
W|Z|Y X|W|[|Z]Y]|X r2

SIMD4x2 Mode of Operation

In this mode, two corresponding vectors from the two program flows fill a GEN4
physical register. With a register mapping of <srcO> to r2, <srcl> to r3 and <dst> to
r4, the example 3D graphics API Shader instruction can be translated into the
following GEN4 instruction:

add (8) rd<d>xyzf r2<d>yxzwif r3<4>zwxy:f

This instruction is subject to the execution mask, which initiated from the dispatch
mask. If both program flows are available (e.g. Vertex Shader executed with two
active vertices), the dispatch mask is set to 0xO0FF. The operation of this GEN4
instruction is illustrated in Figure 11-3 (a). The source swizzles control the routing of
source data elements to the parallel adders corresponding to the destination data
elements. The shaded areas in the destination register r3 (doublewords 3 and 7) are
unchanged due to the destination mask setting. If only one program flow is available
(e.g. the same SIMD4x2 Vertex Shader with only one active vertex), the dispatch
mask is set to 0x000F. The operation of the same instruction is shown in Figure 11-3

(b).
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Figure 11-3. SIMD4x2 Examples with Different Emasks

Iwlz[vy x|w[z]y x| [wiz][y|[x|w| z[y]|x]|r
5 N 255 N
W VX [WIZv 5] « WIZIVIRwl v %]

/
X
X
/ Q
/ \ \
/ \ \

|W\Z\Y\x|w\z\v\x|r4 |W\Z\Y\x|w\z\v\x|r4

(a) SIMD4x2 with Emask = Ox00FF (b) SIMD4x2 with Emask = 0x000F

The two source operands only need to be 16-byte aligned, not have to be GRF register
aligned. For example, the first source operand could be a 4-element vector (e.g. a
constant) stored in doublewords 0-3 in r2, which is shared by the two program flows.
The example 3D graphics API Shader instruction can then be translated into the

following GEN4 instruction:
add (8) rd<d>xyzf r2<0>.yzwx:f r3<4>zwxy:f

The only difference here is that the vertical stride of the first source is 0. The
operation of this GEN4 instruction is illustrated in Figure 11-4.

Figure 11-4. A SIMD4x2 Example with a Constant Vector Shared by Two Program Flows

255 0
Wl Z|Y | X|IW|Z]Y | X] 12

r3

r4
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SIMD16 Mode of Operation

With 16 concurrent program flows, one element of a vector would take two GRF
registers. In this mode, two corresponding vectors from the two program flows fill a
GEN4 physical register.

With the following register mappings,

<src0>: r2-r9 (with 16 X data elements in r2-r3, Y in r4-5, Z in r6-7 and W in r8-9),
<srel>: r10-r17,
<dst>: r18-r25,

the example 3D graphics API Shader instruction can be translated into the following
three GEN4 instructions:

add (16) r18<1>:f r4<8;8,1>:f r14<8;8,1>:f {Compr} Il dst.x =src0.y +srcl.z
add (16) r20<1>:f r6<8;8,1>:f r16<8;8,1>:f {Compr} Il dst.y = src0.z + srcl.w
add (16) r22<1>f r8<8;8,1>:f r10<8;8,1>:f {Compr} Il dst.z = srcO.w + srcl.x

The three GEN4 instructions correspond to the three enabled destination masks. All
instructions are compressed instructions with instruction option of {Compr} (See
Instruction Summary chapter for definition of ComprcCtrl field in GEN4 instruction
word). All operands are even-aligned GRF registers. As there is no output for the W
elements of <dst>, no instruction is needed for that element. The first instruction
inputs the Y elements of <srcO> and the Z elements of <src1> and outputs the X
elements of <dst>. The operation of this instruction is shown in Figure 11-5.

With the number of program flows more than one, the above instructions also subject
to execution mask. The 16-bit dispatch mask is partitioned into four groups with four
bits each. For Pixel Shader generated by the Windower, each 4-bit group corresponds
to a 2x2 pixel subspan. If a subspan is not valid for a Pixel Shader instance, the
corresponding 4-bit group in the dispatch mask is not set. Therefore, the same
instructions can be used independent of the number of available subspans without
creating bogus data in the subspans that are not valid.

