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1 Introduction 

This Programmer’s Reference Manual (PRM) describes the architectural behavior and 
programming environment of the Intel® 965 Express Chipset family and Intel® G35 
Express Chipset GMCH graphics devices (see Table  1-1). The GMCH’s Graphics 
Controller (GC) contains an extensive set of registers and instructions for 
configuration, 2D, 3D, and Video systems. The PRM describes the register, instruction, 
and memory interfaces and the device behaviors as controlled and observed through 
those interfaces. The PRM also describes the registers and instructions and provides 
detailed bit/field descriptions.  

Note: The term “Gen4” is used throughout the PRM to refer to the Generation 4 family of 
graphics devices. The devices listed in Table  1-1 are Gen4 devices. 

Table  1-1. Supported Chipsets 

Chipset Family Name Device Name Device Tag 

Intel® Q965 Chipset 
Intel® Q963 Chipset 
Intel® G965 Chipset 

82Q965 GMCH 
82Q963 GMCH 
82G965 GMCH 

[DevBW] 

Intel® G35 Chipset 82G35 GMCH [DevBW-E] 

Intel® GM965 Chipset 
Intel® GME965 Chipset 

GM965 GMCH 
GME965 GMCH 

[DevCL] 

NOTES:  
1. Unless otherwise specified, the information in this document applies to all of the devices 

mentioned in Table  1-1. For Information that does not apply to all devices, the Device 
Tag is used.  

2. Throughout the PRM, references to “All” in a project field refters to all devices in  
Table  1-1. 

3. Throughout the PRM, references to [DevBW] apply to both [DevBW] and [DevBW-E]. 
[DevBW-E] is referenced specifically for information that is [DevBW-E] only.   

4. Stepping info is sometimes appended to the device tag (e.g., [DevBW-C]).  Information 
without any device tagging is applicable to all devices/steppings. 

The PRM is intended for hardware, software, and firmware designers who seek to 
implement or use the graphic functions of the 965 Express Chipset family and G35 
Express Chipset. Familiarity with 2D and 3D graphics programming is assumed. 
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The Programmer’s Reference Manual is organized into four volumes: 

• PRM, Volume 1: Graphics Core  
Volume 1 covers the overall Graphics Processing Unit (GPU) without much detail 
on 3D, Media, or the core subsystem. Topics include the command streamer, 
context switching, and memory access (including tiling). The Memory Data 
Formats can also be found in this volume.   
 
The volume also contains a chapter on the Graphics Processing Engine (GPE). The 
GPE is a collective term for 3D, Media, the subsystem, and the parts of the 
memory interface that are used by these units. Display, blitter and their memory 
interfaces are not included in the GPE.  

• PRM, Volume 2; 3D/Media 
Volume 2 covers the 3D and Media pipelines in detail. This volume is where details 
for all of the “fixed functions” are covered, including commands processed by the 
pipelines, fixed-function state structures, and a definition of the inputs (payloads) 
and outputs of the threads spawned by these units. 
 
This volume also covers the single Media Fixed Function, VLD. It describes how to 
initiate generic threads using the thread spawner (TS). It is generic threads which 
will be used for doing the majority of media functions.  Programmable kernels will 
handle the algorithms for media functions such IDCT, Motion Compensation, and 
even Motion Estimation (used for encoding MPEG streams). 

• PRM, Volume 3: Display Registers 
Volume 3 describes the control registers for the display. The overlay registers and 
VGA registers are also cover in this volume. 

• PRM, Volume 4: Subsystem and Cores 
Volume 4 describes the GMCH programmable cores, or EUs, and the “shared 
functions”, which are shared by more than one EU and perform functions such as 
I/O and complex math functions.  
 
The shared functions consist of the sampler, extended math unit, data port (the 
interface to memory for 3D and media), Unified Return Buffer (URB), and the 
Message Gateway which is used by EU threads to signal each other. The EUs use 
messages to send data to and receive data from the subsystem; the messages are 
described along with the shared functions, although the generic message send EU 
instruction is described with the rest of the instructions in the Instruction Set 
Architecture (ISA) chapters. 
 
This latter part of this volume describes the GMCH core, or EU, and the associated 
instructions that are used to program it. The instruction descriptions make up 
what is referred to as an Instruction Set Architecture, or ISA.  The ISA describes 
all of the instructions that the GMCH core can execute, along with the registers 
that are used to store local data. 

Note: The chipset PCI Configuration registers are not part of this PRM.  
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1.1 Notations and Conventions 

1.1.1 Reserved Bits and Software Compatibility 

In many register, instruction and memory layout descriptions, certain bits are marked 
as “Reserved”.  When bits are marked as reserved, it is essential for compatibility with 
future devices that software treat these bits as having a future, though unknown, 
effect.  The behavior of reserved bits should be regarded as not only undefined, but 
unpredictable.  Software should follow these guidelines in dealing with reserved bits: 

Do not depend on the states of any reserved bits when testing values of registers that 
contain such bits.  Mask out the reserved bits before testing. Do not depend on the 
states of any reserved bits when storing to instruction or to a register. 

When loading a register or formatting an instruction, always load the reserved bits 
with the values indicated in the documentation, if any, or reload them with the values 
previously read from the register. 

1.2 Terminology 

 

Term Abbr. Definition 

3D Pipeline — One of the two pipelines supported in the GPE.  The 3D 
pipeline is a set of fixed-function units arranged in a 
pipelined fashion, which process 3D-related commands 
by spawning EU threads.   Typically this processing 
includes rendering primitives.  See 3D Pipeline. 

Application IP AIP Application Instruction Pointer.  This is part of the 
control registers for exception handling for a thread. 
Upon an exception, hardware moves the current IP into 
this register and then jumps to SIP. 

Architectural 
Register File 

ARF A collection of architecturally visible registers for a 
thread such as address registers, accumulator, flags, 
notification registers, IP, null, etc. ARF should not be 
mistaken as just the address registers. 

Array of Cores — Refers to a group of Gen4 EUs, which are physically 
organized in two or more rows.  The fact that the EUs 
are arranged in an array is (to a great extent) 
transparent to CPU software or EU kernels. 

Binding Table — Memory-resident list of pointers to surface state blocks 
(also in memory). 

Binding Table 
Pointer 

BTP Pointer to a binding table, specified as an offset from the 
Surface State Base Address register. 

Bypass Mode — Mode where a given fixed function unit is disabled and 
forwards data down the pipeline unchanged.  Not 
supported by all FF units. 

Byte B A numerical data type of 8 bits, B represents a signed 
byte integer. 
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Term Abbr. Definition 

Child Thread — A branch-node or a leaf-node thread that is created by 
another thread. It is a kind of thread associated with the 
media fixed function pipeline. A child thread is originated 
from a thread (the parent) executing on an EU and 
forwarded to the Thread Dispatcher by the TS unit. A 
child thread may or may not have child threads 
depending on whether it is a branch-node or a leaf-node 
thread. All pre-allocated resources such as URB and 
scratch memory for a child thread are managed by its 
parent thread. 

Clip Space — A 4-dimensional coordinate system within which a 
clipping frustum is defined.  Object positions are 
projected from Clip Space to NDC space via 
“perspecitive divide” by the W coordinate, and then 
viewport mapped into Screen Space  

Clipper — 3D fixed function unit that removes invisible portions of 
the drawing sequence by discarding (culling) primitives 
or by “replacing” primitives with one or more primitives 
that replicate only the visible portion of the original 
primitive. 

Color Calculator CC Part of the Data Port shared function, the color 
calculator performs fixed-function pixel operations (e.g., 
blending)  prior to writing a result pixel into the render 
cache. 

Command — Directive fetched from a ring buffer in memory by the 
Command Streamer and routed down a pipeline.  
Should not be confused with instructions which are 
fetched by the instruction cache subsystem and 
executed on an EU. 

Command Streamer CS or CSI Functional unit of the Graphics Processing Engine that 
fetches commands, parses them and routes them to the 
appropriate pipeline. 

Constant URB Entry CURBE A UE that contains “constant” data for use by various 
stages of the pipeline. 

Control Register CR The read-write registers are used for thread mode 
control and exception handling for a thread. 

Data Port DP Shared function unit that performs a majority of the 
memory access types on behalf of Gen4 programs.  The 
Data Port contains the render cache and the constant 
cache and performs all memory accesses requested by 
Gen4 programs except those performed by the Sampler.  
See DataPort. 

Degenerate Object — Object that is invisible due to coincident vertices or 
because does not intersect any sample points (usually 
due to being tiny or a very thin sliver). 

Destination — Describes an output or write operand. 

Destination Size — The number of data elements in the destination of a 
Gen4 SIMD instruction. 
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Term Abbr. Definition 

Destination Width — The size of each of (possibly) many elements of the 
destination of a Gen4 SIMD instruction. 

Double Quad word 
(DQword) 

DQ A fundamental data type, DQ represents 16 bytes. 

Double word 
(DWord) 

D or DW A fundamental data type, D or DW represents 4 bytes. 

Drawing Rectangle — A screen-space rectangle within which 3D primitives are 
rendered.  An objects screen-space positions are relative 
to the Drawing Rectangle origin.  See Strips and Fans. 

End of Block EOB A 1-bit flag in the non-zero DCT coefficient data 
structure indicating the end of an 8x8 block in a DCT 
coefficient data buffer. 

End Of Thread EOT a message sideband signal on the Output message bus 
signifying that the message requester thread is 
terminated. A thread must have at least one SEND 
instruction with the EOT bit in the message descriptor 
field set in order to properly terminate. 

Exception — Type of (normally rare) interruption to EU execution of a 
thread’s instructions.  An exception occurrence causes 
the EU thread to begin executing the System Routine 
which is designed to handle exceptions. 

Execution Channel — Gen4 EU instructions typically operate on multiple data 
values in parallel (i.e., in “SIMD” fashion). The data is 
processed in parallel “execution channels” (e.g., a 
SIMD8 instruction uses 8 execution channels to perform 
8 operations in parallel). 

Execution Size ExecSize Execution Size indicates the number of data elements 
processed by a GEN4 SIMD instruction. It is one of the 
GEN4 instruction fields and can be changed per 
instruction. 

Execution Unit  EU Execution Unit. An EU is a multi-threaded processor 
within the GEN4 multi-processor system. Each EU is a 
fully-capable processor containing instruction fetch and 
decode, register files, source operand swizzle and SIMD 
ALU, etc. An EU is also referred to as a GEN4 Core. 

Execution Unit 
Identifier 

EUID The 4-bit field within a thread state register (SR0) that 
identifies the row and column location of the EU a 
thread is located. A thread can be uniquely identified by 
the EUID and TID. 

Execution Width ExecWidth The width of each of several data elements that may be 
processed by a single Gen4 SIMD instruction. 

Extended Math Unit EM A Shared Function that performs more complex math 
operations on behalf of several EUs. 

FF Unit — A Fixed-Function Unit is the hardware component of a 
3D Pipeline Stage.  A FF Unit typically has a unique FF 
ID associated with it. 
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Term Abbr. Definition 

Fixed Function FF Function of the pipeline that is performed by dedicated 
(vs. programmable) hardware. 

Fixed Function ID FFID Unique identifier for a fixed function unit. 

FLT_MAX fmax The magnitude of the maximum representable single 
precision floating number according to IEEE-754 
standard. FLT_MAX has an exponent of 0xFE and a 
mantissa of all one’s. 

Gateway GW See Message Gateway. 

GEN4 Core — Alternative name for an EU in the GEN4 multi-processor 
system. 

General Register 
File 

GRF Large read/write register file shared by all the EUs for 
operand sources and destinations. This is the most 
commonly used read-write register space organized as 
an array of 256-bit registers for a thread. 

General State Base 
Address 

— The Graphics Address of a block of memory-resident 
“state data”, which includes state blocks, scratch space, 
constant buffers and kernel programs.  The contents of 
this memory block are referenced via offsets from the 
contents of the General State Base Address register.  
See Graphics Processing Engine. 

Geometry Shader GS Fixed-function unit between the vertex shader and the 
clipper that (if enabled) dispatches “geometry shader” 
threads on its input primitives.  Application-supplied 
geometry shaders normally expand each input primitive 
into several output primitives in order to perform 3D 
modeling algorithms such as fur/fins.   See Geometry 
Shader. 

Graphics Address — The GPE virtual address of some memory-resident 
object.  This virtual address gets mapped by a GTT or 
PGTT to a physical memory address.  Note that many 
memory-resident objects are referenced not with 
Graphics Addresses, but instead with offsets from a 
“base address register”. 

Graphics Processing 
Engine 

GPE Collective name for the Subsystem, the 3D and Media 
pipelines, and the Command Streamer. 

Guardband GB Region that may be clipped against to make sure objects 
do not exceed the limitations of the renderer’s 
coordinate space. 

Horizontal Stride HorzStride The distance in element-sized units between adjacent 
elements of a Gen4 region-based GRF access. 

Immediate floating 
point vector 

VF A numerical data type of 32 bits, an immediate floating 
point vector of type VF contains 4 floating point 
elements with 8-bit each. The 8-bit floating point 
element contains a sign field, a 3-bit exponent field and 
a 4-bit mantissa field. It may be used to specify the type 
of an immediate operand in an instruction. 
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Term Abbr. Definition 

Immediate integer 
vector 

V A numerical data type of 32 bits, an immediate integer 
vector of type V contains 8 signed integer elements with 
4-bit each. The 4-bit integer element is in 2’s 
complement form. It may be used to specify the type of 
an immediate operand in an instruction. 

Index Buffer IB Buffer in memory containing vertex indices. 

Instance — In the context of the VF unit, an instance is one of a 
sequence of sets of similar primitive data.  Each set has 
identical vertex data but may have unique instance data 
that differentiates it from other sets in the sequence. 

Instruction — Data in memory directing an EU operation.  Instructions 
are fetched from memory, stored in a cache and 
executed on one or more Gen4 cores.  Not to be 
confused with commands which are fetched and parsed 
by the command streamer and dispatched down the 3D 
or Media pipeline. 

Instruction Pointer IP The address (really an offset) of the instruction currently 
being fetched by an EU.  Each EU has its own IP. 

Instruction Set 
Architecture 

ISA The GEN4 ISA describes the instructions supported by a 
GEN4 EU. 

Instruction State 
Cache 

ISC On-chip memory that holds recently-used instructions 
and state variable values. 

Interface Descriptor — Media analog of a State Descriptor. 

Intermediate Z IZ Completion of the Z (depth) test at the front end of the 
Windower/Masker unit when certain conditions are met 
(no alpha, no pixel-shader computed Z values, etc.) 

Inverse Discrete 
Cosine Transform 

IDCT the stage in the video decoding pipe between IQ and MC 

Inverse 
Quantization 

IQ A stage in the video decoding pipe between IS and 
IDCT. 

Inverse Scan IS A stage in the video decoding pipe between VLD and IQ. 
In this stage, a sequence of none-zero DCT coefficients 
are converted into a block (e.g. an 8x8 block) of 
coefficients. VFE unit has fixed functions to support IS 
for MPEG-2. 

Jitter — Just-in-time compiler. 

Kernel — A sequence of Gen4 instructions that is logically part of 
the driver or generated by the jitter.  Differentiated from 
a Shader which is an application supplied program that 
is translated by the jitter to Gen4 instructions. 

Least Significant Bit LSB Least Significant Bit 

MathBox — See Extended Math Unit 

Media — Term for operations such as video decode and encode 
that are normally performed by the Media pipeline. 
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Term Abbr. Definition 

Media Pipeline — Fixed function stages dedicated to media and “generic” 
processing, sometimes referred to as the generic 
pipeline. 

Message — Messages are data packages transmitted from a thread 
to another thread, another shared function or another 
fixed function. Message passing is the primary 
communication mechanism of GEN4 architecture. 

Message Gateway — Shared function that enables thread-to-thread message 
communication/synchronization used solely by the Media 
pipeline. 

Message Register 
File 

MRF Write-only registers used by EUs to assemble messages 
prior to sending and as the operand of a send 
instruction. 

Most Significant Bit MSB Most Significant Bit 

Motion 
Compensation 

MC Part of the video decoding pipe. 

Motion Picture 
Expert Group 

MPEG MPEG is the international standard body 
JTC1/SC29/WG11 under ISO/IEC that has defined audio 
and video compression standards such as MPEG-1, 
MPEG-2, and MPEG-4, etc. 

Motion Vector Field 
Selection 

MVFS A four-bit field selecting reference fields for the motion 
vectors of the current macroblock. 

Multi Render 
Targets 

MRT Multiple independent surfaces that may be the target of 
a sequence of 3D or Media commands that use the same 
surface state. 

Normalized Device 
Coordinates 

NDC Clip Space Coordinates that have been divided by the 
Clip Space “W” component. 

Object — A single triangle, line or point. 

Parent Thread — A thread corresponding to a root-node or a branch-node 
in thread generation hierarchy. A parent thread may be 
a root thread or a child thread depending on its position 
in the thread generation hierarchy. 

Pipeline Stage — A abstracted element of the 3D pipeline, providing 
functions performed by a combination of the 
corresponding hardware FF unit and the threads 
spawned by that FF unit.  

Pipelined State 
Pointers 

PSP Pointers to state blocks in memory that are passed 
down the pipeline. 

Pixel Shader PS Shader that is supplied by the application, translated by 
the jitter and is dispatched to the EU by the Windower 
(conceptually) once per pixel. 

Point — A drawing object characterized only by position 
coordinates and width. 

Primitive — Synonym for object: triangle, rectangle, line or point. 
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Term Abbr. Definition 

Primitive Topology — A composite primitive such as a triangle strip, or line 
list.  Also includes the objects triangle, line and point as 
degenerate cases. 

Provoking Vertex — The vertex of a primitive topology from which vertex 
attributes that are constant across the primitive are 
taken. 

Quad Quad word 
(QQword) 

QQ A fundamental data type, QQ represents 32 bytes. 

Quad Word 
(QWord) 

QW A fundamental data type, QW represents 8 bytes. 

Rasterization — Conversion of an object represented by vertices into the 
set of pixels that make up the object. 

Region-based 
addressing 

— Collective term for the register addressing modes 
available in the EU instruction set that permit 
discontiguous register data to be fetched and used as a 
single operand. 

Render Cache RC Cache in which pixel color and depth information is 
written prior to being written to memory, and where 
prior pixel destination attributes are read in preparation 
for blending and Z test. 

Render Target RT A destination surface in memory where render results 
are written. 

Render Target Array 
Index 

— Selector of which of several render targets the current 
operation is targeting. 

Root Thread — A root-node thread. A thread corresponds to a root-node 
in a thread generation hierarchy. It is a kind of thread 
associated with the media fixed function pipeline. A root 
thread is originated from the VFE unit and forwarded to 
the Thread Dispatcher by the TS unit. A root thread may 
or may not have child threads. A root thread may have 
scratch memory managed by TS. A root thread with 
children has its URB resource managed by the VFE. 

Sampler — Shared function that samples textures and reads data 
from buffers on behalf of EU programs. 

Scratch Space — Memory allocated to the subsystem that is used by EU 
threads for data storage that exceeds their register 
allocation, persistent storage, storage of mask stack 
entries beyond the first 16, etc. 

Shader — A Gen4 program that is supplied by the application in  
an high level shader language, and translated to Gen4 
instructions by the jitter. 

Shared Function SF Function unit that is shared by EUs.  EUs send messages 
to shared functions; they consume the data and may 
return a result.  The Sampler, Data Port and Extended 
Math unit are all shared functions. 
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Term Abbr. Definition 

Shared Function ID SFID Unique identifier used by kernels and shaders to target 
shared functions and to identify their returned 
messages. 

Single Instruction 
Multiple Data 

SIMD The term SIMD can be used to describe the kind of 
parallel processing architecture that exploits data 
parallelism at instruction level. It can also be used to 
describe the instructions in such architecture. 

Source — Describes an input or read operand 

Spawn — To initiate a thread for execution on an EU.  Done by the 
thread spawner as well as most FF units in the 3D 
pipeline. 

Sprite Point — Point object using full range texture coordinates.  Points 
that are not sprite points use the texture coordinates of 
the point’s center across the entire point object. 

State Descriptor — Blocks in memory that describe the state associated 
with a particular FF, including its associated kernel 
pointer, kernel resource allowances, and a pointer to its 
surface state. 

State Register SR The read-only registers containing the state information 
of the current thread, including the EUID/TID, 
Dispatcher Mask, and System IP. 

State Variable SV An individual state element that can be varied to change 
the way given primitives are rendered or media objects 
processed.  On Gen4 state variables persist only in 
memory and are cached as needed by 
rendering/processing operations except for a small 
amount of non-pipelined state. 

Stream Output — A term for writing the output of a FF unit directly to a 
memory buffer instead of, or in addition to, the output 
passing to the next FF unit in the pipeline.  Currently 
only supported for the Geometry Shader (GS) FF unit. 

Strips and Fans SF Fixed function unit whose main function is to decompose 
primitive topologies such as strips and fans into 
primitives or objects. 

Sub-Register — Subfield of a SIMD register. A SIMD register is an 
aligned fixed size register for a register file or a register 
type. For example, a GRF register, r2, is 256-bit wide, 
256-bit aligned register. A sub-register, r2.3:d, is the 
fourth dword of GRF register r2. 

Subsystem — The Gen4 name given to the resources shared by the FF 
units, including shared functions and EUs. 

Surface — A rendering operand or destination, including textures, 
buffers, and render targets. 

Surface State — State associated with a render surface including  

Surface State Base 
Pointer 

— Base address used when referencing binding table and 
surface state data. 
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Term Abbr. Definition 

Synchronized Root 
Thread 

— A root thread that is dispatched by TS upon a ‘dispatch 
root thread’ message. 

System IP SIP There is one global System IP register for all the 
threads. From a thread’s point of view, this is a virtual 
read-only register. Upon an exception, hardware 
performs some bookkeeping and then jumps to SIP. 

System Routine — Sequence of Gen4 instructions that handles exceptions.  
SIP is programmed to point to this routine, and all 
threads encountering an exception will call it. 

Thread — An instance of a kernel program executed on an EU. The 
life cycle for a thread starts from the executing the first 
instruction after being dispatched from Thread 
Dispatcher to an EU to the execution of the last 
instruction – a send instruction with EOT that signals the 
thread termination. Threads in GEN4 system may be 
independent from each other or communicate with each 
other through Message Gateway share function. 

Thread Dispatcher TD Functional unit that arbitrates thread initiation requests 
from Fixed Functions units and instantiates the threads 
on EUs. 

Thread Identifier TID The field within a thread state register (SR0) that 
identifies which thread slots on an EU a thread occupies. 
A thread can be uniquely identified by the EUID and 
TID. 

Thread Payload — Prior to a thread starting execution, some amount of 
data will be pre-loaded in to the thread’s GRF (starting 
at r0).  This data is typically a combination of control 
information provided by the spawning entity (FF Unit) 
and data read from the URB. 

Thread Spawner TS The second and the last fixed function stage of the 
media pipeline that initiates new threads on behalf of 
generic/media processing. 

Topology — See Primitive Topology. 

Unified Return 
Buffer 

URB The on-chip memory managed/shared by GEN4 Fixed 
Functions in order for a thread to return data that will be 
consumed either by a Fixed Function or other threads. 

Unsigned Byte 
integer 

UB A numerical data type of 8 bits. 

Unsigned Double 
Word integer 

UD A numerical data type of 32 bits. It may be used to 
specify the type of an operand in an instruction. 

Unsigned Word 
integer 

UW A numerical data type of 16 bits. It may be used to 
specify the type of an operand in an instruction. 

Unsynchronized 
Root Thread 

— A root thread that is automatically dispatched by TS. 

URB Dereference — See URB Reference 

URB Entry UE URB Entry:  A logical entity stored in the URB (such as a 
vertex), referenced via a URB Handle. 
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Term Abbr. Definition 

URB Entry 
Allocation Size 

— Number of URB entries allocated to a Fixed Function 
unit. 

URB Fence Fence Virtual, movable boundaries between the URB regions 
owned by each FF unit. 

URB Handle — A unique identifier for a URB entry that is passed down a 
pipeline. 

URB Reference — For the most part, data is passed down the fixed 
function pipeline in an indirect fashion. The data is 
typically stored in the URB and accessed via a URB 
handle. When a pipeline stage passes the handle of a 
URB data entry to a downstream stage, it is said to 
make a URB reference. Note that there may be several 
references to the same URB data entry in the pipeline at 
any given time. When a downstream stage accesses the 
URB data entry via a URB handle, it is said to 
“dereference” the URB data entry. When there are no 
longer any references to a URB data entry within the 
pipeline, the URB storage can be reclaimed. 

Variable Length 
Decode 

VLD The first stage of the video decoding pipe that consists 
mainly of bit-wide operations. GEN4 supports hardware 
VLD acceleration in the VFE fixed function stage. 

Vertex Buffer VB Buffer in memory containing vertex attributes. 

Vertex Cache VC Cache of Vertex URB Entry (VUE) handles tagged with 
vertex indices.  See the VS chapter for details on this 
cache. 

Vertex Fetcher VF The first FF unit in the 3D pipeline responsible for 
fetching vertex data from memory.  Sometimes referred 
to as the Vertex Formatter. 

Vertex Header — Vertex data required for every vertex appearing at the 
beginning of a Vertex URB Entry. 

Vertex ID — Unique ID for each vertex that can optionally be 
included in vertex attribute data sent down the pipeline 
and used by kernel/shader threads. 

Vertex Index — Offset (in vertex-sized units) of a given vertex in a 
vertex buffer.  Available in the VF and VS units for 
debugging purposes.  Not unique per vertex instance. 

Vertex Sequence 
Number 

— Unique ID for each vertex sent down the south bus that 
may be used to identify vertices for debugging 
purposes. 

Vertex Shader VS An API-supplied program that calculates vertex 
attributes.  Also refers to the FF unit that dispatches 
threads to “shade” (calculate attributes for) vertices. 

Vertex URB Entry VUE A URB entry that contains data for a specific vertex. 

Vertical Stride VertStride The distance in element-sized units between 2 
vertically-adjacent elements of a Gen4 region-based 
GRF access. 
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Term Abbr. Definition 

Video Front End VFE The first fixed function in the GEN4 generic pipeline; 
performs fixed-function media operations. 

Viewport VP Post-clipped geometry is mapped to a rectangular region 
of the bound rendertarget(s). This rectangular region is 
called a viewport. Typically, the viewport is set to the 
full extent of the rendertarget(s), but any subregion can 
be used as well. 

Windower IZ WIZ Term for Windower/Masker that encapsulates its early 
(“intermediate”) depth test function. 

Windower/Masker WM Fixed function triangle/line rasterizer. 

Word W A numerical data type of 16 bits, W represents a signed 
word integer. 
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2 Subsystem Overview 

2.1 Introduction 

The Gen4 subsystem consists of an array of execution units (EUs, sometimes referred 
to as an arrray of cores) along with a set of shared functions outside the EUs that the 
EUs leverage for I/O and for complex computations.  Programmers access the Gen4 
Subsystem via the 3D or Media pipelines. 

EUs are general-purpose programmable cores that support a rich instruction set that 
has been optimized to support various 3D API shader languages as well as media 
functions (primarily video) processing. 

Shared functions are hardware units which serve to provide specialized supplemental 
functionality for the EUs. A shared function is implemented where the demand for a 
given specialized function is insufficient to justify the costs on a per-EU basis. Instead 
a single instantiation of that specialized function is implemented as a stand-alone 
entity outside the EUs and shared amongst the EUs. 

Invocation of the shared functionality is performed via a communication mechanism 
call a “message”. A message is a small, self-contained packet of information created 
by a kernel and directed to specific shared function. The message is defined by 
sequential series of MRF registers which hold message operands, a destination shared 
function ID, a function-specific encoding of the desired operation to be performed, and 
a destination GRF register to which any writeback response is to be directed. 
Messages are dispatched to the shared function under software control via the ‘send’ 
instruction. This instruction identifies the contents of the message and the GRF 
register location(s) to direct any response. 

The message construction and delivery mechanisms are general in their definition and 
capable of supporting a wide variety of shared functions. 

2.2 Subsystem Topology 

The subsystem is organized as an array of EUs, and a set of functions that are shared 
among all of the EUs.  (The EU array is further divided into rows with each row having 
its own first level instruction cache and Extended Math shared function, though this 
aspect of the implemented topology is not exposed to software).  The Sampler, 
DataPort, URB and Message Gateway functions are shared among the entire array of 
EUs.   
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2.3 Execution Units (EUs) 

Each EU is a vector machine capable of performing a given operation on as many as 
16 pieces of data of the same type in parallel (though not necessarily on the same 
instant in time).  In addition, each EU can support a number of execution contexts 
called threads that are used to avoid stalling the EU during a high-latency operation 
(external to the EU) by providing an opportunity for the EU to switch to a completely 
different workload with minimal latency while waiting for the high-latency operation to 
complete. 

For example, if a program executing on an EU requires a texture read by the sampling 
engine, the EU may not necessarily idle while the data is fetched from memory, 
arranged, filtered and returned to the EU.  Instead the EU will likely switch execution 
to another (unrelated) thread associated with that EU.  If that thread encounters a 
stall, the EU may switch to yet another thread and so on.  Once the Sampler result 
arrives back at the EU, the EU can switch back to the original thread and use the 
returned data as it continues execution of that thread. 

The fact that there are multiple EU cores each with multiple threads can generally be 
ignored by software.  There are some exceptions to this rule:  e.g., for  

• debugging (see Debugging) 

• thread-to-thread communication (see Message Gateway, Media) 

• synchronization of thread output to memory buffers (see Geometry Shader). 

In contrast, the internal SIMD aspects of the EU are very much exposed to software. 

This volume will not deal with the details of the EUs.  See the Gen4 Core volume for 
details such as EU registers and instruction set. 

2.4 Thread Dispatching 

When the 3D and Media pipelines send requests for thread initiation to the 
Subsystem, the thread Dispatcher receives the requests.  The dispatcher performs 
such tasks as arbitrating between concurrent requests, assigning requested threads to 
hardware threads on EUs, allocating register space in each EU among multiple 
threads, and initializing a thread’s registers with data from the fixed functions and 
from the URB.  This operation is largely transparent to software. 

To aid in debug, the thread dispatcher can be programmed by software to limit the 
number of EUs utilized from the maximum available in hardware down to as little as a 
single EU.  It can also be programmed (independently from the number of EUs being 
utilized) to limit the number of threads that an EU will run concurrently down to as 
few as one.  These features should not be required for normal use but will come in 
handy for debug.  See the Debugging chapter for more information. 
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2.5 Shared Functions 

In general, a shared function has the ability to receive messages at its input, perform 
some specialized amount of work for each, and if required, generate output back to 
the message’s originating execution unit (Message Gateway may generate output to a 
target execution unit specified by the message).  

To uniquely identify shared functions, each is assigned a unique 4-bit identifier code 
called its ‘Function ID’. This ID is specified in the ‘send’ instruction’s 32b <desc> field 
of each message. Gen4 Function ID assignments are listed in the Graphics Processing 
Engine chapter of this specification. 

Each shared function may support one or more related operations within itself. For 
example an Extended Math shared function may support operations such as 
reciprocal, sine, cosine, and/or others. These are generically referred to as sub-
functions. The communication method as to which sub-function is desired is typically 
contained in the 16b ‘function-control’ field of the ‘send’ instruction <desc> field. 
Alternatively, a function may choose to define sub-function encodings in-band within 
message payload, or in the case of a single function shared-function, the function 
code may be implied. The architecture, in no way interprets the sub-function code and 
the actual implementation choice is left to the function itself.  

The Shared Function units included in the Subsystem are as follows (refer to the 
chapters devoted to each of these functions): 

• Extended Math function 

• Sampling Engine function 

• DataPort function 

• Message Gateway function 

• Unified Return Buffer (URB) 

• Thread Spawner (TS) 

• Null function 

The Extended Math function acts as an extension of the math functions already 
available inside the EUs.  Certain functions such as inverse, square root, 
exponentiation, etc., require significant hardware resources to implement and are 
used infrequently enough that it is inefficient to implement them separately in each 
EU.  The EUs therefore send the operands for these operations along with the 
operation to be performed to the Extended Math function which computes and returns 
the result to the requesting EU. 

The Sampling Engine acts a (read-only) I/O port on behalf of the EUs, translating 
texture coordinates (and/or structure references) to memory addresses, reading 
texels and/or other data from memory, and in the case of texels, combining and 
filtering them according to programmed state.  The resulting pixel and/or other data 
are then returned to the requesting EU. 

The Data Port function acts as another I/O port on behalf of the EUs.  It is both a 
read and a write port, and the only way for the Graphics Processing Engine to write 
results (e.g., images) back to memory.  The Data Port contains the render and depth 
caches which receive the newly rendered pixels and write them out to memory when 
necessary.  They also permit previously rendered objects to be read back efficiently by 
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the Graphics Processing Engine in order to blend them with other rendered objects 
and test for visibility of newly rendered objects.  Finally, the Data Port also provides 
read access constant buffers (arrays of constants in memory.) 

The Message Gateway allows a thread to communicate (send a message to) another 
thread.  A key is used to connect the sender and receiver threads, and a simple 
gateway protocol is used to send messages.  This is primarily intended for media 
where a parent/child thread model is sometimes used and requires parent and child 
threads to synchronize and efficiently share information.  It is not intended to be used 
by 3D graphics rendering threads. 

The Unified Return Buffer (URB) is a single set of registers that EU threads use to 
return result data for future fixed functions and their threads to make use of.  
Individual entries in the buffer are “owned” by a given fixed function but a mechanism 
is provided where other fixed functions (those that follow) can read the data placed 
there by another fixed function.  The buffer is considered a “Shared Function” since 
EUs need to be able to write result data to it using messages.  In general, EU threads 
write their final results either to memory via the Data Port or to the URB for re-use by 
subsequent EU threads or certain 3D pipeline fixed-function units (CLIP, GS). 

The Thread Spawner (TS) is a Shared Function that acts as a conduit for dispatching 
kernel-software-generated threads, one thread can request another thread to be 
dispatched by sending a request to the TS.  TS is unique as it is also a Fixed Function 
in the media pipeline for dispatching threads originated from Video Front End fixed 
function. 

The Null shared function is supported to allow the broadcast of certain information 
(e.g, End Of Thread) without invoking any other operation or response. 

2.6 Messages 

Communication between the EUs and the shared functions and between the fixed 
function pipelines (which are not considered part of the “Subsystem”) and the EUs is 
accomplished via packets of information called messages.  Message transmission is 
requested via the ‘send’ instruction.  Refer to the ‘send’ instruction definition in the 
ISA Reference chapter for details. 