Figure 11-5. A SIMD16 Example

|Y\Y\Y\Y|Y\Y\Y\Y|r4 |Y\Y\Y\Y|Y\Y\Y\Y|r5

255 0 255 0
|z \z \z \z |z \z \z \z | ri4 |z \z \z \z |z \z \z \z | ri5

R SR S Ie e e SR R R R R R e e

A y y A A A y y A y
|x\x\x\x\x\x\x\x| r18|x\x\x\x\x\x\x\x| ri9
add (16) r18<1>:f r4<8;8,1>:f r14<8;8,1>:f {Compr} // dst.x=src0.y+srcl.z
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Similar to SIMD4x2 mode, a constant may also be shared for the 16 program flows.
For example, the first source operand could be a 4-element vector (e.g. a constant)
stored in doublewords 0-3 in r2 (AOS format). The example 3D graphics API Shader
instruction can then be translated into the following GEN4 instruction:

add (16) r18<1>f r2.1<0;1,0>:f r14<8;8,1>:f {Compr} // dst.x =srcO.y +srcl.z
add (16) r20<1>:f r2.2<0;1,0>:f r16<8;8,1>:f {Compr} // dsty =src0.z + srcl.w
add (16) r22<1>f r2.3<0;1,0>:f r10<8;8,1>:f {Compr} // dst.z =srcO.w + srcl.x

The register region of the first source operand represents a replicated scalar. The
operation of the first GEN4 instruction is illustrated in Figure 11-6.

Figure 11-6. Another SIMD16 Example with an AOS Shared Constant

[T T [ wlzlvix]e [ [
255
(Z1z1z]2]7

0 255

fa4ddbdsd b dd

Y 3 y A A y A A A A y 3
[ x [ x| x| x[ x| x| x| x|ns|{x|[x]|x]x|x|x]|x[x] no
add (16) r18<1>:f r2.1<0;1,0>:f r14<8;8,1>:f {Compr}  //dst.x=src0.y+srcl.z

11.2.5 SIMD8 Mode of Operation

Each compressed instruction has two correspond uncompressed instructions. Taking
the example instruction shown in Figure 11-6, it is equivalent to the following two
instructions.

add (8) r18<1>:f r4<8;8,1>:f rl4<8;8,1>:f Il dst.x[7:0] = src0.y + srcl.z

add (8) r19<1>:f r5<8;8,1>:f rl15<8;8,1>:f {SecHalf} //dst.x[15:8]=src0.y +srcl.z
Therefore, SIMD8 can be viewed as a special case for SIMD16.
There are other reasons that SIMDS8 instructions may be used. Within a program with
16 concurrent program flows, some time SIMDS8 instruction must be used due to

architecture restrictions. For example, the address register a0 only have 8 elements, if
an indirect GRF addressing is used, SIMD16 instructions are not allowed.
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Registers and Register Regions

Register Files

GEN4 registers are grouped into different name spaces called register files. There are
three different register files defined: General Register File, Message Register File, and
Architecture Register File. In addition, immediate operands also have a unique
encoding of the register file field, even though they come inline in the instruction word
and do not have dedicated physical storages.

e General Register File (GRF): GRF contains general-purpose read-write registers.

e Message Register File (MRF): MRF contains special purpose registers used for
message passing only. MRF registers are write-only.

e Architecture Register File (ARF): ARF contains all other architectural registers,
including the address registers (a#), accumulators (acc#), flags (f#), masks
(mask#), mask stack (ms#), mask stack depth (msd#t), notification count (n#),
instruction pointer (ip), etc. Null register (null) is also encoded as an ARF register.

e Immediate: Certain instructions take immediate terms as the source operands.
These immediate terms have a distinct register file encoding.

Each thread executed in an EU has its own thread context, i.e. dedicated register
space, which is not shared between threads executing on a common EU or on a
different EU. In the rest of the Chapters, register access are in respect to a given
thread.