The information transmitted in a message falls into two categories: 

• Message Payload data sourced from some number of registers (from 1 to 15 
registers) in the Message Register File (MRF).  The contents of the payload are 
dependent on the target function and specific function (et al.), and may contain a 
header portion and/or data portion. 

• Associated (“sideband”) information provided by: 
⎯ Message Descriptor specified with the ‘send’ instruction.  Included in the 

message descriptor is control and routing information such as the target 
function ID, message payload length, response length, etc.  

⎯ Additional information provided by the ‘send’ instruction, e.g., the starting 
destination register number, the execution mask (EMASK), etc. 

⎯ A small subset of Thread State, such as the Thread ID, EUID, etc. 
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The software view of messages is shown in Figure  2-1. There are four basic phases to 
a message’s lifetime as illustrated below: 

1.Creation  The thread assembles the message payload into the 
Message Register File  (MRF). This is done by a series of one 
or more instruction which specify a MRF register as the 
destination. 

2.Delivery The thread issues the message for delivery via the ‘send’ 
instruction. The ‘send’ instruction specifies the MRF register 
which is the first of a sequential register series which makes 
the data payload, the length of the message payload within 
the MRF, the destination shared function ID (SFID), and 
where in the GRF any response is to be directed. The 
messaging subsystem will enqueue the message for delivery 
and eventually route the message to the specified shared 
function. 

3.Processing  The shared function receives the message and services it 
accordingly, as defined by the shared function definition. 

4.Writeback  If called for, the shared function delivers an integral number 
of registers of data to the thread’s GRF in response to the 
message. 

Figure  2-1. Data Flow Associated With Messages 
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2.6.1 Message Register File (MRF) 

Each thread has a dedicated MRF which is logically identical to the GRF: 256 bits wide 
per register, with word-wide addressability. There are 16 MRF registers, referred to as 
“m0”..”m15”. From a software perspective, the MRF is write-only and thus may only 
be used as a destination specifier. Limited register-region specifications are allowed so 
long as the region is contained within a single MRF register. 

Each register of the MRF has an associated in-flight status, indicating the contents of 
the register is needed as part of a pending message, but has yet to be transmitted by 
the hardware. This bit is set at the time the message is enqueued for delivery via the 
‘send’ instruction. Should a subsequent write to an in-flight register be attempted, the 
execution unit will temporarily suspend the thread’s execution until the register’s in-
flight status is cleared (i.e., the message has been transmitted). 

Register m0 is reserved for System Routine (exception handling and debug) purposes, 
thus normal threads should construct their messages in m1..m15.  The thread is free 
to start a message payload at any MRF register location, even to the point of having 
multiple messages under construction at the same time in non-overlapping spaces in 
the MRF.  Further multiple messages over non-overlapping MRF space can be 
enqueued awaiting transmission at the same time. Regardless of actual hardware 
implementation, the thread should not assume that MRF addresses above m15 wrap 
to legal MRF registers. 

2.6.2 Send Instruction 

Messages are sent programmatically by the thread through the ‘send’ instruction. This 
instruction enqueues a message for delivery and marks as in-flight all MRF registers 
used for the message payload. It also allows for an optional implied move of one GRF 
register to a MRF register prior to the message being issued. This implied move allows 
for a higher message performance, eliminating the explicit ‘mov’ that would normally 
be required to move R0 to the lead MRF register of the message (as required by many 
message definitions). 

A typical ‘send’ instruction is exemplified here (please see the ISA for a full instruction 
description). This example performs an implicit move from r0 to m3, then issues a 
message to the Extended Math unit, with a  payload of 1 register starting at m3, and 
expecting 1 register in reply to be placed in r5. 

   send (16) r5 m3 r0 0x01110001 

The execution unit guarantees that any prior instruction which wrote to a MRF register 
is guaranteed to have retired, and its result written to the destination MRF register in 
time for message transmission. 
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2.6.3 Creating and Sending a Message 

A code snippet is listed below, showing a 4-register message (m3 to m6) whose 
response is directed to r30. Note that message construction does not have to occur in 
MRF register order. 

 ... 
 mul (8) m4 r20  r19 
 mov (8)  m6 r21 
 add (8) m5 r29 r28 
 send (8) r30 m3 r0 <desc> 
 ... 

Once a ‘send’ instruction is issued, the MRF registers used for its payload are marked 
as ‘in-flight’. These registers remain in this state until the message is actually 
transmitted to the shared function and the register contents are no longer need. Any 
subsequent write to a MRF register which is in-flight results in a dependency and a 
thread switch until such time that the in-flight condition is cleared. An example is 
shown below in which the attempt to re-use m6 may result in a thread switch until 
message 1 is transmitted. 

 
 ... 
 // --- message 1 --- 
 mul (8) m4 r20  r19 
 mov (8)  m6 r21 
 add (8) m5 r29 r28 
 send (8) r30 m3 r0 <desc> 
 ... 

 
 // --- message 2 --- 
 mov (8) m6  r15 // thread switch until the  
    // previous msg is sent and  
    // m6 in-flight is cleared. 
 ... 

MRF registers of one message may be reused for a subsequent message without 
restriction. The in-flight check mechanism prevents a MRF register staged as part of a 
pending message from being altered while awaiting transmission. Further, a thread 
may rely on the contents of a MRF register being unaltered after message 
transmission. This allows the thread to quickly issue an identical or slightly altered 
message using the same MRF register set without having to re-construct the entire 
payload.  

Although more than one message may be enqueued at any point in time, care must 
be taken by the programmer to ensure that each message’s destination GRF register 
region, if any, does no over lap with that of another enqueued message. This 
condition is not checked by HW. Due to varying latencies between two messages, and 
out-of-order, non-contiguous writeback cycles in the current implementation, the 
outcome in the GRF is indeterminate; It may be the result from the first message, or 
the result from the second message, or a mixture of data from both. 
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2.6.4 Message Payload Containing a Header 

For most shared functions, the first register of the message payload contains the 
header payload of the message (or simply the message header).  It contains the 
debug fields (fixed at DW6 and DW7) and state fields (such as binding table pointer, 
sampler state pointer, etc.) following a consistent format structure.  Consequently, the 
rest of the message payload is referred to as the data payload.   

Messages to Extended Math do not have a header and only contain data payload. 
Those messages may be referred to as header-less messages.  Messages to Gateway 
combine the header and data payloads in a single message register.   

2.6.5 Writebacks 

Some messages generate return data as dictated by the ‘function-control’ (opcode) 
field of the ‘send’ instruction (part of the <desc> field). The Gen4 execution unit and 
message passing infrastructure do not interpret this field in any way to determine if 
writeback data is to be expected. Instead explicit fields in the ‘send’ instruction to the 
execution unit the starting GRF register and count of returning data. The execution 
unit uses this information to set in-flight bits on those registers to prevent execution 
of any instruction which uses them as an operand until the register(s) is(are) 
eventually written in response to the message. If a message is not expected to return 
data, the ‘send’ instruction’s writeback destination specifier (<post_dest>) must be 
set to ‘null’ and the response length field of <desc> must be 0  (see ‘send’ instruction 
for more details). 

The writeback data, if called for, arrives as a series of register writes to the GRF at the 
location specified by the starting GRF register and length as specified in the ‘send’ 
instruction. As each register is written back to the GRF, its in-flight flag is cleared and 
it becomes available for use as an instruction operand. If a thread was suspended 
pending return of that register, the dependency is lifted and the thread is allowed to 
continue execution (assuming no other dependency for that thread remains 
outstanding). 

2.6.6 Message Delivery Ordering Rules 

All messages between a thread and an individual shared function are delivered in the 
ordered they were sent. Messages to different shared functions originating from a 
single thread may arrive at their respective shared functions out of order.  

The writebacks of various messages from the shared functions may return in any 
order. Further individual destination registers resulting from a single message may 
return out of order, potentially allowing execution to continue before the entire 
response has returned (depending on the dependency chain inherent in the thread).  
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2.6.7 Execution Mask and Messages 

The Gen4 Architecture defines an Execution Mask (EMask) for each instruction issued. 
This 16b bit-field identifies which SIMD computation channels are enabled for that 
instruction. Since the ‘send’ instruction is inherently scalar, the EMask is ignored as 
far as instruction dispatch is concerned. Further the execution size has no impact on 
the size of the ‘send' instruction’s implicit move (it is always 1 register regardless of 
specified execution size). 

The 16b EMask is forwarded with the message to the destination shared function to 
indicate which SIMD channels were enabled at the time of the ‘send’. A shared 
function may interpret or ignore this field as dictated by the functionality it exposes. 
For instance, the Extended Math shared function observes this field and performs the 
specified operation only on the operands with enabled channels, while the DataPort 
writes to the render cache ignore this field completely, instead using the pixel mask 
included in-band in the message payload to indicate which channels carry valid data. 

2.6.8 End-Of-Thread (EOT) Message  

The final instruction of all threads must be a ‘send’ instruction which signals ‘End-Of-
Thread’ (EOT). An EOT message is one in which the EOT bit is set in the ‘send’ 
instruction’s 32b <desc> field. When issuing instructions, the EU looks for an EOT 
message, and when issued, shuts down the thread from further execution and 
considers the thread completed. 

Only a subset of the shared functions can be specified as the target function of an EOT 
message, as shown in the table below. 

 

Target Shared Functions  

supporting EOT messages 

Target Shared Functions  

not supporting EOT messages 

Null, DataPortWrite, URB, MessageGateway, 
ThreadSpawner 

DataPortRead, Sampler 

Both the fixed-functions and the thread dispatcher require EOT notification at the 
completion of each thread. The thread dispatcher and fixed functions in the 3D 
pipeline obtain EOT  notification by snooping all message transmissions, regardless of 
the explicit destination, looking for messages which signal end-of-thread. The Thread 
Spawner in the media pipeline does not snoop for EOT. As it is also a shared function, 
all threads generated by Thread Spawner must send a message to Thread Spawner to 
explicity signal end-of-thread.  

The thread dispatcher, upon detecting an end-of-thread message, updates its 
accounting of resource usage by that thread, and is free to issue a new thread to take 
the place of the ended thread. Fixed functions require end-of-thread notification to 
maintain accounting as to which threads it issued have completed and which remain 
outstanding, and their associated resources such as URB handles. 

Unlike the thread dispatcher, fixed-functions discriminate end-of-thread messages, 
only acting upon those from threads which they originated, as indicated by the 4b 
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fixed-function ID present in R0 of end-of-thread message payload. This 4b field is 
attached to the thread at new-thread dispatch time and is placed in its designated 
field in the R0 contents delivered to the GRF. Thus to satisfy the inclusion of the fixed-
function ID, the typical end-of-thread message generally supplies R0 from the GRF as 
the first register of an end-of-thread message. 

As an optimization, an end-of-thread message may be overload upon another 
“productive” message, saving the cost in execution and bandwidth of a dedicated end-
of-thread message. Outside of the end-of-thread message, most threads issue a 
message just prior to their termination (for instance, a Dataport write to the 
framebuffer) so the overloaded end-of-thread is the common case. The requirement is 
that the message contains R0 from the GRF (to supply the fixed-function ID), and that 
destination shared function be either (a) the URB; (b) the Read or Write Dataport; or, 
(c) the Gateway, as these functions reside on the O-Bus. In the case where the last 
real message of a thread is to some other shared function, the thread must issue a 
separate message for the purposes of signaling end-of-thread to the “null” shared 
function. 

2.6.9 Performance  

The Gen4 Architecture imposes no requirement as to a shared function’s latency or 
throughput. Due to this as well as factors such as  message queuing, shared bus 
arbitration, implementation choices in bus bandwidth, and instantaneous demand for 
that function, the latency in delivering and obtaining a response to a message is non-
deterministic. It is expected that a Gen4 implementation has some notion of fairness 
in transmission and servicing of messages so as to keep latency outliers to a 
minimum. 

Other factors to consider with regard to performance: 

• A thread may choose to have multiple messages under construction in non-
overlapping registers the MRF at the same time. 

• Multiple messages are allowed to be enqueued for transmission at the same time, 
so long as their MRF payload registers do not overlap. 

• Messages may rely on the MRF registers being maintained across a send message, 
thus constructing subsequent messages overlaid on portions of a previous 
message, 

• Software prefetching techniques may be beneficial for long latency data fetches 
(i.e., issue a load early in the thread for data that is required late in the thread). 
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2.6.10 Message Description Syntax 

All message formats are defined in terms of DWords (32 bits).  The message registers 
in all cases are 256 bits wide, or 8 DWords.  The registers and DWords within the 
registers are named as follows, where n is the register number, and d is the DWord 
number from 0 to 7, from the least significant DWord at bits [31:0] within the 256-bit 
register to the most significant DWord at bits [255:224], respectively.  For writeback 
messages, the register number indicates the offset from the specified starting 
destination register. 

Dispatch Messages:  Rn.d 

Dispatch messages are sent by the fixed functions to dispatch threads.  See the fixed 
function chapters in the 3D and Media volume. 

 

SEND Instruction Messages:  Mn.d 

These are the messages initiated by the thread via the SEND instruction to access 
shared functions.  See the chapters on the shared functions later in this volume. 

 

Writeback Messages:  Wn.d 

These messages return data from the shared function to the GRF where it can be 
accessed by thread that initiated the message. 

The bits within each DWord are given in the second column in each table. 

2.6.11 Message Errors 

Messages are constructed via software, and not all possible bit encodings are legal, 
thus there is the possibility that a message may be sent containing one or more errors 
in its descriptor or payload contents. There are two points of error detection in the 
message passing system: (a) the message delivery subsystem is capable of detecting 
bad FunctionIDs and some cases of bad message lengths; (b) the shared functions 
contain various error detection mechanisms which identify bad sub-function codes, 
bad message lengths, and other misc errors. The error detection capabilities are 
specific to each shared function. The execution unit hardware itself does not perform 
message validation prior to transmission. 

In both cases, information regarding the erroneous message is captured and made 
visible through MMIO registers, and the driver notified via an interrupt mechanism 
(see the Debugging chapter for details). The set of possible errors is listed in  
Table  2-1 with the associated outcome. Please see the chapters on debug and error 
handling for detailed information. 
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Table  2-1. Error Cases 

Error Outcome 

Bad Shared Function ID The message is discarded before reaching any shared function. 
If the message specified a destination, those registers will be 
marked as in-flight, and any future usage by the thread of 
those registers will cause a dependency which will never clear, 
resulting in a hung thread and eventual time-out. 

Unknown opcode 

Incorrect message length 

 

The destination shared function detects unknown opcodes (as 
specified in the ‘send’ instructions <desc> field), and known 
opcodes where the message payload is either too long or too 
short, and threats these cases as errors. When detected, the 
shared function latches and makes available via MMIO registers 
the following information: the EU and thread ID which sent the 
message, the length of the message and expected response, 
and any relevant portions of the first register (R0) of the 
message payload. The shared function alerts the driver of an 
erroneous message through and interrupt mechanism (details 
tbd), then continues normal operation with the subsequent 
message. 

Bad message contents in 
payload 

Detection of bad data is an implementation decision of the 
shared function. Not all fields may be checked by the shared 
function, so an erroneous payload may return bogus data or no 
data at all. If an erroneous value is detected by the shared 
function, it is free to discard the message and continue with the 
subsequent message. If the thread was expecting a response, 
the destination registers specified in the associated ‘send’ 
instruction are never cleared potentially resulting in a hung 
thread and time-out.  

Incorrect response length Case: too few registers specified – the thread may proceed with 
execution prior to all the data returning from the shared 
function, resulting in the thread operating on bad data in the 
GRF. 

Case: too many registers specified – the message response 
does not clear all the registers of the destination. In this case, if 
the thread references any of the residual registers, it may hand 
and result in an eventual time-out. 

Improper use of End-Of-
Thread (EOT) 

Any ‘send’ instruction which specifies EOT must have a ‘null’ 
destination register. The EU enforces this and, if detected, will 
not issue the ‘send’ instruction, resulting in a hung thread and 
an eventual time-out.  

The ‘send’ instruction specifies that EOT is only recognized if 
the <desc> field of the instruction is an immediate. Should a 
thread attempt to end a thread using a <desc> sourced from a 
register, the EOT bit will not be recognized. In this case, the 
thread will continue to execute beyond the intended end of 
thread, resulting in a wide range of error conditions.  

Two outstanding messages 
using overlapping GRF 
destinations ranges 

This is not checked by HW. Due to varying latencies between 
two messages, and out-of-order, non-contiguous writeback 
cycles, the outcome in the GRF is indeterminate; may be the 
result from the first message, or the result from the second 
message, or a combination of both. 
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3 Debugging 

3.1 Introduction 

The Gen4 Architecture includes dedicated logic to facilitate debug of the system.  Each 
fixed function unit contains logic to allow trapping data associated with a specific 
element (vertex, polygon, pixel, etc.).  This logic will be enabled and controlled via 
debug registers in MMIO space. 

Most units output a debug tag along with the vertices they output.  These tags contain 
the FFID of the unit, a thread ID that increments with each thread dispatched by the 
unit (if the unit dispatches threads), and a vertex sequence number that uniquely 
identifies each output.  These sequence numbers are thread-relative for units whose 
outputs are generated by threads.  These debug tags are available to the next enabled 
unit as optional trap data. 

In addition, a mechanism is provided to allow setting breakpoints in selected threads 
as they are executing in the core.  The breakpoints can be set at an instruction level 
or via an MMIO register using a physical thread address or on a certain opcode.  When 
a breakpoint is encountered, the execution unit will switch to a system routine that 
can be used to write out internal data (GRF, MRF, thread state). 