GRF Registers

Number of Registers: Various
Default Value: None
Normal Access: RW
Elements: Various
Element Size: Various
Element Type: Various
Access Granularity: Byte
Write Mask Granularity: Byte
Index-ability: Yes

Registers in the General Register File are the most commonly used read-write
registers. During the execution of a thread, GRF registers are used to store the
temporary data, and serve as the destination to receive data from shared function
units (and some times from a fixed function unit). They are also used to store the
input (initialization) data when a thread is created. By allowing fixed function
hardware to initialize some portion of GRF registers during thread dispatch time, GEN4
architecture can achieve better parallelism. A thread’s execution efficiency can also be
improved as some data are already in the register to be executed upon. Besides these
registers containing thread’s payload, the rest of GRF registers of a thread are not
initialized.
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Table 11-1. Summary of GRF Registers

Register File Register Name Description

General Register File (GRF) r#t General purpose read write registers

Each execution unit has a fixed size physical GRF register RAM. The GRF register RAM
is shared by all threads on the EU. GRF space for a thread is allocated at thread
dispatch time, allowing the amount of GRF space to adapt to the need of a given
thread.

Mapping of a thread’s GRF registers to the physical GRF RAM is through a translation
table. Therefore, a thread’s access to GRF is always through the 0-based logical view.
For example, the GRF registers of a thread with 64 GRF register allocation are rO
through r63.

GRF registers can be accessed using region-based addressing at byte granularity (both
read and write). A source operand must be contained within two adjacent physical
registers. A destination operand must be contained within one physical register. GRF
registers support direct addressing and register-indirect addressing. Register-indirect
addressing uses the address registers (ARF registers a#) and an immediate address
offset value.

When accessing (read and/or write) outside the GRF register range allocated for a
given thread either through direct or indirect addressing, the result is unpredictable.

Table 11-2. GRF Registers Available in Device Hardware

11.3.3
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Device Physical Allocation Number per Number per
Register Size Granularity Thread EU

[DevBW] 256 bits 16 registers 128 registers 256 registers

[DevCL] 256 bits 16 registers 128 registers 256 registers

MRF Registers

Number of Registers: Fixed

Default Value: None

Normal Access: woO

Elements: Various
Element Size: Various
Element Type: Various

Access Granularity: Byte

Write Mask Granularity: Byte
Index-ability: See Table 11-4

Registers in the Message Register File are used to store the header and payload for
out-going messages from a thread to a shared function such as the Sampler and
Extended Math unit. There are fixed number of MRF registers for each thread.

MRF registers are write-only, and therefore, can only be the destination operand of an
instruction.
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MRF registers support write-enable at byte granularity. When an MRF register is used
as the current destination operand of the send instruction, only 256-bit register
aligned access is supported.

When accessing (write) outside the MRF register range for a given thread, the result is

unpredictable.

Table 11-3. Summary of MRF Registers

Register File

Register Name

Description

Message Register File (MRF)

m# Special purpose output write-only registers

Table 11-4. MRF Registers Available in Device Hardware

Device Physical Register Size Number per Thread Indirect
Addressing?

[DevBW] 256 bits 16 registers No

[DevCL] 256 bits 16 registers No

Note for Programmers: As a software usage policy, mO register is reserved for debug.
Normal thread should access MRF starting at m1.
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11.3.4

11.3.4.1

ARF Registers

Overview

Besides GRF and MRF registers that are directly indicated by unique register file
coding, all other registers belong to the general Architecture Register File (ARF).
Encoding of architecture register types are based on the MSBs of the register number
field, RegNum, in the instruction word. RegNum field has 8 bits. The 4 MSBs,
RegNum[7:4], represent the architecture register type. This is summarized in Table
11-5.

Table 11-5. Summary of Architecture Registers

Register Type Register Name Register Description
(RegNum [7:4]) Count
0000 null 1 Null register
0001 a0.# 1 Address register
0010 acc# 2 Accumulator register
0100 maskO.# 1 Mask register (active, branch, loop). Note that
dispatch mask is RO and in sr#
0101 msO.# 1 Mask stack register
0110 msdO.# 1 Mask stack depth register
0111 srO.# 1 State register
1000 crO.# 1 Control register
1001 n# 1 Notification count register
1010 ip 1 Instruction pointer register
1011-1111 reserved

The remaining register number field RegNum([3:0] is used to identify the register
number of a given architecture register type. Therefore, maximum number of
registers for a given architecture register type is limited to 16. The subregister
number field, SubRegNum, in instruction word has 5 bits. It is used for addressing
subregister region for an architecture register supporting register subdivision.
SubRegNum field is in unit of byte. Therefore, maximum number of bytes of an
architecture register is limited to 32. Depending on alignment restriction of a register
type, only certain encodings of SubRegNum field is applicable for an architecture
register. The detailed definitions are provided in the following sections.
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Access Granularity

ARF registers may be accessed with subregister granularity according to the
descriptions below and following the same rule of region-based addressing for GRF
and MRF. The machine code for register number and subregister number of ARF
follows the same rule as for other register files with byte granularity. For an ARF as a
source operand, the region-based address controls the source swizzle mux. The
destination subregister number and destination horizontal stride can be used to
control to generate the destination write mask at byte level.

A special restriction on region-based addressing for ARF is that the register region
cannot cross register boundary. This rule in fact only applies to the accumulator as it
is the only ARF register containing multiple registers (two).

Subregister fields of an ARF register may not all populated (indicated by the
subregister indicated as reserved). Write to an unpopulated subregister will be
dropped, there is no side effect. Read from an unpopulated subregister, if not
specified, will return unpredictable data.

Some of ARF registers are read-only. Write to a read-only ARF register is dropped and
there is no side effect.

Null Register
ARF Register Type Encoding (RegNum([7:4]): 0000b
Number of Registers: 1

Default Value: N/A
Normal Access: N/A
Elements: N/A
Element Size: N/A
Element Type: N/A
Access Granularity: N/A
Write Mask Granularity: N/A
SecHalf Control: N/A
Index-ability: No

The null register is a special encoding for an operand that does not have physical map.
It is primarily used in the instruction to indicate the non-existence of an operand.
Write to the null register has no side effect. Read from the null register returns
undefined result.

The null register can be used in the place when a source operand is absent. For
example, for a single source operand instruction such as MOV, NOT, the second source
operand <srcl> must be a null register.

When the null register is used as the destination operand of an instruction, it indicates
the computed results are not stored in any physical registers. However, implied writes
to the accumulator register, if applicable, may still occur for the instruction. When the
conditional modifier is present, update to the selected flag register also happens. In
this case, the register region fields of the ‘null’ operand are valid.

Another example use is to use the null register as the posted destination of a send

instruction for data write to indicate that there is no write completion
acknowledgement required. In this case, however, the register region fields are still
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valid. The null register can also be the first source operand for a send instruction
indicating the absent of the implied move. See send instruction for details.

11.3.4.4 Address Register
ARF Register Type Encoding (RegNum[7:4]): 0001b
Number of Registers: 1

Default Value: None
Normal Access: RW
Elements: 8
Element Size: 16 bits
Element Type: UW or UD
Access Granularity: Word
Write Mask Granularity: Word
SecHalf Control: N/A
Index-ability: No

There are eight address subregisters forming an 8-element vector. Each address
subregister contains 16 bits. Address subregisters can be used as regular source and
destination operands, as the indexing addresses for register-indirect-addressed access
of GRF registers, and also as the source of the message descriptor for the send
instruction.

Table 11-6. Register and Subregister Numbers for Address Register

RegNum[3:0] SubRegNum[4:0]

0000 = a0 When register a0 or subregisters in a0 is used as the address register for register-
indirect addressing, the address subregisters must be accessed as unsigned word
integers. Therefore, the subregister number field must also be word-aligned.

00000 = a0.0:uw
00010 = a0.1:uw
00100 = a0.2:uw
00110 = a0.3:uw

All other encodings are
reserved.