The trapping of data associated with a specific element can be used to enable the 
breakpoint mechanism such that only the thread associated with the trapped element 
will switch to the system routine at the breakpoint; other threads executing the same 
instructions on different elements will not have the breakpoint enabled.  Alternatively, 
breakpoints can be enabled for all threads initiated by a given FF unit.  A global flag is 
also available that will cause all threads (from all FF units) to have breakpoints 
enabled. 

The Shared Functions will also have some debug controls, such as running in a non-
pipelined mode of operation. 

These debug features are described in more detail below. 
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3.2 The Snapshot Mechanism 

All of the fixed function units (and some of the shared function units) have “snapshot” 
debugging capability.  Each fixed function has a debug control register with 
(nominally) 5 control bits that are associated with the function, plus a trigger value 
register, and a debug data register where the captured “snapshot” can be read. 
 

Size in 
Bits 

Name Description 

1 Snapshot Enable Enables the FF unit to capture trap data based on a match with the 
Debug Snapshot Trigger Value. 

8 Snapshot Output Mux Select Controls which DW of trap data is visible.  The number of valid 
values for this field varies by FF unit and is generally much less 
than the 256 maximum allowed by the field.  Note that all data 
defined in this field is latched – the value in this field only 
determines which DW is currently visible in  

1 Snapshot Complete 

 

This bit is set to 1 by hardware when a snapshot compare 
succeeds.  This bit should be set to 0 via MMIO write after reading 
the desired snapshot return values in order to enable another 
snapshot to occur. 

1 Thread Snapshot Enable When set, debug will be enabled on the thread that is associated 
with the trapped element. 

1 Snapshot All Threads When set, debug will be enabled for all threads generated by this 
Fixed Function Unit.  Setting this bit means Thread Snapshot 
Enable is effectively ignored. 

N Debug Snapshot Trigger Value The value in this field is compared with a corresponding value 
associated with each “element” processed by the FF unit.  In most 
cases the value associated with each element is an incrementing 
“thread ID” but in some cases it is some other value associated 
with an element processed by the FF unit. 

32 Debug Data Once a snapshot has been triggered by a successful compare, the 
DW of data indicated by Snapshot Output Mux Select can be 
read here. 

Some of the fixed/shared functions have additional fields that can be used to further 
qualify the snapshot comparison.  See the following sections on each FF unit for unit-
specific control capabilities. 



 
 
 
 

   47 

3.2.1 Debug Trigger Counters 

Fixed function units contain various counters whose values can be compared against 
the Debug Snapshot Trigger Value of the unit, captured by the next enabled unit in 
the pipeline, or used within the unit to eliminate some elements from processing in 
order to minimize test cases. 
 

Fixed Function Unit Available Counters 

VF Vertex Sequence Number 

Primitive Topology Number (for test minimization only) 

VS Thread ID 

GS Thread ID 

Clipper Thread ID 

SF Thread ID 

Primitive Sequence Number 

WM Thread ID 

Primitive Sequence Number (same as the one in SF) 

These counters are reset to 0 by a issuing an MI_FLUSH with the Global Snapshot 
Counter Reset bit set.  They count up continuously until they are reset again (or 
until they roll over.)  It is recommended that these counters be reset no less often 
than once per frame to avoid rollover. 

The counters are controlled by a global debug enable which is set from a Command 
Stream MMIO register (see Memory Interface Registers chapter).  The counters will 
only increment if the global debug enable is set. 

The SVG unit will qualify the debug enable signals to all fixed function and shared 
funciton units with the global debug enable (as described in each of the following 
sections). 

3.3 Fixed Function Debug Process 

3.3.1 Overview 

Each fixed function unit has a unique (4-bit) code as a unit identifier defined.  Each 
unit will generate an incrementing output identifier for each output it generates.  For 
each thread dispatched by a fixed function unit, an incrementing thread ID will be 
generated and passed along to the execution units. 

In order to make effective use of the debug logic, a failing test case should be 
repeatable.  Once a repeatable failure is created, the debug mechanisms described in 
this chapter can be used to facilitate debug. 
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The first step of debug is to identify the screen coordinates of a failing pixel (x,y 
location).  This pixel location is placed in WIZ – Debug Snapshot Trigger Value.  The 
Windower snapshot is then enabled using WIZ – Debug Control. 

The driver then needs to monitor WIZ – Debug Control bit 31 to determine when the 
snapshot operation has been completed.  When this bit becomes set by the hardware, 
the driver can then read back data that was captured by the snapshot operation.  This 
data is read from WIZ – Debug Return Data.  The selection of which data to read is 
made using the snapshot select field of WIZ – Debug Control.   

If bit 1 of WIZ – Debug Control is set, the snapshot flag will be passed to the Thread 
Dispatcher.  If breakpoints are enabled (see Thread Dispatcher), a breakpoint will be 
enabled for the Pixel Shader thread that generated the pixel of interest.  Various types 
of breakpoints can be programmed (see Attention Signaling from EU to Host). 

If the pixel computations seem correct, or the corruption covers an entire polygon, the 
Primitive Sequence Number read back from the Windower snapshot can be used to 
snapshot computations in the SF unit. 

By enabling the SF snapshot (SF – Debug Control), and setting the snapshot ID (SF – 
Debug Snapshot Trigger Value) to the count of the primitive of interest, a snapshot 
will occur in the SF unit when that primitive is processed. 

The mechanism for determining that the snapshot is complete is the same as 
described for the Windower above.  Various data can be read using the snapshot 
select for SF.  Enabling the thread snapshot will allow breakpoints to be used to debug 
the Setup kernel that generated the coefficient data for the selected primitive. 

If the corruption seems to be related to one of the input vertices to SF, the snapshot 
select can be used to read back the debug ID of the input vertices that create the 
primitive.  This debug data can then be used in the unit that sourced the vertex to the 
SF (identified by the FF ID of the vertex debug field). 

If the source of the vertex data is the Clipper, the thread ID field of the debug ID can 
be used to program a Clipper snapshot (see Clipper).  The Clipper Thread can be 
debugged by enabling the thread snapshot.  The input vertices to the clipper can be 
examined and used to trace the input further upstream to the Geometry Shader or 
Vertex Shader. 

Similar debug controls are used to snapshot Geometry Shader (see Geometry Shader) 
and Vertex Shader (see Vertex Shader) outputs. 

3.3.2 Vertex Shader Debug 

Vertex Shader debug is somewhat unique.  Some additional steps are required to 
identify the Vertex Shader thread for a specific vertex output.  Each output vertex has 
a unique sequence number, however multiple outputs can map to the same vertex 
shader thread.  This is due to the fact that this unit has a vertex cache.  A vertex can 
be shaded once then used multiple times. 

Given a reproducible test case, one can identify the thread that shaded a given vertex.  
Assuming an errant vertex has been discovered in GS, the vertex sequence number 
from the previous enabled FF can be determined from the GS snapshot.  The 
associated FFID captured in GS will indicate that the vertex came either from the VS 
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unit or (when VS is in bypass mode) directly from the VF unit.  If the vertex came 
from the VF unit then the VS is not involved. 

If VS is the identified unit, the test must now be rerun with the VF snapshot trigger 
value programmed to that vertex sequence number.  The snapshot obtained from that 
test run yields the thread ID of the thread that shaded that vertex, regardless of 
whether the vertex cache is enabled. 

The test must now be rerun once more with the VS snapshot trigger value set to the 
thread ID of the offending thread, which can now be debugged. 

3.3.3 SVG Debug 

The State Variable unit contains base addresses which nearly all 3D/Media accesses 
are offset from.  These registers allow the base addresses to be captured for 
inspection.  The base addresses will be latched if they change while Global Debug 
Enable in the INSTPM register is set.  This way the base addresses for the context 
being debugged can be read here anytime, even if another context is currently 
executing. 

3.3.3.1 SVG_CTL —Debug Control 
Address Offset: 07400h–7403h 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31:16 Reserved : MBZ 

15:8 Debug Output Mux Select. Controls which 32 bits of the debug data are returned 

0 = return General State Base Address for the context which has debug enabled 
1 = return Surface State Base Address for the context which has debug enabled 
2 = return Indirect Object Base Address for the context which has debug enabled 
3 = return General State Access Upper Bound for the context which has debug enabled 
4 = return Indirect  Indirect Object Access Upper Bound for the context which has debug enabled  
5 = return System Instruction Pointer for the context which has debug enabled 
6 - 255 = Documented in an SVG specific document outside of the PRM. 

7:0 Reserved : MBZ 

3.3.3.2 SVG_RDATA—Debug Return Data 
Address Offset: 07404h–7407h 
Default Value: UUUU UUUUh 
Access: Read-Only 
Size: 32 bits 
 

Bit Descriptions 

31:0 SVG  Debug Data. Returns data based on debug output mux select 
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3.3.3.3 SVG_WORK_CTL—Debug Workaround Control 
Address Offset: 07408h–740Bh 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31:5 Reserved : MBZ 

4 Reserved. 

[DevBW-A,B]  

DAP Stateless Access ECO: 

“0” –Indicates Stateless Accesses disallowed 

“1” – Inicates Stateless accesses allowed  

3:2 Reserved : MBZ 

1 Disable WIZ Panic Dispatch 

If set, disables the B0 BW modification which forces the WIZ to dispatch partial payloads 
for certain non-promoted cases 

0 = normal operation (force partial dispatch for potential depth cache deadlock cases) 

1 = don’t perform deadlock check for non-promotable cases 

0 YUV 4:2:2 Chrominace Mode. This field controls whether the chrominance for odd pixels is 
computed by an interpolation between the adjacent even pixels, or a replication from the pixel to the 
left. 

Programming Notes: 

• the texture caches must be invalidated after switching the state of this bit 

0 =  Replication 

1:  Interpolation 

3.3.4 Vertex Fetch 

The Vertex Fetch unit will output the VF FFID and a vertex index with each vertex it 
outputs.  The VF will have the ability to snapshot any given output vertex index or a 
vertex sequence number.  When a snapshot compare succeeds, the VF will latch a 
number of internal signals which can be examined by setting the VF Snapshot 
Output Mux Select appropriately and examining the VF Debug Return Data 
register.  The thread ID of the VS thread that shades the vertex can also be captured 
here; VS will be effectively bypassed for a given vertex if its shaded results are 
already available in the vertex cache. 

The VF will also have the ability to process only a selected range of primitive 
topologies (3DPRIM commands) and a selected range of vertices for those primitives.  
This will allow a test to be minimized for debug purposes. 
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3.3.4.1 VF_CTL—Debug Control 
Address Offset: 7500h–7503h 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31 Snapshot Complete. This bit will be set to 1 by hardware when a snapshot compare occurs.  After 
reading the desired snapshot return values, the driver should reset this bit to 0. 

30:16 Reserved : MBZ 

15:8 Snapshot Output Mux Select. Controls which 32 bits of the trap data are returned 

  0 = return thread ID of vertex shader dispatch (Snapshot Type should be set to 0) 

  1 = Internal VF debug data (Snapshot Type should be set to 1)  Defined in a VF-specific document 
outside the PRM 

7:5 Reserved : MBZ 

4 Snapshot Type. Controls whether the Debug Snapshot Trigger Value is compared against a 24-
bit vertex sequence number or a vertex index (up to 32 bits). 

0 = 24-bit Trigger Value is compared against the vertex sequence number (used to obtain thread ID) 

1 = 32-bit Trigger Value is compared against the vertex index (used for all other VF debug 
snapshots) 

3 Skip Initial Primitives. If set, the number of primitives (3DPRIM commands) programmed in the 
Debug Starting Primitives Skipped register will be parsed by the command streamer and then 
immediately discarded by the Vertex Fetch unit before any processing is done (qualified in SVG with 
global debug enable) 

2 Max Primitives Limit Enable. If set, primitives (3DPRIM commands) beyond the number 
programmed in the Debug Max Primitives register will be parsed by the command streamer and 
then immediately discarded by the Vertex Fetch unit before any processing is done (qualified in SVG 
with global debug enable). 

1 Vertex Range Limit Enable. If set, parameters in 3DPRIM commands will be overridden such that 
only vertices within a range specified by Start Vertex Location Override and Vertex Count Per 
Instance Override will be fetched and processed (qualified in SVG with global debug enable). 

0 Snapshot Enable. This bit is set to enable the fixed function snapshot logic in the VF (qualified in 
SVG with global debug enable). 
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3.3.4.2 VF_STRG_VAL—Debug Snapshot Trigger Value 
Address Offset: 7504h–7507h 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31:0 Vertex Sequence Number or Vertex Index. When Snapshot Type is 0, bits 23:0 of this field will 
be compared to the sequence number of the current vertex being processed; bits 31:24 MBZ.  When 
Snapshot Type is 1, this field will be compared to the index of the current vertex being processed.  
Bits 31:16 and bits 31:8 MBZ for Word and Byte indices, respectively. 

When a match occurs, signals within the FF unit will be latched for read back using the VF Debug 
Return Data register and the Snapshot Mux Select field of VF Debug Control. 

  

3.3.4.3 VF_STR_VL_OVR —Debug Start Vertex Location Override 
Address Offset: 7508h–750Bh 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31:0 Start Vertex Location Override. Overrides the Start Vertex Location of all primitives when 
Vertex Range Limit is enabled. 

 

3.3.4.4 VF_VC_OVR —Debug Vertex Count Override 
Address Offset: 750Ch–750Fh 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31:0 Vertex Count Per Instance Override. Overrides the Vertex Count Per Instance of all primitives 
when Vertex Range Limit is enabled. 
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3.3.4.5 VF_STR_PSKIP —Debug Starting Primitives Skipped 
Address Offset: 7510h–7513h 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

23:0 Starting Primitives Skipped. If Skip Initial Primitives is enabled, this field specifies the number 
of primitives (3DPRIM commands) that should be skipped prior to beginning normal primitive 
processing. 

3.3.4.6 VF_MAX_PRIM —Debug Max Primitives 
Address Offset: 7514h–7517h 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31:24 Reserved. MBZ 

23:0 Max Primitives. If Max Primitive Limit Enable is set, this field specifies the maximum number of 
primitives (3DPRIM commands) that will be processed normally after which all succeeding primitives 
will be skipped.  Note that primitives skipped due to enabling Skip Initial Primitives are still counted 
toward this limit. 

3.3.4.7 VF_RDATA —Debug Return Data 
Address Offset: 7518h–751Bh 
Default Value: UUUU UUUUh 
Access: Read-Only 
Size: 32 bits 

 

Bit Descriptions 

31:0 Vertex Fetch Debug Data. Returns data captured by the compare on snapshot ID (based on 
snapshot output mux select) 
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3.3.5 Vertex Shader 

The Vertex Shader (VS) will output a unique identifier with each vertex it outputs.  
The four MSBs of this field will be the VS FFID code and  the next 24 bits will be the 
unique vertex sequence ID. 

VS will assign a unique ID to each thread dispatched.  The MSB of R0.7 holds the 
snapshot flag.  Following the snapshot flag will be 31 reserved bits.  The thread ID will 
be passed to the thread dispatcher as part of the r0.6 header debug data. 
 

R0.7 

SS Flag Reserved 

1 bit 31 bits 

 

R0.6 

Reserved for SW Debug Thread ID 

8 bits 24 bits 

VS will have snapshot logic which will generate a compare flag based on a match to a 
specific thread ID.  As VS issues that thread to be dispatched, it will pass along the 
snapshot flag to the Thread Dispatcher (TD).   
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3.3.5.1 VS_CTL —Debug Control 
Address Offset: 7600h–7603h 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31 Snapshot Complete. This bit will be set to 1 by hardware when a snapshot compare occurs.  After 
reading the desired snapshot return values, the driver should reset this bit to 0. 

30:16 Reserved : MBZ 

15:8 Snapshot Output Mux Select. Controls which 32 bits of the trap data are returned.  Vertex 0 and 
vertex 1 refer to the 2 vertices dispatched to a VS thread.  No FFID is included in VS snapshot data 
since the only possible sourcing unit is VF (which cannot be bypassed.) 

0 = Vertex 0 Index 
1 = Vertex 1 Index 
2 = Valid vertex count (Range 1-2) 
3 = VS Kernel Pointer 
4 - 255 = = Defined in a Vertex Shader specific document outside the PRM 

7:3 Reserved : MBZ 

2 Snapshot All Threads. If set, the snapshot flag will be set for all threads generated by this Fixed 
Function Unit (Overrides Snapshot Enable bit).  If set, the data for the last thread executed will be 
captured in the FF unit. (qualified in SVG with global debug enable). 

1 Thread Snapshot Enable. This bit is set to enable passing the snapshot flag into the geometry 
shader thread dispatch.  If Snapshot All Threads is also set, the snapshot flag will be passed into the 
thread dispatch for every thread. (qualified in SVG with global debug enable). 

0 Snapshot Enable. This bit is set to enable the fixed function snapshot logic in the VS (qualified in 
SVG with global debug enable). 

  

3.3.5.2 VS_STRG_VAL—Debug Snapshot Trigger Value 
Address Offset: 7604h–7607h 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31:24 Reserved : MBZ 

23:0 Thread ID Compare Value. This field will be used by the FF logic to compare to the current thread 
being dispatched.  When a match occurs, a snapshot flag will be generated and optionally passed 
into the thread dispatch.  Various signals within the FF unit will also be latched for read back via 
MMIO registers. 
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3.3.5.3 VS_RDATA —Debug Return Data 
Address Offset: 7608h–760Bh 
Default Value: UUUU UUUUh 
Access: Read-Only 
Size: 32 bits 

 

Bit Descriptions 

31:0 VS Debug Data. Returns data captured by the compare on snapshot ID (based on snapshot output 
mux select) 

Each output vertex will be tagged with a unique identifier.  This identifier will consist 
of a 4-bit Fixed Function Unit ID, a 24-bit thread ID and an 8-bit relative vertex ID 
(VS only needs a 1-bit relative vertex ID, but this is a generic identifier field).  The 1-
bit thread relative ID should be generated by the VS fixed function logic in the output 
path. 

3.3.6 Geometry Shader 

The Geometry Shader (GS) will output a unique identifier with each vertex it outputs.  
The four MSBs of this field will be the GS FFID code, the next 24 bits will be the 
unique thread ID, and the 10 LSBs will be the thread relative vertex output (created 
at the output of the GS).  If the GS is disabled, it will output zero for the thread 
relative vertex. 

The thread ID will also be passed to the thread dispatcher in the r0.6 header.  . 

 

R0.7 

SS Flag Reserved 

1 bit 31 bits 

 

R0.6 

Reserved for SW Debug Thread ID 

8 bits 24 bits 

The GS will have snapshot logic which will generate a compare flag based on a match 
to a specific thread ID.  As the GS issues that thread to be dispatched, it will pass 
along the snapshot flag to the Thread Dispatcher (TD). 
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3.3.6.1 GS_CTL —Debug Control 
Address Offset: 7900h–7903h 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31 Snapshot Complete. This bit will be set to 1 by hardware when a snapshot compare occurs.  After 
reading the desired snapshot return values, the driver should reset this bit to 0. 

30:16 Reserved : MBZ 

15:8 Snapshot Output Mux Select. Selects what data will be accessed in GS Debug Data: 

0 = input vertex 0 FF ID in bits 31:28, Vertex 0 Sequence Number in bits 23:0 

1 = reserved 

2 = input vertex 1 FF ID in bits 31:28, Vertex 1 Sequence Number in bits 23:0 

3 = reserved 

4 = input vertex 2 FF ID in bits 31:28, Vertex 2 Sequence Number in bits 23:0 

5 = reserved 

6 = input vertex 3 FF ID in bits 31:28, Vertex 3 Sequence Number in bits 23:0 

7 = reserved 

8 = input vertex 4 FF ID in bits 31:28, Vertex 4 Sequence Number in bits 23:0 

9 = reserved 

10 = input vertex 5 FF ID in bits 31:28, Vertex 5 Sequence Number in bits 23:0 

11 = reserved 

12 = valid input vertex count (range 1-6) 

13 = GS Kernel Pointer 

14 – 255 = = Defined in a Geometry Shader-specific document outside the PRM 

7:3 Reserved : MBZ 

2 Snapshot All Threads. If set, the snapshot flag will be set for all threads generated by this Fixed 
Function Unit (Overrides Snapshot Enable bit).  If set, the data for the last thread executed will be 
captured in the FF unit (qualified in SVG with global debug enable). 

1 Thread Snapshot Enable. This bit is set to enable passing the snapshot flag into the geometry 
shader thread dispatch.  If Snapshot All Threads is also set, the snapshot flag will be passed into the 
thread dispatch for every thread (qualified in SVG with global debug enable). 

0 Snapshot Enable. This bit is set to enable the fixed function snapshot logic in the GS (qualified in 
SVG with global debug enable). 
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3.3.6.2 GS_STRG_VAL —Debug Snapshot Trigger Value 
Address Offset: 7904h–7907h 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31:28 Reserved : MBZ 

27:0 Snapshot ID. This field will be used by the FF logic to compare to the current thread being 
dispatched.  When a match occurs, a snapshot flag will be generated and passed into the thread 
dispatch.  Various signals within the FF unit will also be latched for read back via MMIO registers. 

 

3.3.6.3 GS_RDATA —Debug Return Data 
Address Offset: 7908h–790Bh 
Default Value: UUUU UUUUh 
Access: Read-Only 
Size: 32 bits 

 

Bit Descriptions 

31:0 GS Debug Data. Returns data captured by the compare on snapshot ID (based on snapshot output 
mux select) 
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3.3.7 Clipper 

The Clipper will output a unique identifier with each vertex it outputs.  The four MSBs 
of this field will be the Clipper FFID, the next 24 bits will be the thread ID, and the 
LSBs will be a sequential count of output vertices (incremented by the clipper fixed 
function output logic). 

The thread ID will also be passed through to the Thread Dispatcher as part of the r0 
header. 

 

R0.7 

SS Flag Reserved 

1 bit 31 bits 

 

R0.6 

Reserved for SW Debug Thread ID 

8 bits 24 bits 

The Clipper will have snapshot logic which will generate a compare flag based on a 
match to a specific thread ID.  As the Clipper issues that thread to be dispatched, it 
will pass along the snapshot flag to the Thread Dispatcher (TD). 

The Clipper will also have the capability to snapshot vertices that are not clipped, but 
passed through from the up stream units, so that fixed function clip logic can be 
debugged (like clip test results). 
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3.3.7.1 CL_CTL—Debug Control 
Address Offset: 7A00h–7A03h 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31 Snapshot Complete. This bit will be set to 1 by hardware when a snapshot compare occurs.  After 
reading the desired snapshot return values, the driver should reset this bit to 0. 

30 Reserved. MBZ 

29:16 Reserved : MBZ 

15:8 Snapshot Output Mux Select. Selects what data will be accessed in Clipper Debug Data: 

   0 = Input Vertex 0 FF ID in bits 31:28, Thread ID (Vertex Sequence Number for VF/VS) in bits 
23:0 (Sequence Number for VF/VS) 

   1 = Input Vertex 0 Relative Vertex Count (0 if GS is disabled) 

   2 = Input Vertex 1 FF ID in bits 31:28, Thread ID (Vertex Sequence Number for VF/VS) in bits 
23:0 

   3 = Input Vertex 1 Relative Vertex Count (0 if GS is disabled) 

   4 = Input Vertex 2 FF ID in bits 31:28, Thread ID (Vertex Sequence Number for VF/VS) in bits 
23:0 

   5 = Input Vertex 2 Relative Vertex Count (0 if GS is disabled) 

   6 = Valid Vertex Count (Range 1-3) 

   7 = Clipper Kernel Pointer 

   8 – 255 = = Defined in a Clipper specific document outside the PRM  

7:3  Reserved : MBZ 

2 Snapshot All Threads. If set, the snapshot flag will be set for all threads generated by this Fixed 
Function Unit (Overrides Snapshot Enable bit).  If set, the data for the last thread executed will be 
captured in the FF unit (qualified in SVG with global debug enable). 

1 Thread Snapshot Enable. This bit is set to enable passing the snapshot flag into the geometry 
shader thread dispatch.  If Snapshot All Threads is also set, the snapshot flag will be passed into the 
thread dispatch for every thread (qualified in SVG with global debug enable). 

0 Snapshot Enable. This bit is set to enable the fixed function snapshot logic in the Clipper (qualified 
in SVG with global debug enable). 
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3.3.7.2 CL_STRG_VAL—Debug Snapshot Trigger Value 
Address Offset: 7A04h–7A07h 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31:28 Reserved : MBZ 

27:0 Snapshot ID. This field will be used by the FF logic to compare to the current thread being 
dispatched.  When a match occurs, a snapshot flag will be generated and passed into the thread 
dispatch.  Various signals within the FF unit will also be latched for read back via MMIO registers. 

3.3.7.3 CL_RDATA—Debug Return Data 
Address Offset: 7A08h–7A0Bh 
Default Value: UUUU UUUUh 
Access: Read-Only 
Size: 32 bits 

 

Bit Descriptions 

31:0 Clipper Debug Data. Returns data captured by the compare on snapshot ID (based on snapshot 
output mux select) 
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3.3.8 Strips Fans 

SF will generate a unique primitive sequence number for each incoming primitive.  
This ID will be passed along to the setup kernel in the thread ID field, and also passed 
along to the Windower.  This same primitive sequence number will be used as a 
thread ID for each setup thread that is dispatched. 

 

R0.7 

SS Flag Reserved 

1 bit 31 bits 

 

R0.6 

Reserved for SW Debug Thread ID 

8 bits 24 bits 

 

SF can cull some polygons (backface, degenerate) so not every input will generate an 
output to the Windower.  The primitive count will be incremented for all primitives, 
including the ones that are culled. 

The SF will have the ability to snapshot any given primitive number.  Based on the 
snapshot compare the SF will output to an MMIO register the vertex ids of the 
incoming vertices that created the primitive. 

As the SF issues the thread for that primitive to be dispatched, it will pass along the 
snapshot flag to the Thread Dispatcher (TD).   

To facilitate debug, the SF will contain logic to only process primitives within a certain 
range (specified through MMIO). 

To support test minimization, a user clipping rectangle can be specified via MMIO 
registers.  When enabled, the SF will only process polygons which fall inside the 
specified clip region. 

The snapshot flag will be passed along to the Windower. 
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3.3.8.1 SF_CTL —Debug Control 
Address Offset: 7B00h–7B03h 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31 Snapshot Complete. This bit will be set to 1 by hardware when a snapshot compare occurs.  After 
reading the desired snapshot return values, the driver should reset this bit to 0. 

30 Cull All.  When set to 1 SF drops all incoming primitives 

29:16 Reserved : MBZ 

15:8 Snapshot Output Mux Select 

Controls which 32 bits of the trap data are returned 

   0 = Input Vertex 0 FF ID in bits 31:28, Thread ID (Vertex Sequence Number for VF/VS) in bits 
23:0 

   1 = Input Vertex 0 Relative Vertex Count (0 if GS is disabled) 

   2 = Input Vertex 1 FF ID in bits 31:28, Thread ID (Vertex Sequence Number for VF/VS) in bits 
23:0 

   3 = Input Vertex 0 Relative Vertex Count (0 if GS is disabled) 

   4 = Input Vertex 2 FF ID in bits 31:28, Thread ID (Vertex Sequence Number for VF/VS) in bits 
23:0 

   5 = Input Vertex 0 Relative Vertex Count (0 if GS is disabled) 

   6 = Vertex count (range 1-3) 

   7 = SF Kernel Pointer 

   8 – 255 = = Defined in an SF-specific document outside the PRM 

7:5 Reserved : MBZ 

4 Min / Max Primitive Range Enable 

If set, primitives outside the specified min / max range are culled  (qualified in SVG with global 
debug enable) 

3 Debug Clip Rectangle Enable 

If set, the drawing rectangle is overloaded with the specified debug clip rectangle  (qualified in SVG 
with global debug enable) 

2 Snapshot All Threads. If set, the snapshot flag will be set for all threads generated by this Fixed 
Function Unit (Overrides Snapshot Enable bit).  If set, the data for the last thread executed will be 
captured in the FF unit (qualified in SVG with global debug enable). 

1 Thread Snapshot Enable. This bit is set to enable passing the snapshot flag into the geometry 
shader thread dispatch.  If Snapshot All Threads is also set, the snapshot flag will be passed into the 
thread dispatch for every thread (qualified in SVG with global debug enable). 

0 Snapshot Enable 

This bit is set to enable the fixed function snapshot logic in the SF (qualified in SVG with global debug 
enable). 
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3.3.8.2 SF_STRG_VAL—Debug Snapshot Trigger Value 
Address Offset: 7B04h–7B07h 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31:28 Reserved : MBZ 

27:0 Snapshot ID. This field will be used by the FF logic to compare to the current thread being 
dispatched.  When a match occurs, a snapshot flag will be generated and passed into the thread 
dispatch.  Various signals within the FF unit will also be latched for read back via MMIO registers. 

3.3.8.3 SF_MIN_PR_IND—Debug Minimum Primitive Index 
Address Offset: 7B08h–7B0Bh 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31:28 Reserved : MBZ 

27:0 Minimum Primitive Index. Sets the lower bound on primitives to be processed (if Min / Max 
primitive range is enabled). 

3.3.8.4 SF_MAX_PR_IND—Debug Maximum Primitive Index 
Address Offset: 7B0Ch–7B0Fh 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31:28 Reserved : MBZ 

27:0 Maximum Primitive Index. Sets the upper bound on primitives to be processed (if Min / Max 
primitive range is enabled). 
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3.3.8.5 SF_CLIP_RMIN– Debug Clip Rectangle Minimum Coordinates 
Address Offset: 7B10h–7B13h 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31:16 Debug Clip Rectangle Minimum Y. Sets the lower Y bound on pixels to be processed (if debug clip 
rectangle is enabled). 

15:0 Debug Clip Rectangle Minimum X. Sets the lower X bound on pixels to be processed (if debug clip 
rectangle is enabled). 

 

3.3.8.6 SF_CLIP_RMAX—Debug Clip Rectangle Maximum Coordinates 
Address Offset: 7B14h–7B17h 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31:16 Debug Clip Rectangle Maximum Y. Sets the upper Y bound on pixels to be processed (if debug 
clip rectangle is enabled). 

15:0 Debug Clip Rectangle Maximum X. Sets the upper X bound on pixels to be processed (if debug 
clip rectangle is enabled). 

3.3.8.7 SF_RDATA—Debug Return Data 
Address Offset: 7B18h–7B1Bh 
Default Value: UUUU UUUUh 
Access: Read-Only 
Size: 32 bits 

 

Bit Descriptions 

31:0 SF Debug Data. Returns data captured by the compare on snapshot ID (based on snapshot output 
mux select) 
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3.3.9 Windower / Intermediate Z 

The Windower Mask Unit (WM) will generate multiple dispatches per polygon.  Each 
payload that is dispatched has subspan position information which is carried along 
with the payload.  The Windower will generate an incrementing thread ID for each 
payload dispatched. 
 

R0.7 

SS Flag Reserved Primitive Sequence 
Number 

1 bit 7 bits 24 bits 

 

R0.6 

Reserved for SW Debug Thread ID 

8 bits 24 bits 

The thread number issued by the WM will be a primitive relative count.  Two debug 
fields will be sent through the payload dispatch, a primitive sequence number and an 
incrementing thread ID.  The WM will have the ability to snapshot a subspan of any 
input primitive according to the subspan’s XY coordinates.  Based on the snapshot, the 
WM will output to an MMIO register the thread ID that contained that subspan. 

A snapshot can now be taken using the thread ID of the subspan of interest.  This 
snapshot flag can be sent to the thread dispatcher.  

A count field can be supplied via MMIO which will cause the WM snapshot to be 
generated only on the nth occurrence of that subspan.  The WM will count how many 
times the selected subspan occurs.  The subspan count can be read by setting 
Snapshot Output Mux Select to “Subspan Instance Count”). 

If the upstream snapshot flag is set, the Windower will only snapshot subspans that 
belong to the primitive identified in the SF snapshot compare. 
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The following pseudo code describes the Windower snapshot behavior. 

 
 
 
if (Enable Subspan Instance Compare) { 
  snapshot compare match = subspan x,y match && subspan instance 
count match 
} else { 
  snapshot compare match = subspan x,y match 
} 
 
if (snapshot all threads) { 
  local snapshot flag = 1 
} else if (snapshot enable) { 
  local snapshot flag = snapshot compare match 
} 
 
if (Use Upstream Snapshot) { 
  final snapshot flag = upstream snapshot flag && local snapshot 
flag 
} else { 
  final snapshot flag = local snapshot flag 
} 
 
if {Thread Snapshot Enable) [ 
  snapshot flag to payload = final snapshot flag 
} else { 
  snapshot flag to payload = 0 
} 
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3.3.9.1 WIZ_CTL—Debug Control 
Address Offset: 7C00h–7C03h 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 
 

Bit Descriptions 

31 Snapshot Complete. This bit will be set to 1 by hardware when a snapshot compare occurs.  After 
reading the desired snapshot return values, the driver should reset this bit to 0. 

30:29 Reserved : MBZ 

28:26 Reserved. MBZ 

25 Reserved. MBZ 

24 Reserved. MBZ 

23:16 Subspan Instance Number. If Subspan Instance Compare is enabled, identifies which 
occurrence of a subspan to trap on.  Format:U8 

Range:1 – 255 

15:8 Snapshot Output Mux Select. Controls which 32 bits of the trap data are returned 

 0  = Windower Kernel Pointer 

 1  = Subspan Instance Count  

 2  = Primitive Sequence Number from SF 

 3 – 255 = = Defined in a Windower-specific document outside the PRM 

7 Reserved : MBZ 

6 Single Subspan Dispatch.  When set, WIZ will only dispatch one subspan per payload for non-
promoted or computed IZ cases.  For the A stepping of BW this bit should always be set to 1. 

5 Ignore Color Scoreboard Stalls.  When set, WIZ will ignore pixel dispatch scoreboard blocking 
conditions and continue to dispatch new subspans. 

4 Enable Subspan Instance Compare. When set, the WIZ snapshot will trap on the nth occurrence 
of the selected subspan, where n is the value entered as the Subspan Instance Number above (bits 
23:16).  If this bit is clear the first occurrence of  the selected subspan will be trapped  

3 Use Upstream Snapshot Flag. This bit is set to enable trapping data in the Windower based on a 
snapshot flag passed downstream from the SF unit.  If set, the downstream snapshot flag from SF 
and the subspan X, Y comparison must succeed in order for the current subspan to be trapped.  If 
this bit is clear the snapshot flag passed down from SF is ignored and any matching subspan will be 
trapped (subject to instance number if Enable Subspan Instance Compare is set.). 