01000 = a0.4:uw
01010 = a0.5:uw
01100 = a0.6:uw
01110 = a0.7:uw
All other encodings are reserved.

However, when register a0 or subregisters in a0 is an explicit source and/or
destination register, other data types are allowed as long as the register region
falls in the 128-bit range.
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Table 11-7. Address Register Fields

Dword

Bits

Subfield Description

3

31:16

Address subregister a0.7:uw. This field, with only the lower 12 bits populated, can be
used as an unsigned integer for register-indirect register addressing.

Format: U12

15:0

Address subregister a0.6:uw. This field, with only the lower 12 bits populated, can be
used as an unsigned integer for register-indirect register addressing.

Format: U12

31:16

Address subregister a0.5:uw. This field, with only the lower 12 bits populated, can be
used as an unsigned integer for register-indirect register addressing.

Format: U12

15:0

Address subregister a0.4:uw. This field, with only the lower 12 bits populated, can be
used as an unsigned integer for register-indirect register addressing.

Format: U12

31:16

Address subregister a0.3:uw. This field, with only the lower 12 bits populated, can be
used as an unsigned integer for register-indirect register addressing.

Format: U12

15:0

Address subregister a0.2:uw. This field, with only the lower 12 bits populated, can be
used as an unsigned integer for register-indirect register addressing.

Format: U12

31:16

Address subregister a0.1:uw. This field can be used for register-indirect register
addressing or serve as message descriptor for send instruction. When used for register-
indirect register addressing, it is a 12-bit unsigned integer. For send instruction, it
provides the higher 16 bits of <desc>.

Format: U12 or Ul6.

15:0

Address subregister a0.0:uw. This field can be used for register-indirect register
addressing or serve as message descriptor for send instruction. When used for register-
indirect register addressing, it is a 12-bit unsigned integer. For send instruction, it
provides the lower 16 bits of <desc>.

Format: U12 or U1l6.

When used as a source or destination operand, the address subregisters can be
accessed individually or as a group. In the following example, the first instruction
moves all 8 address subregisters to the first half of GRF register r1, the second
instruction replicates a0.4:uw as an unsigned word to the second half of r1, the third
instruction moves the first 4 words in rl into the first 4 address subregisters, and the
fourth instruction replicates r1.4 as a unsigned word to the last 4 address
subregisters.

mov (8) r1.0<1>:uw a0.0<8;8,1>:uw //rl.n=a0.nforn=0to 7 in words
mov (8) r1.8<1>:uw a0.4<0;1,0>:uw  //rl.m =a0.4 for m = 8 to 15 in words
mov (4) a0.0<1>:uw r1.0<4;4,1>:uw  //a0.n=rl.nforn=0to 3 in words
)

mov (4) a0.4<1>:uw r1.4<0;1,0>:.uw  //a0.m =r1.4 form =4 to 7 in words
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When used as the register-indirect addressing for GRF registers, the address
subregisters can be accessed also individually or in group. When accessed in group,
the address subregisters must be group-aligned. For example, when two address
subregisters are used for register indirect addressing, they must be aligned to even
address subregisters. In the following example, the first instruction is legal. However,
the second one is not. As ExecSize = 8 and the width of <src0> is 4, two address
subregisters will be used as row indices, each pointing to 4 data elements spaced by
HorzStride = 1 dword. For the first instruction, the two address subregisters are
a0.2:uw and a0.3:uw. The two align to a dword group in the address register.
However, the two address subregisters for the second instruction are a0.3:uw and
a0.4:uw. They are not dword aligned in the address register and therefore violate the
above mentioned alignment rule.

mov (8) r1.0<1>:d r[a0.2]<4,1>.d /l'a0.2 and a0.3 is used for srcl
mov (8) r1.0<1>:d r[a0.3]<4,1>:d II'LLEGAL use of register indirect

Implementation restriction: GEN4 ISA supports per channel indexing for a source
operand. As there are only 8 sub-fields in the address register (to save hardware
cost), the execution size of an instruction using per-channel indexing is limited to 8.
Software may reload the address register and use compression control SecHalf to
complete a 16-channel computation.

Implementation restriction: When used as the source operand <desc> for the send
instruction, only the first dword subregister of a0 register is allowed (i.e. a0.0:ud,
which can be viewed as the combination of a0.0:uw and a0.1:uw). In addition, it must
be of UD type and in the following form <desc> = a0.0<0;1,0>:ud.

Implementation restriction: Elements a0.0 and a0.1 have 16 bits each, but the rest
of elements (a0.2:uw through a0.7:uw) only have 12 bits populated each. 12-bit
precision supports full indirect-addressing capability for the largest GRF register range.
Software must observe the asymmetry of the implementation. When a0.0:uw and
a0.1:uw are the source or destination, full 16-bit precision is preserved. However,
when a0.2:uw to a0.7:uw are the destination, the higher 4 bits for each element will
be dropped; when they are the source, hardware inserts zero to the higher 4 bits for
each element.

Performance Note: There is only one scoreboard for the whole address register.
When a write to some subregisters is in flight, hardware will stall any instruction
writing to other subregisters. Software may use the destination dependency control
{NoDDChk, NoDDCIr} to improve performance in this case. Similarly, when a write to
some subregisters is in flight, hardware will stall any instruction sourcing other
subregisters until the write retires.
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Accumulator Registers
ARF Register Type Encoding (RegNum([7:4]): 0010b
Number of Registers: 2

Default Value: None
Normal Access: RW
Elements: 8 or 16
Element Size: Various
Element Type: Various
Access Granularity: Word
Write Mask Granularity: N/A
SecHalf Control: Yes
Index-ability: No

There are two accumulator registers, accO and accl. They can be accessed either as
explicit source and/or destination registers or as implied source and/or destination
registers. To a programmer, each accumulator register may contain either 8
doublewords or 16 words of data elements. However, as shown in

Table 11-9, each data element may have higher precision with additional guard bits
than that indicated by the numerical data type.

Table 11-8. Register and Subregister Numbers for Accumulate Register

RegNum[3:0] SubRegNum[4:0]

0000 = accO
0001 = accl

All other encodings are reserved.

Reserved: MBZ

The accumulator subfields are individually addressable at word
granularity. When an accumulator register is an explicit destination, it
follows the rules for a destination register. If an accumulator is an explicit
source operand, its register region must match with that of the
destination register.

The accumulators are implied destination for arithmetic instructions, including parallel
and vector instructions. For all other instructions, if accumulator is not specified as the
destination operand, the content in the accumulator registers are unaltered. Details
can be found in Instruction Reference chapter. There is a control field called
Accumulator Disable in control register cr0.0 allowing software to turn on (which is the
default) and off the implicit update of accumulators.

When an accumulator register is used as an implicit source or destination operand, it
is accO by default. For a compressed instruction, both accO and accl are used. If
ComprCtrl is set to SecHalf, the implicit accumulator is then accl. When an
accumulator register is used as an explicit source or destination operand, the SecHalf
compression control is ignored. In other words, the implied accumulator (source or
destination), if present, is the same as the explicit one.

It is illegal to specify different accumulator registers for source and destination

operands in an instruction (e.g. “add (8) accl:f accO:f”). Result of such instruction is
unpredictable.
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For a compressed instruction, if an accumulator register is used as an explicit source
or destination operand, it must be accO.

When an accumulator register is used as an explicit source operand, it must be the
first source operand <srcO>. Meanwhile, source operand modifiers (absolute, negate)
are not allowed, as there are ignored by hardware.

When an accumulator register is explicitly or implicitly specified as the destination,
destination channel enables do not apply to the accumulator register. In other words,
accumulator registers cannot be masked out and the content of the ‘disabled’ channels
of the accumulator register is unpredictable.

When an accumulator register is used as an explicit destination operand, saturation
(.sat) is not allowed.