2 Snapshot All Threads. If set, the snapshot flag will be set for all threads generated by this Fixed 
Function Unit (Overrides Snapshot Enable bit).  If set, the data for the last thread executed will be 
captured in the FF unit (qualified in SVG with global debug enable). 

1 Thread Snapshot Enable. This bit is set to enable passing the snapshot flag into the pixel shader 
thread dispatch.  If Snapshot All Threads is also set, the snapshot flag will be passed into the thread 
dispatch for every thread (qualified in SVG with global debug enable). 

0 Snapshot Enable. This bit is set to enable the fixed function snapshot logic in the WIZ (qualified in 
SVG with global debug enable). 
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3.3.9.2 WIZ_STRG_VAL —Debug Snapshot Trigger Value 
Address Offset: 7C04h–7C07h 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31:16 Pixel Y Compare Value. This field controls which pixel Y value to trap on.  This value must match 
the current subspan Y in order for it to be trapped (lsb of the compare value is ignored by hw). 

15:0 Pixel X Compare Value. This field controls which pixel X value to trap on.  This value must match 
the current subspan X in order for it to be trapped (lsb of the compare value is ignored by hw). 

 

3.3.9.3 WIZ_RDATA—Debug Return Data 
Address Offset: 7C08h–7C0Bh 
Default Value: UUUU UUUUh 
Access: Read-Only 
Size: 32 bits 

 

Bit Descriptions 

31:0 WIZ Debug Data. Returns data captured by the compare on snapshot subspan x, y (based on 
snapshot output mux select). 
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3.3.10 Video Front End  

VFE passes down a unique 32 bit debug identifier to TS with each kernel it generates.  
This 32-bit field will be passed into the thread as in DW6 of R0 header. Contents 
within the debug identifier as well as the mechanism to generate the field can be 
found in the Media chapter. 

3.3.10.1 VFE_CTL—Debug Control 
Address Offset: 7D00h–7D03h 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31 Snapshot Complete. This bit will be set to 1 by hardware when a snapshot compare occurs.  After 
debugging the errant thread, the driver should reset this bit to 0. 

30:16 Reserved : MBZ 

15:8 Snapshot Output Mux Select. Controls which 32 bits of the trap data are returned 

  0 – 255 = = Defined in a VFE-specific document outside the PRM 

7:1 Reserved : MBZ 

0 Snapshot Enable. This bit is set to enable the fixed function snapshot logic in the VFE (qualified in 
SVG with global debug enable). 

3.3.10.2 VFE_STRG_VAL—Debug Snapshot Trigger Value 
Address Offset: 7D04h–7D07h 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31:28 Reserved : MBZ 

27:0 Snapshot ID. This field will be used by the FF logic to compare to the current thread being 
dispatched.  When a match occurs, a snapshot flag will be generated and passed into the thread 
dispatch.  Various signals within the FF unit will also be latched for read back via MMIO registers. 
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3.3.10.3 VFE_RDATA—Debug Return Data 
Address Offset: 7D08h–7D0Bh 
Default Value: UUUU UUUUh 
Access: Read-Only 
Size: 32 bits 

 

Bit Descriptions 

31:0 VFE Debug Data. Returns data captured during a snaphot 

 

3.3.11 Thread Spawner 

TS does not have a kernel counter.  

To assemble the r0 register when creating a root thread, TS simply copies the 32-bit 
debug identifier received from VFE into r0.6, and leaves 0 in r0.7.  

For child thread, r0 register is created by the parent thread and stored in URB. TS is 
not involved. However, the dispatch child thread message sent to TS must contain the 
same debug field (r0.6 and r0.7) for the given child thread. TS latches the debug field. 

TS can generate the snapshot based on snapshot match, or generate the snapshot 
independently for all root threads (including synchronized root) and/or for all child 
threads depending the configuration in Debug Register 1. 

When Thread Snapshot Enable is set, but “Snapshot All Root Threads” and “Snapshot 
All Child Threads” are not set, TS uses Debug Register 2 and 3 to match against the 
thread to be dispatched. If it is a root thread, TS uses the debug field received from 
VFE. If it is a child thread, TS uses the debug field latched from the child dispatch 
request message.   
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3.3.11.1 TS_CTL—Debug Control 
Address Offset: 7E00h–7E03h 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 
 

Bit Descriptions 

31 Snapshot Complete. This bit will be set to 1 by hardware when a snapshot compare occurs.  After 
debugging the errant thread, the driver should reset this bit to 0. 

30:16 Reserved : MBZ 

15:8 Debug Data Mux Select: Controls which 32 bits of the trap data for the selected Thread Spawner unit 
are returned 

    0 = Message Error: 

[31:27] Message Sideband Function Control [4:0] 

[26] End of Thread 

[25:22] FFID[3:0] 

[21:18] EUID[3:0] 

[17:16] TID[1:0] 

[15] Error Code Valid 

[14:10] Dispatch ID[4:0] 

[9:1] URB Handle[8:0] 

[0] Error Code 

Identifies Type of Error 

0 = Unexpected Message to TS 
1 = Bad Length 

 

    1 – 2 = Defined in a Thread Spawner-specific document outside the PRM 

    3  = Snapshot Interface Descriptor: 

[31:30] Reserved 

[29] Child Thread 

[28] Reserved 

[27:0] Interface Descriptor 

  

   4 – 255 = Defined in a Thread Spawner-specific document outside the PRM 

7:3 Reserved : MBZ 

2 Snapshot All Child Threads. If set, the snapshot flag will be set for all spawned threads generated 
by TS (qualified in SVG with global debug enable). 

1 Snapshot All Root Threads. If set, the snapshot flag will be set for all root threads generated by 
TS (qualified in SVG with global debug enable). 

0 Thread Snapshot Enable. This bit is set to enable the fixed function snapshot logic in TS and to 
pass the snapshot flag into TS thread dispatch (qualified in SVG with global debug enable). 



 
 
 
 

    73 

3.3.11.2 TS_STRG_0-6VAL—Debug Snapshot Trigger R0.6 Value 
Address Offset: 7E04h–7E07h 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31:24 Reserved : MBZ 

Note: Bits 31:24 of R0.6 are reserved. Therefore, this field is not included in the comparison. 

23:0 Snapshot ID0 (bits [23:0] of R0.6). This field together with Debug Snapshot Trigger R0.7 
Value will be used by the FF logic to compare to the debug field (R0.6 and R0.7) of the current 
thread being dispatched.  When a match occurs, a snapshot flag will be generated and passed into 
the thread dispatch.  TS does not latch any internal signals upon a snapshot is generated. 

3.3.11.3 TS_STRG_0-7VAL—Debug Snapshot Trigger R0.7 Value 
Address Offset: 7E08h–7E0Bh 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31:24 Reserved : MBZ 

Note: Bit 31 of R0.7 carries the snapshot flag, and bits [30:24] of R0.7 are reserved. Therefore, this 
field is not included in the comparison. 

23:0 Snapshot ID1 (bits [23:0] of R0.7). This field together with Debug Snapshot Trigger R0.6 
Value will be used by the FF logic to compare to the debug field (R0.6 and R0.7) of the current 
thread being dispatched.  When a match occurs, a snapshot flag will be generated and passed into 
the thread dispatch.  TS does not latch any internal signals upon a snapshot is generated. 

3.3.11.4 TS_RDATA—Debug Return Data 
Address Offset: 7E0Ch–7E0Fh 
Default Value: UUUU UUUUh 
Access: Read-Only 
Size: 32 bits 

 

Bit Descriptions 

31:0 TS Debug Data. Returns data captured when a ‘bad’ message is received (based on  mux select in 
TS Debug Control) 
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3.3.11.5 Parent Thread Recommendations 

Kernel Development Guideline 

A parent thread, serving the purpose of a fixed function unit, should generate the 32-
bit r0.7 debug field for its child threads.  

As the MSB of r0.7 is reserved for hardware to insert the snapshot flag, software must 
make sure that it never alters bit 31. This is shown by the following pseudo code. 

 
 and (1) reg32 r0.7:ud 0x80000000:ud  // save bit 31 

 …      // update r0.7 with new child ID 

 or (1) r0.7:ud r0.7:ud reg32:ud   // restore bit 31 

A root thread should forward its r0.6 to its child thread. 

A branch parent thread should create a unique parent ID in r0.6 for its child threads. 
For example, it may copy its own r0.7 into its children’s r0.6. 

A leaf child thread should not alter the debug ID field. 

The debug ID field of a root thread: 

R0.7 R0.6 

SSflag 0 FF Unit ID Object ID Root Thread ID 

1 bit 31 bits 4 bits 12 bits 16 bits 

The debug ID field of a child thread: 

R0.7 R0.6 

SSflag Child Thread ID FF Unit ID Object ID Parent Thread ID 

1 bit 31 bits 4 bits 12 bits 16 bits 
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3.4 Shared Function Debug 

3.4.1 Thread Dispatcher 

3.4.1.1 TD_CTL—Debug Control 
Address Offset: 8000h-8003h 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31:16 Reserved : MBZ 

15:8 Debug Data Mux Select. Controls which 32 bits of trap data are returned. 

  0 – 255 = = Defined in a Thread Dispatcher-specific document outside the PRM  

7 External Halt on R0 Debug Match. When set, causes an external halt exception to occur on the 
thread dispatch for which the comparison on R0.6 and R0.7 succeeds. Setting this bit forces the 
External Halt Exception bit to be set to true.  This signal is qualified in SVG with global debug enable. 

6 Force External Halt. When set, forces an external halt exception to occur on the next thread 
dispatch.  Setting this bit forces the External Halt Exception bit to be set to true.  This signal is 
qualified in SVG with global debug enable. 

5 Exception Mask Override. When set, forces all exception masks to be over-ridden with the settings 
in TD Debug Register 2 (qualified in SVG with global debug enable). 

4 Force Thread Breakpoint Enable. When set, enables breakpoints on all dispatched threads.  When 
clear, thread debug may still be enabled on a snapshot basis.  CR1.15 will be set for all threads when 
this bit is set, regardless of the state of bit 2 and regardless of whether a snapshot was associated 
with the thread at the FF.  This signal is qualified in SVG with global debug enable. 

3 Reserved : MBZ 

2 Breakpoint Enable. Enables breakpoints to be honored in the dispatched thread.  This bit must be 
set in order for CR1.15 to be set for a thread corresponding to FF data that triggered a snapshot, 
unless bit 4 is set.  When bit 4 is set this bit is ignored (qualified in SVG with global debug enable). 

1:0 Reserved : MBZ 
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3.4.1.2 TD_CTL2—Debug Control 2 
Address Offset: 8004h-8007h 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 
 

Bit Descriptions 

31:29 Reserved : MBZ 

28 Illegal Opcode Exception Override. When set (and the exception override bit, TD Debug Control, is 
set), forces the illegal opcode exception to be enabled, overriding the state control of this function. 

27 Reserved : MBZ 

26 MaskStack Exception Override. When set (and the exception override bit, TD Debug Control, is 
set), forces the MaskStack exception to be enabled, overriding the state control of this function. 

25 Software Exception Override. When set (and the exception override bit, TD Debug Control, is set), 
forces the software exception to be enabled, overriding the state control of this function. 

24 Reserved : MBZ 

23:19 Reserved : MBZ 

18:16 Active Thread Limit. When enabled by Active Thread Limit Enable, the TD will limit the number 
of active threads per execution unit to the value specified in this field. 

15:13 Reserved : MBZ 

12:10 Reserved : MBZ  

9 Reserved : MBZ 

8 Active Thread Limit Enable. Limits the number of active threads per execution unit. 

7 Thread Spawner Execution Mask Enable. Limits which execution units are available for these 
threads to execute on 

6 WIZ Execution Mask Enable. Limits which execution units are available for these threads to 
execute on 

5 SF Execution Mask Enable. Limits which execution units are available for these threads to execute 
on 

4 Clipper Execution Mask Enable. Limits which execution units are available for these threads to 
execute on 

3 GS Execution Mask Enable. Limits which execution units are available for these threads to execute 
on 

2 Reserved : MBZ 

1 Reserved : MBZ 

0 VS Execution Mask Enable. Limits which execution units are available for these threads to execute 
on 
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3.4.1.3 TD_VF_VS_EMSK—Debug VF/VS Execution Mask 
Address Offset: 8008h-800Bh 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31:16 Reserved : MBZ 

15:0 VS Execution Mask. When enabled, forces all VS threads to execute on only those execution units 
with the corresponding mask bit set to 1. 

3.4.1.4 TD_GS_EMSK—Debug GS Execution Mask 
Address Offset: 800Ch-800Fh 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31:16 Reserved : MBZ 

15:0 GS Execution Mask. When enabled, forces all GS threads to execute on only those execution units 
with the corresponding mask bit set to 1. 

3.4.1.5 TD_CLIP_EMSK—Debug Clipper Execution Mask 
Address Offset: 8010h-8013h 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31:16 Reserved : MBZ 

15:0 Clipper Execution Mask. When enabled, forces all Clipper threads to execute on only those 
execution units with the corresponding mask bit set to 1. 
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3.4.1.6 TD_SF_EMSK—Debug SF Execution Mask 
Address Offset: 8014h-8017h 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31:16 Reserved : MBZ 

15:0 SF Execution Mask. When enabled, forces all SF threads to execute on only those execution units 
with the corresponding mask bit set to 1. 

3.4.1.7 TD_WIZ_EMSK — Debug WIZ Execution Mask 
Address Offset: 8018h-801Bh 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31:16 Reserved : MBZ 

15:0 WIZ Execution Mask. When enabled, forces all WIZ threads to execute on only those execution 
units with the corresponding mask bit set to 1. 

3.4.1.8 TD_0-6_EHTRG_VAL—Debug R0.6 External Halt Trigger Value 
Address Offset: 801Ch-801Fh 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31:24 Reserved: MBZ 

23:0 R0.6 Debug Compare Value. Specifies the match to compare against the R0.6 debug header.  A 
match on both the R0.7 and R0.6 headers (based on the mask bits) will cause the TD to generate an 
external halt exception if External Halt on R0 Debug Match is set. 
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3.4.1.9 TD_0-7_EHTRG_VAL—Debug R0.7 External Halt Trigger Value 
Address Offset: 8020h-8023h 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31:24 Reserved: MBZ 

23:0 R0.7 Debug Compare Value. Specifies the match to compare against the R0.7 debug header.  A 
match on both the R0.7 and R0.6 headers (based on the mask bits) will cause the TD to generate an 
external halt exception if External Halt on R0 Debug Match is set. 

3.4.1.10 TD_0-6_EHTRG_MSK—Debug R0.6 External Halt Trigger Mask 
Address Offset: 8024h-8027h 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31:24 Reserved: MBZ 

23:0 R0.6 Debug Compare Mask. Specifies the mask to use for the compare against the R0.6 debug 
header.  A match on both the R0.7 and R0.6 headers (based on the mask bits) will cause the TD to 
generate an external halt exception if External Halt on R0 Debug Match is set. 

3.4.1.11 TD_0-7_EHTRG_MSK—Debug R0.7 External Halt Trigger Mask 
Address Offset: 8028h-802Ch 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31:24 Reserved: MBZ 

23:0 R0.7 Debug Compare Mask. Specifies the mask to use for the compare against the R0.7 debug 
header.  A match on both the R0.7 and R0.6 headers (based on the mask bits) will cause the TD to 
generate an external halt exception if External Halt on R0 Debug Match is set. 
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3.4.1.12 TD_RDATA—Debug Return Data 
Address Offset: 802Ch-802Fh 
Default Value: UUUU UUUUh 
Access: Read-Only 
Size: 32 bits 

 

Bit Descriptions 

31:0 TD Debug data. Returns debug data (based on debug data mux select) 

3.4.1.13 TD_TS_EMSK—Debug TS Execution Mask 
Address Offset: 8030h-8033h 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31:16 Reserved : MBZ 

15:0 TS Execution Mask. When enabled, forces all TS threads to execute on only those execution units 
with the corresponding mask bit set to 1. 

3.4.2 Math Unit 

3.4.2.1 MATH_CTL—Math Debug Control 
Address Offset: 8100h–8103h 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31:16 Reserved: MBZ 

17:16 EM Unit Select: Controls which EM returns the trap data associated with the Snapshot Output Mux 
Select 

Range: 0  - 1 
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Bit Descriptions 

15:8 Debug Data Mux Select: Controls which 32 bits of the trap data for the selected SF unit are 
returned 

    0 = Error Message Header: 

[31:28] Reserved 

[27:24] FFID[3:0] 

[23:22] Reserved 

[21:20] TID[1:0] 

[19:16] EUID[3:0] 

[15:12] rlen[3:0] 

[11:8] mlen[3:0] 

[7:4] opcode[3:0] 

[3:0] Error Code[3:0] -Identifies type of error 

[0] = bad length  
[1]= invalid opcode  
[2] = EOT bit detected  
[3] = Error bit detected 

In all cases above EM will discard message 

 

   1 = EM Debug Data 

31:31 Input Data Valid 

30:30 Input FIFO Full 

29:26 Input Opcode 

25:22 Input EUID 

21:20 Thread ID 

19:16 Msg Length 

15:9 Destination register 

8 Sequencer to FPU 

Valid & !Hold 

7 

6:3 

FPU to FPU 

Valid 

Counter 

  

2 FPU to Assembler 

Valid & !Hold 

1 Output of EM 

Valid & Grant 

0 Reserved 

 

    2 -255 = to be defined is an EM-specific document outside the PRM 
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Bit Descriptions 

7:2 Reserved : MBZ 

1 Non-Pipeline Mode Enable. When enabled, forces the Math Unit to operate in a non-pipelined 
mode of operation  (qualified in SVG with global debug enable). 

0 Reserved : MBZ 

3.4.2.2 MATH_RDATA—Math Debug Return Data 
Address Offset: 8104h–8107h 
Default Value: UUUU UUUUh 
Access: Read-Only 
Size: 32 bits 

 

Bit Descriptions 

31:0 Math Debug Data. Returns data captured by the compare on snapshot ID (based on snapshot 
output mux select) 

 

3.4.3 Instruction / State Cache 

3.4.3.1 ISC_CTL—Instruction / State Debug Control 
Address Offset: 8200h–8203h 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31:0 Reserved : MBZ 
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3.4.4 Instruction L1 Cache 

3.4.4.1 ISC_L1CA_CTR—Instruction L1 Cache Debug Control 
Address Offset: 8280h–8283h 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 
 

Bit Descriptions 

31:16 Reserved : MBZ 

15:8 Snapshot Output Mux Select. Controls which 32 bits of the trap data are returned 

    0 – 255 = = Defined in an ISC-specific document outside the PRM 

7:0 Reserved : MBZ 

 

3.4.4.2 ISC_L1CA_RDATA—Instruction L1 Cache Debug Return Data 
Address Offset: 8284h–8287h 
Default Value: UUUU UUUUh 
Access: Read-Only 
Size: 32 bits 

 

Bit Descriptions 

31:0 Instruction L1 Cache Debug Data. Returns data (based on output mux select) 
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3.4.4.3 ISC_L1CA_BP_ADR1—Instruction L1 Cache Breakpoint Address 
1 Control 

The Instruction L1 Cache Breakpoint Address Control Registers allow a breakpoint to 
be set on a given instruction address.  These registers may be updated at any time. 

 
Address Offset: 8288h–828Ch 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31:4 Breakpoint Address 1. This field holds the 28 MSBs of the desired linear address of the context’s 
memory space.  

3:1 Reserved : MBZ 

0 BPIP 1 Enable. Specifies whether this breakpoint is enabled or disabled.  

This field has no effect when Breakpoint Enable bit is unset. 

This field is initialized to 0 at reset. 

0 = Breakpoint IP 1 disabled 

1 = Breakpoint IP 1 enabled  

3.4.4.4 ISC_L1CA_BP_ADR2—Instruction L1 Cache Breakpoint Address 
2 Control 
Address Offset: 8290h–8293h 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31:4 Breakpoint Address 2. This field holds the 28 MSBs of the desired linear address of the context’s 
memory space.  

3:1 Reserved : MBZ 

0 BPIP 2 Enable. Specifies whether this breakpoint is enabled or disabled.  

This field has no effect when Breakpoint Enable bit is unset. 

This field is initialized to 0 at reset. 

0 = Breakpoint IP 2 disabled 

1 = Breakpoint IP 2 enabled  
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3.4.4.5 ISC_L1CA_BP_OPC1—Instruction L1 Cache Breakpoint Opcode 
1 Control  
Address Offset: 8294h–8297h 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31:24 Reserved : MBZ 

23:16 Breakpoint Opcode 1. Specifies opcode to breakpoint against (if enabled).  Any thread for which 
breakpoints are enabled will break on any instruction matching this field. 

15:2  Reserved : MBZ 

1  Breakpoint Opcode 1 EOT Enable. Specifies opcode to breakpoint against (if enabled).  Any 
thread for which breakpoints are enabled will break on any instruction matching this field. 

0 Breakpoint Opcode 1 Enable. Specifies opcode to breakpoint against (if enabled).  Any thread for 
which breakpoints are enabled will break on any instruction matching this field. 

3.4.4.6 ISC_L1CA_BP_OPC2—Instruction L1 Cache Breakpoint Opcode 
2 Control  
Address Offset: 8298h–829Ch 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31:24 Reserved : MBZ 

23:16 Breakpoint Opcode 2. Specifies opcode to breakpoint against (if enabled).  Any thread for which 
breakpoints are enabled will break on any instruction matching this field. 

15:1  Reserved : MBZ 

0 Breakpoint Opcode 2 Enable. Specifies opcode to breakpoint against (if enabled).  Any thread for 
which breakpoints are enabled will break on any instruction matching this field. 
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3.4.5 Message Arbiter 

When the MASFHalt bit is set in the debug register, the Message Arb enters a ‘halt’ 
state and ceases to further arbitrate, thus no further grants are issued back to EUs. 
Any in-flight messages or any ‘grant’ which has been committed at the time of 
transition is continued to its conclusion. Any previously-posted requests from the EUs 
to the MA remain in the MA’s input/request queues, and the MA’s input queue logic 
remains operational, capable of accepting further EU requests until the associated 
input queue is full. The MA remains in the ‘halt’ state until the register’s bit field is 
reset by driver software. 

A similar mechanism is defined for the Writeback Arb (WBarb) called ‘WBHalt’. In this 
case, the arbiter halts further issuance of grants to shared functions which have 
pending requests in the WBarb’s input queues. Any pending requests which have 
already been committed are allowed to continue to completion. Similar to MAHalt, the 
request logic of WBarb continues to operate normally while in the ‘halt’ state, 
accepting new requests until such time that the request queues become full. The 
WBarb remains in the ‘halt’ state until the register’s bit is reset by driver software. 

A similar mechanism also exists for the RowInput Arb (RIarb). A single bit is defined 
to place all the RI arbiters (one exists for each row) into halt mode. When this bit is 
set, the RI arbiters halt further arbitration of Math return data and Writeback traffic. 
Any traffic already committed for transmission is allowed to complete, and the RIarb 
input logic continues to accept any new requests that may be made. Note that thread-
dispatch traffic is defined as non-throttled, so it will not be halted. The RIarb remains 
in the ‘halt’ state until the register’s bit is reset by driver software. 
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3.4.5.1 MA_DEBUG_1—Message Arbiter Debug Control 
Address Offset: 8300h–8303h 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31:5 Reserved : MBZ 

4 Writeback Arbiter Halt Mode (WBHalt). Puts the WB arbiter into halt mode.  WB arbitrates 
between the writebacks (return data) from all the shared functions except extended math which 
instantiated per row and whose writeback data goes directly to the RI arbiter.  This signal is qualified 
in SVG with global debug enable. 

Format = Enable 

3 RowInput Arbiter Halt Mode (RIHalt). Puts the RI arbiter into halt mode.  One RI per row 
arbitrates between writebacks (shared function return data) and TD dispatches coming into the EUs.  
This bit places the RI arbiters of all rows into halt mode.  However, RI arbiters will still grant TD 
dispatch requests even when in halt mode.  This signal is qualified in SVG with global debug enable. 

Format = Enable 

2 Shared Function Arb Halt Mode (MASFHalt). Puts the MASF arbiter into Halt mode.  MASF 
arbitrates all request messages to shared functions from EUs.  This signal is qualified in SVG with 
global debug enable. 

Format = Enable 

1 Non-Pipeline Mode Enable. Forces the Message Arbiter to operate in a non-pipelined mode of 
operation.  In this mode it will enqueue only 1 request to each shared function at a time.  A new 
request will not be enqueued until the SF indicates its input queue is empty.  Depending on the SF, 
this may or may not de-pipeline the SF to some extent.  This signal is qualified in SVG with global 
debug enable. 

Format = Enable 

0 Reserved: MBZ 
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3.4.6 Sampler 

3.4.6.1 SAMPLER_CTL—Sampler Debug Control 
Address Offset: 8400h–8403h 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31:16 Reserved : MBZ 

15:8 Debug Data Mux Select. Controls which 32 bits of the trap data for the selected sampler unit are 
returned 

    0 = Error Message Header: 

[31:28] Reserved 

[27:24] FFID[3:0] 

[23] Reserved 

[22:21] TID[1:0] 

[20] Reserved 

[19:16] EUID[3:0] 

[15:0] Error Code[15:0]: Identifies type of error are: 

1 = bad length 
2 = invalid EOT message  

    1 = Debug data from Message Header dword 6 

    2 = Debug data from Message Header dword 7 

    3 – 255 = Defined in a Sampler-specific document outside the PRM 

7:3 Sampler Unit Select. Selects the unit to be observed in the debug data register 

00000 – SIUnit 
00001 – PLUnit 
00010 – DGUnit 
00011 – QCUnit 
00100 – FTUnit 
00101 – DMUnit 
00110 – SCUnit 
00111 – FLUnit 
01000 – SOUnit 

2 Texture L1 Cache Disable. Disables the Texture L1 Cache.  Unless this bit is set when the texture 
cache is guaranteed to be empty (such as during initialization), the texture cache must first be 
flushed by issuing an MI_FLUSH with the Map Cache Invalidate bit set. 

Format = Disable 

1 Reserved : MBZ 

0 Reserved : MBZ 
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3.4.6.2 SAMPLER_RDATA—Sampler Debug Return Data 
Address Offset: 8404h–8407h 
Default Value: UUUU UUUUh 
Access: Read-Only 
Size: 32 bits 

 

Bit Descriptions 

31:0 Sampler Debug Data. Returns debug data (based on snapshot output mux select) 

 

3.4.7 Data Port 

The Dataport captures message header information for the first detected error.  Error 
detection can occur at the message arbiter or be internally detected by the dataport. 

3.4.7.1 DP_CTL—Data Port Debug Control 
Address Offset: 8500h–8503h 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31:16 Reserved : MBZ 
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Bit Descriptions 

15:8 Debug Data Mux Select. Controls which 32 bits of the trap data are returned 

    0 = Error Message Header: 

[31:28] Reserved 

[27:24] FFID[3:0] 

[23] Reserved 

[22:21] TID[1:0] 

[20] Reserved 

[19:16] EUID[3:0] 

[15:14] Reserved 

[13] Error Bit:  Wrong Return Length 

[12] Error Bit:  Illegal Surface Format 

[10] Error Bit:  Wrong Message Programming for Stateless Boundary 

[9] Error Bit:  Wrong Message Programming for illegal Stateless Mode Set 

[8] Error Bit:  Wrong Message Programming for Message Length 

[7] Error Bit:  Illegal Address Alignment 

[6] Error Bit:  Wrong Message Programming for Block Size 

[5] Error Bit:  Illegal Surface Type 

[4] Error Bit:  Illegal Target Cache 

[3] Error Bit:  Error Bit Received from Message Sideband 

[2] Error Bit  Invalid S/F Id 

[1] Error Bit  Invalid EOT Message 

[0] Error Bit  Bad Length 

 
    1 = Debug data from Message Header dword 7 
    2 = Debug data from Message Header dword 6 
     
    3 – 31 = Defined in a Dataport-specific document outside the PRM 

  32 – 63 = Binding Table Pointers 
 64 – 255 = Defined in a Dataport-specific document outside the PRM 
 

7:0 Reserved : MBZ 

3.4.7.2 DP_RDATA—Data Port Debug Return Data 
Address Offset: 8504h–8507h 
Default Value: UUUU UUUUh 
Access: Read-Only 
Size: 32 bits 

 

Bit Descriptions 

31:0 Data Port Debug Data. Returns debug data (based on snapshot output mux select) 
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3.4.8 Render Cache 

3.4.8.1 RC_CTL—RC Debug Control 
Address Offset: 8600h–8603h 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31:16 Reserved : MBZ 

15:8 Snapshot Output Mux Select. Controls which 32 bits of the trap data are returned 

    0 – 255 = = Defined in a Render Cache-specific document outside the PRM 

7:3 Reserved : MBZ 

2 Default Color Enable. Forces the Render Cache to output a constant color for all channels when 
enabled (only for pixels whose r0 header has the snapshot flag set).  This signal is qualified in SVG 
with global debug enable. 

1 Non-Pipeline Mode Enable. Forces the Render Cache to operate in a non-pipelined mode of 
operation.  This signal is qualified in SVG with global debug enable. 

0 Snapshot Enable. This bit is set to enable the snapshot logic in the RC.  The snapshot logic is also 
dependent on the snapshot flag being set in the R0 header.  This signal is qualified in SVG with 
global debug enable. 

3.4.8.2 RC_DEF_CLR—RC Debug Force Default Color 
Address Offset: 8603h–8607h 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31:0 Default Color. If Default Color is enabled, the Render Cache will output the default color for each 
channel (RGBA).  The default color is assumed to be in the format of the render target (and aligned 
to the MSB).  
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3.4.8.3 RC_RDATA—RC Debug Return Data 
Address Offset: 8608h–860Bh 
Default Value: UUUU UUUUh 
Access: Read-Only 
Size: 32 bits 

 

Bit Descriptions 

31:0 RC Debug Data. Returns data captured by the compare on snapshot ID (based on snapshot output 
mux select) 

 

3.4.9 Unified Return Buffer (URB) 

The ability to trap a write to the URB (from a thread) will be provided.  When the URB 
snapshot enable bit is set (URB Debug Control), the URB will trap any message that 
has the snapshot flag set in the R0 header.  The nth data phase will be trapped (where 
n is specified using the Snapshot Output Register control in the URB Debug Control). 

3.4.9.1 URB_CTL—URB Debug Control 
Address Offset: 8700h–8703h 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31 Snapshot Complete. This bit will be set to 1 by hardware when a snapshot compare occurs.  After 
reading the desired snapshot return values, the driver should reset this bit to 0. 

30:20 Reserved : MBZ 

19:16 Snapshot Output Register Select. Controls which register of the URB write message is trapped.  

Range: 0 – 15 
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Bit Descriptions 

15:8 Debug Data Mux Select. Controls which 32 bits of the trap data are returned. Controls which 32 
bits of the trap data for the selected sampler unit are returned 

    0 = Error Message Header: 

[31:28] Reserved 

[27:24] FFID[3:0] 

[23] Reserved 

[22:21] TID[1:0] 

[20] Reserved 

[19:16] EUID[3:0] 

[15:0] Error Code[15:0] 

Identifies type of error 

4 = Invalid S/F Id 

 

    1 = Debug data from Message Header dword 6 
    2 = Debug data from Message Header dword 7 
    3 – 7 = Reserved for HW usage 
    8 = trapped message data bits 0 – 31 
    9 = trapped message data bits 32 – 63 
  10 = trapped message data bits 64 – 95 
  11 = trapped message data bits 96 – 127 
  12 = trapped message data bits 128 – 159 
  13 = trapped message data bits 160 – 191 
  14 = trapped message data bits 192 – 223 
  15 = trapped message data bits 224 – 255 
  16 – 255 = = Defined in a URB-specific document outside the PRM  

7:1 Reserved : MBZ 

0 Snapshot Enable. This bit is set to enable the snapshot logic in the URB.  The snapshot logic is also 
dependent on the snapshot flag being set in the R0 header.  This signal is qualified in SVG with global 
debug enable. 

 

3.4.9.2 URB_RDATA—URB Debug Return Data 
Address Offset: 8708h–870Bh 
Default Value: UUUU UUUUh 
Access: Read-Only 
Size: 32 bits 

 

Bit Descriptions 

31:0 URB Debug Data. Returns data captured by the compare on snapshot enable (based on snapshot 
output mux select) 

 



 
6
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3.4.10 Thread Spawner (TS) 

TS is not only a fixed function to generate thread for the media pipeline, it is also a 
shared function allowing a thread running on EU to directly send message to.  
Therefore, it must handle ‘bad’ messages in a similar manner as other shared 
functions.  

See the Fixed Function Debug section above for the debug registers defined for 
handling bad messages. 

3.5 Attention Signaling from EU to Host 
• [mkd: Text duplicated in Exceptions chapter – need to resolve] 
• Each thread has dedicated signaling mechanism to/from the host, based on a 

3-wire protocol (per thread) and the ‘wait n1’ instruction. 
• Likely uses: (a) Debug breakpoint “suspend/resume” signaling (b) Software 

manipulated serial data stream (bit-banged) to the host, for use in debug, in 
the case where thread state save/restore via the dataport is unavailable/hung. 

• Attention Signaling 
o The following signals are provided per thread: 

• Attn – a 1b signal sent from the thread to the host, indicating 
that the associated thread desires attention. This signals is set 
to ‘1’ via the ‘wait n1’ instruction and held set until an ‘AClear’ 
signal is received from the host, at which time the signal is 
reset to ‘0’. 

• AData – a 1b data signal sent from the thread to the host, 
indicating any data the thread wishes to communicate; 
Reflects the value of the architectural register CR0, bit 2, as 
set by the thread.  

• AClear – a 1b signal, send from the host to the thread, which 
resets the thread’s internal Host-To-Thread-Notification bit 
(register N1, bit 0), as well as the Host-Notification-Data 
register (register CR0, bit 2). MMIO registers available to the 
host 

• Attn[63:0] – reflects the combined 64 ‘Attn’ bits of the thread. 
Read-only. 

• AData[63:0] – reflects the combined 64 ‘AData’ bits of the 
thread. Read-Only. 