Whether the accumulator register is updated for a given instruction depends on
several conditions: it can be an explicit destination operand, it can be an implicit
destination for arithmetic and logic instructions and the implicit update is also subject
to the control register bit mentioned above. For an instruction in the form like, opcode
<dst> <srcO> [<src1>], the accumulator register is updated if the any of the
following conditions is true

e <dst> is an accumulator register
e ¢r0.0[1] is cleared and opcode indicates that the instruction implicitly update accumulator register
Bit field cr0.0[1] is the Accumulator Disable that controls the implied update.

Implementation Restriction due to Floating Point Precision: When a floating
point value is stored in the accumulator, it is stored in a non-normalized form with
extra precision in mantissa. For an instruction involving addition operation sourcing
accumulators, the addition is performed in nhon-normalized space. Therefore, the
results may vary depending on the order of the operations. This is commonly referred
to as ‘fused’ operations. For example, instructions like mac and dp# are fused
operation. A group of back-to-back add instructions sourcing accumulators is also a
fused operation. Though accumulator may be used as a temporary register with
reduced pipeline compute latency, caution must be taken when using accumulator for
floating point computation. In general, floating point computation explicitly and/or
implicitly involving accumulator should be only used for fused operations where result
deviation due to operation order is acceptable. Otherwise, accumulator should not be
used as a temporary register.

Errata: When accl is used as explicit operands of two back-to-back instructions, the
results may be nondeterministic. This can be worked around using accl together with
SecHalf compression control. This provides almost equivalent behavior except that
the second half of the flag register may be used (including when ExecSize = 16). If for
certain reason that first half of the flag (or the whole 16-bit of the flag) needs to be
used together with accl, an alternative workaround is to use ‘switch’ instruction
control on the first instruction.

Performance Note: GEN4 hardware cannot support write followed by read on the
same accumulator register back to back. A thread stall (equivalent of having a ‘switch’
instruction control) may occur before an instruction that uses an accumulator register
as an (implicit or explicit) source and the previous instruction has the same
accumulator register as the (implicit or explicit) destination. This commonly occurs in
signal processing algorithms. For example, a multi-tap FIR filter can be implemented
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by a sequence of mac instructions; a matrix computation in DCT transform also
consists of a sequence of mac instructions. A program with a non-compressed
instruction stream may choose to interleave the use of accO and accl to achieve
better performance, if accumulators are used explicitly. This is not true if the
accumulator is addressed implicitly based on the SecHalf compression control field as
flags and masks are also affected by SecHalf.

Implementation Precision Restriction: As there are only 64 bits per channel in
dword mode (D and UD), it is sufficient to store multiplication result of two dword
operands as long as the post source modified sources are still within 32 bits. If any
one source is type UD and is negated, the negated result becomes 33 bits. The dword
multiplication results will be 65 bits, bigger than the storage capacity of accumulators.
Consequently, the results are unpredictable.

Implementation Precision Restriction: As there are only 33 bits per channel in
word mode (W and UW), it is sufficient to store multiplication result of two word
operands with and without source modifier as the result is up to 33 bits. Integer is
stored in accumulator in 2’s complement form with bit 32 as the sign bit. As there is
no guard bit left, the accumulator can only be sourced once before running into risk of
overflowing. When overflow occurs, only modular addition can generate correct result.
But in this case, conditional flags may be incorrect. When saturation is used, the
output is unpredictable. This is also true for other operations that may result in more
than 33 bits of data. For example, adding UDW (FFFFFFFF) with DW (00000001)
results in (LFFFFFFFE). The sign bit is now at bit 34 and is lost when stored in the
accumulator. When it is read out later from the accumulator, it becomes a negative
number as bit 32 now becomes the sign bit.

Table 11-9. Accumulator Channel Precision

Data H# Bits / Description
Type Channel Channel
F 8 54+8 When the internal execution data type is float, each accumulator register
contains 8 channels of (extended) single precision floating point numbers.
The data is in non-normalized format with an 8-bit exponent and a 54-bit
mantissa in 2's complement form. The 54-bit mantissa provides 5 extra
guide bits over the precision required to store the multiplication result of
two 32-bit single precision floats.
D 8 64 When the internal execution data type is doubleword integer, each
(UD) accumulator register contains 8 channels of (extended) doubleword integer
values. The data are always stored in accumulator in 2’s complement form
with 64 bits total regardless of the source data type. This is sufficient to
construct the 64-bit D or UD multiplication results using an instruction
macro sequence consisting mul, mach and shr (or mov). [Open: may
mention negating a UD may result in unpredictable nhumbers.]
w 16 33 When the internal execution data type is doubleword integer, each
(uw) accumulator register contains 16 channels of (extended) word integer
values. The data are always stored in accumulator in 2’s complement form
with 33 bits total. This supports single instruction multiplication of two
word source in W and/or UW format.
B N/A N/A Not supported data type.
wB)
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Implementation Restriction about Denorm: In general, for a floating point
arithmetic instruction, hardware converts a denormalized number to sign-preserved
zero before performing the computation. However, there is no such a conversion for
an accumulator source operand. When accumulator is used as a temporary register for
floating point computation, it is software’s responsibility to ensure that such
conversion is performed when storing floating point data in the accumulator. This is
illustrated in the example for the following three-source non-Gen4 ‘mad’ instruction:

mad dst srcO srcl src2 // dst = srcO + srcl * src2

One might intuitively consider translating this into two Gen4 instructions: a mov to
accumulator followed by a mac:

mov acc0.0:f src0:f// acc0.0 = srcO (this is a ‘raw’ move)
mac dst srcl src2 // dst = acc0.0 + srcl * src2

This may generate incorrect floating results as the first move instruction doesn’t flush
denorms in srcO into zeros in acc0.0. Consequently, these denorm numbers in
accumulator may create undefined results for the mac instruction. A correct
translation should use an instruction that forces the denorm-to-zero flush, such as a
multiplication of 1 or an addition of negative zero as show below. Yes, it must be a
negative zero to preserve the sign of the source.

add acc0.0:f srcO:f -0.0:f // acc0.0 = srcO (with denorm-to-zero flush)

mac dst srcl src2 // dst = acc0.0 + srcl * src2

Flag Register
ARF Register Type Encoding (RegNum[7 4]): 0011b
Number of Registers:

Default Value: None
Normal Access: RW
Elements: 2
Element Size: 16 bits
Element Type: uw
Access Granularity: Word
Write Mask Granularity: Word
SecHalf Control: Yes
Index-ability: No

There is one flag register that consists of two 16-bit subregisters. Each flag
subregister can be individually addressed. Each bit of a flag subregister corresponds to
a data channel. (See Table 11-10 for details). Furthermore, each 16-bit subregister
may be split to half when ComprcCtrl field is set to SecHalf in the instruction.

The two flag subregisters (f0.0:uw and f0.1:uw) can be used as the destination of the
conditional modifier and can also be the source of the predication. As both predication
flag source and conditional flag destination share the same instruction field, when
both are enabled, they use the same flag subregister.

The values held in the individual bits of a flag subregister are the result of the most
recent instruction which performed a condition-code evaluation with that flag register
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updates flag f0.0 with the per-channel results of the not-zero condition. The flag
subregister has per-bit write enables. When being updated as the secondary
destination associated with conditional modifier, only the bits corresponding to the
enabled channels in EMask are updated. The other bits in the flag subregister are
unchanged.

The flag register as a whole or as two subregisters can also be an explicit source
and/or destination operand.

Table 11-10. Register and Subregister Numbers for Flag Register

RegNum[3:0] SubRegNum[4:0]

0000 = fO

All other encodings are reserved. 00010 = fO.1:uw

00000 = f0.0:uw

All other encodings are reserved.

Table 11-11. Flag Register Fields

Dword Bits Subfield Description
(0] 31:16 Flag subregister fO.1:uw. This field contains 16 bits of conditional flags. It can be used
for predication and branch instructions. This field can be updated as the regular
destination operand of an instruction or as the secondary destination operands associated
with conditional modifier. This field can serve as regular source operand of an instruction
o