• AClear[63:0] – the port through which the host issues a ‘Clear’ 
signal to one or more  threads. Write-only; a write to this 
register causes a 1-clock pulse to be sent to the associated 
‘Clear’ signal of any bit position set as a ‘1’. Signaling 
attention to the driver 

• All 64 ‘Attn’ bits are ‘OR’ed together to crate a 1b ATTN 
interrupt signal to the driver 
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3.5.1 EU_CTL—EU Debug Control 
Address Offset: 8800h-8803h 
Default Value: 00000000h 
Access: Read/Write 
Size: 32 bits 

 

Bit Descriptions 

31:19 Reserved : MBZ 

18:16 EU Select. Controls which EU returns the debug data associated with the Debug Data Mux Select 

Range: 0 – 7 

15:8 Debug Data Mux Select. Controls which 32 bits of the trap data are returned 

    0 – 255 = = Defined in an EU-specific document outside the PRM  

7:0 Reserved : MBZ 

3.5.2 EU_ATT—EU Debug Attention 
Address Offset: 8810h-881Fh 
Default Value: 00000000000000000000000000000000h 
Access: Read-Only 
Size: 128 bits 

 

Bit Descriptions 

127:32 Reserved : MBZ. 

31:0 Attention. Reflects the Attention bits (msb is EU 0 thread 0). 

3.5.3 EU_ATT_DATA—EU Debug Attention Data 
Address Offset: 8820h-882Fh 
Default Value: 00000000000000000000000000000000h 
Access: Read-Only 
Size: 128 bits 
 

Bit Descriptions 

127:32 Reserved : MBZ. 

63:0 Attention Data. A 1b data signal sent from the thread to the host, indicating any data the thread 
wishes to communicate (msb is EU 0 thread 0). 
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3.5.4 EU_ATT_CLR—EU Debug Attention Clear 
Address Offset: 8830h-883Fh 
Default Value: 00000000000000000000000000000000h 
Access: Write-Only 
Size: 128 bits 
 

Bit Descriptions 

127:32 Reserved : MBZ. 

31:0 Attention Clear. A 1b data signal sent from the host to a thread, indicating the thread may resume 
operation (lsb is EU 0 thread 0).  These bits must be set to 1, then set back to 0 to clear the 
associated thread wait. 

3.5.5 EU_RDATA—EU Debug Return Data 
Address Offset: 8840h–8843h 
Default Value UUUU UUUUh 
Access: Read-Only 
Size: 32 bits 
 

Bit Descriptions 

31:0 EU Debug Data. Returns debug data (based on debug data mux select) 
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3.6 Breakpoints 

A breakpoint is an instruction attribute that will cause a breakpoint exception to be 
taken prior to issuing the instruction.  A breakpoint is indicated for a given instruction 
in any one or more of these 3 ways: 

• Setting the DebugCtrl field to ‘1’ (Breakpoint) in the instruction word in memory.  
See Instruction Set Summary for details. 

• Setting the Breakpoint Address field in one of the Instruction L1 Cache 
Breakpoint Address Control registers to the address of the instruction (See 
Instruction L1 Cache earlier in this chapter). 

• Setting of the Breakpoint Opcode field in one of the Instruction L1 Cache 
Breakpoint Opcode Control registers to the opcode of the instruction.  Note that 
any instructions with matching opcodes will raise a breakpoint exception if 
breakpoints are enabled. 

In order for a breakpoint exception to be raised for these cases, the thread executing 
the instruction for which a breakpoint is indicated must have breakpoints enabled.  
This is controlled via the Breakpoint Enable bit in control register 1 (CR1).  This 
control bit will be set when a thread is dispatched if: 

• The Breakpoint Enable bit is set in the TD Debug Control registers (see Section 
TD_CTL—Debug Control) and the FF initiating the thread set the Snapshot Flag 
(see Section  3.2, The Snapshot Mechanism), or 

• The Force Thread Breakpoint Enable bit is set in the TD Debug Control 
registers. 

Otherwise, breakpoints will not be enabled for the thread by default.  It is expected 
that many thread instantiations will be running the same instruction set from the 
same place in memory; the mechanism in the first bullet above makes it possible to 
take a breakpoint exception only in the thread that generated erroneous data (as 
detected by the Snapshot mechanism in the FF unit) instead of requiring inspection 
and manual restart of every thread instance running the same code until the instance 
of interest is found. 

Setting of the Breakpoint Suppress bit in a thread’s control register 0 (CR0) will 
prevent a breakpoint exception from being raised.  This bit is cleared by hardware 
upon suppression of a single breakpoint; its purpose is to allow execution of an 
instruction with a breakpoint set to continue after the breakpoint exception handling is 
complete. 

3.6.1 Single Stepping 

An important method for debugging is single-stepping through code, allowing registers 
and memory to be examined after each instruction to make sure all intermediate 
results are as expected.  Single-stepping is accomplished using the breakpoint 
mechanism. 

A breakpoint is set (using any of the mechanisms above) at the point in the code 
where the debugger wants to begin single-stepping.  The System Routine (SR) code 
that handles the breakpoint exception will normally communicate with host software 
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where the majority of the debugger code resides.  When the user wants to execute 
the next instruction, the SR sets the Breakpoint Suppress bit of CR0 but does not 
clear the Breakpoint Exception Status and Control bit of CR1.  Control is 
transferred from the system routine back to application code by writing a 0 to the 
Master Exception State and Control. 

Breakpoint Suppress will allow one instruction to execute before it is automatically 
reset by hardware, at which time another breakpoint exception will be taken since the 
Breakpoint Exception Status and Control bit is still set.  In this way the debugger 
can step through the code executing just one instruction at a time.  To end single-
stepping, the SR simply clears the Breakpoint Exception Status and Control bit 
(the Breakpoint Suppress bit must still be set) prior to transferring control back to the 
application code.  No more breakpoint exceptions will occur unless another breakpoint 
is encountered in the code or via matching one of the L1 Cache Breakpoint Control 
values described above. 

3.6.2 Modification of Instruction Stream 
A mechanism is provided to flush all caches in the path between main memory and 
the EUs. This is controlled via an MMIO bit (see the Memory Interface Registers 
chapter). This allows dynamic modification of the thread’s code at any breakpoint.  
Note that the EUs prefetch instructions internally; these will be flushed on the branch 
to SIP and again on the return back to AIP. 

3.7 Message Errors 

3.7.1.1 Error-Types Visible to the Arb 

• Case 1: Unknown SFID destination in ‘send’ inst 
⎯ Message arbiter treats as a normal message. 
⎯ URB decodes invalid SFID. 

• Case 2: Message length too long for destination S/F input buffer  
⎯ Detected by Msg Arb 
⎯ Arb overrides message length for arbitration purposes only (sets length =1) 
⎯ Message participates in arb as normal (w/ overridden shorter length) 
⎯ Grant issued for the full message to the EU, w/ ERR signal supplied to EU 
⎯ EU passes along ERR signal on the sideband w/ the message. 
⎯ The S/F treats this as a bad message (see case 1 in the subsequent section). 
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3.7.1.2 Non-pipelined S/F Operation 

• There may be cases of errors which are caused by the contents of the data 
payload  (e.g. bad pointer, bad operand, etc.). These error types may not be 
apparent until the message is well down the S/F’s pipeline. Given that many other 
messages may be in-flight in the pipeline also, it may be difficult to associate a 
failure to a specific message. 

• To allow for message-to-error association, each S/F should implement a “non-
pipelined” operational mode. 

• Arbiter operation in Non-pipelined mode. 
⎯ The arbiter guarantees that it will allow only one outstanding message to each 

S/F at a time. Normally the arbiter tracks the input buffer depths of all shared 
functions, and if sufficient room exists, allows a pending message to be sent. 
In Non-pipelined mode, the arbiter treats each input queue are either full or 
empty - if the input buffer is not empty, it is considered full and thus unable to 
receive a further message. 

• Shared function operation in non-pipelined mode 
⎯ The S/F preserves the message sideband and r0 data phase of all messages it 

receives into its Error register. The ‘Valid’ is not set at this time, thus no error 
condition signaled. 

⎯ The S/F processes the message as normal. 
⎯ If any error occurs during the processing of the message, the ‘Valid’ bit is set 

in the Error register and the message discarded. The S/F must continue to 
operate on all subsequent messages. 

⎯ The S/F assists the message arb in ensuring that only 1 message is delivered 
at a time by not releasing its input buffer space until the current message is 
guaranteed to complete w/o error. 

 

§§ 
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4 Sampling Engine 

The Sampling Engine provides the capability of advanced sampling and filtering of 
surfaces in memory. 

The sampling engine function is responsible for providing filtered texture values to the 
Gen4 Core in response to sampling engine messages..  The sampling engine uses 
SAMPLER_STATE to control filtering modes, address control modes, and other features 
of the sampling engine.  A pointer to the sampler state is delivered with each 
message, and an index selects one of 16 states pointed to by the pointer.  Some 
messages do not require SAMPLER_STATE.  In addition, the sampling engine uses 
SURFACE_STATE to define the attributes of the surface being sampled.  This includes 
the location, size, and format of the surface as well as other attributes. 

Although data is commonly used for “texturing” of 3D surfaces, the data can be used 
for any purpose once returned to the execution core. 

The following table summarizes the various subfunctions provided by the Sampling 
Engine.  After the appropriate subfunctions are complete, the 4-component (reduced 
to fewer components in some cases) filtered texture value is provided to the Gen4 
Core in order to complete the sample instruction.  

 

Subfunction Description 

Texture 
Coordinate 
Processing 

Any required operations are performed on the incoming pixel’s interpolated internal texture 
coordinates.  These operations may include:  cube map intersection. 

Texel Address 
Generation 

The Sampling Engine will determine the required set of texel samples (specific texel values 
from  specific texture maps), as defined by the texture map parameters and filtering modes.  
This includes coordinate wrap/clamp/mirror control, mipmap LOD computation and sample 
and/or miplevel weighting factors to be used in the subsequent filtering operations. 

Texel Fetch The required texel samples will be read from the texture map.  This step may require 
decompression of texel data.  The texel sample data is converted to an internal format. 

Texture Palette 
Lookup 

For streams which have “paletted” texture surface formats, this function uses the “index” 
values read from the texture map to look up texel color data from the texture palette. 

Shadow Pre-
Filter Compare 

For shadow mapping, the texel samples are first compared to the 3rd (R) component of the 
pixel’s texture coordinate.  The boolean results are used in the texture filter. 

Texel Filtering Texel samples are combined using the filter weight coefficients computed in the Texture 
Address Generation function.  This “combination” ranges from simply passing through a 
“nearest” sample to blending the results of anisotropic filters performed on two mipmap 
levels.  The output of this function is a single 4-component texel value. 

Texel Color 
Gamma 
Linearization 

Performs optional gamma decorrection on texel RGB (not A) values. 
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4.1 Texture Coordinate Processing 

The Texture Coordinate Processing function of the Sampling Engine performs any 
operations on the texture coordinates that are required before physical addresses of 
texel samples can be generated. 

4.1.1 Texture Coordinate Normalization 

A texture coordinate may have normalized or unnormalized values.  In this function, 
unnormalized coordinates are normalized. 

Normalized coordinates are specified in units relative to the map dimensions, where 
the origin is located at the upper/left edge of the upper left texel,  and the value 1.0 
coincides with the lower/right edge of the lower right texel .  3D rendering typically 
utilizes normalized coordinates.   

Unnormalized coordinates are in units of texels and have not been divided 
(normalized) by the associated map’s height or width.  Here the origin is the located 
at the upper/left edge of the upper left texel of the base texture map.  Unnormalized 
coordinates delivered to the sampling engine are only supported with the “ld” type 
messages. 

Figure  4-1. Normalized vs. Unnormalized Texture Coordinates 
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4.1.2 Texture Coordinate Computation 

Cartesian (2D) and homogeneous (projected) texture coordinate values are projected 
from (interpolated) screen space back into texture coordinate space by dividing the 
pixel’s S and T components by the Q component.  This operation is done as part of the 
pixel shader kernel in the Gen4 Core. 

Vector (cube map) texture coordinates are generated by first determining which of the 
6 cube map faces (+X, +Y, +Z, -X, -Y, -Z) the vector intersects.  The vector 
component (X, Y or Z) with the largest absolute value determines the proper (major) 



 
 
 
 

    103 

axis, and then the sign of that component is used to select between the two faces 
associated with that axis.  The coordinates along the two minor axes are then divided 
by the coordinate of the major axis, and scaled and translated, to obtain the 2D 
texture coordinate ([0,1]) within the chosen face.   Note that the coordinates 
delivered to the sampling engine must already have been divided by the component 
with the largest absolute value. 

An illustration of this cube map coordinate computation, simplified to only two 
dimensions, is provided below: 

Figure  4-2. Cube Map Coordinate Computation Example 
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4.2 Texel Address Generation 

To better understand texture mapping, consider the mapping of each object (screen-
space) pixel onto the textures images.  In texture space, the pixel becomes some 
arbitrarily sized and aligned quadrilateral.  Any given pixel of the object may “cover” 
multiple texels of the map, or only a fraction of one texel.  For each pixel, the usual 
goal is to sample and filter the texture image in order to best represent the covered 
texel values, with a minimum of blurring or aliasing artifacts.   Per-texture state 
variables are provided to allow the user to employ quality/performance/footprint 
tradeoffs in selecting how the particular texture is to be sampled. 

The Texel Address Generation function of the Sampling Engine is responsible for 
determining how the texture maps are to be sampled.  Outputs of this function include 
the number of texel samples to be taken, along with the physical addresses of the 
samples and the filter weights to be applied to the samples after they are read.  This 
information is computed given the incoming texture coordinate and gradient values, 
and the relevant state variables associated with the sampler and surface.  This 
function also applies the texture coordinate address controls when converting  the 
sample texture coordinates to map addresses. 
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4.2.1 Level of Detail Computation (Mipmapping) 

Due to the specification and processing of texture coordinates at object vertices, and 
the subsequent object warping due to a perspective projection, the texture image may 
become magnified (where a texel covers more than one pixel) or minified (a pixel 
covers more than one texel) as it is mapped to an object.    In the case where an 
object pixel is found to cover multiple texels (texture minification), merely choosing 
one (e.g., the texel sample nearest to the pixel’s texture coordinate) will likely result 
in severe aliasing artifacts.   

Mipmapping and texture filtering are techniques employed to minimize the effect of 
undersampling these textures.  With mipmapping, software provides mipmap levels, a 
series of pre-filtered texture maps of decreasing resolutions that are stored in a fixed 
(monolithic) format in memory.  When mipmaps are provided and enabled, and an 
object pixel is found to cover multiple texels (e.g., when a textured object is located a 
significant distance from the viewer), the device will sample the mipmap level(s) 
offering a texel/pixel ratio as close to 1.0 as possible.   

The device supports up to 14 mipmap levels per map surface, ranging from 8192 x 
8192 texels to a 1 X 1 texel.  Each successive level has ½ the resolution of the 
previous level in the U and V directions (to a minimum of 1 texel in either direction) 
until a 1x1 texture map is reached.  The dimensions of mipmap levels need not be a 
power of 2. 

Each mipmap level is associated with a Level of Detail (LOD) number.  LOD is 
computed as the approximate, log2 measure of the ratio of texels per pixel.   The 
highest resolution map is considered LOD 0.  A larger LOD number corresponds to 
lower resolution mip level.    

The Sampler[]BaseMipLevel state variable specifies the LOD value at which the 
minification filter vs. the magnification filter should be applied. 

When the texture map is magnified (a texel covers more than one pixel), the base 
map (LOD 0) texture map is accessed, and the magnification mode selects between 
the nearest neighbor texel or bilinear interpolation of the 4 neighboring texels on the 
base (LOD 0) mipmap. 

4.2.1.1 Base Level Of Detail (LOD)  

The per-pixel LOD is computed in an implementation-dependent manner and 
approximates the log2 of the texel/pixel ratio at the given pixel.  The computation is 
typically based on the differential texel-space distances associated with a one-pixel 
differential distance along the screen x- and y-axes.  These texel-space distances are 
computed by evaluating neighboring pixel texture coordinates, these coordinates 
being in units of texels on the base MIP level (multiplied by the corresponding surface 
size in texels).   The q coordinates represent the third dimension for 3D (volume) 
surfaces, this coordinate is a constant 0 for 2D surfaces. 

The ideal LOD computation is included below. 
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4.2.1.2 LOD Bias 

A biasing offset can be applied to the computed LOD and used to artificially select a 
higher or lower miplevel and/or affect the weighting of the selected mipmap levels.  
Selecting a slightly higher mipmap level will trade off image blurring with possibly 
increased performance (due to better texture cache reuse).  Lowering the LOD tends 
to sharpen the image, though at the expense of more texture aliasing artifacts. 

The LOD bias is defined as sum of the LODBias state variable and the pixLODBias 
input from the input message (which can be non-zero only for sample_b messages).   
The application of LOD Bias is unconditional, therefore these variables must both be 
set to zero in order to prevent any undesired biasing. 

Note that, while the LOD Bias is applied prior to clamping and min/mag determination 
and therefore can be used to control the min-vs-mag crossover point, its use has the 
undesired effect of actually changing the LOD used in texture filtering. 

4.2.1.3 LOD Pre-Clamping 

The LOD Pre-Clamping function can be enabled or disabled via the 
LODPreClampEnable state variable. 

After biasing and/or adjusting of the LOD , the computed LOD value is clamped to a 
range specified by the (integer and fractional bits of) MinLOD and MaxLOD state 
variables prior to use in Min/Mag Determination.    

MaxLOD specifies the lowest resolution mip level (maximum LOD value) that can be 
accessed, even when lower resolution maps may be available.  Note that this is the 
only parameter used to specify the number of valid mip levels that be can be 
accessed, i.e., there is no explicit “number of levels stored in memory” parameter 
associated with a mip-mapped texture.  All mip levels from the base mip level map 
through the level specified by  the integer bits of MaxLOD must be stored in memory, 
or operation is UNDEFINED. 

MinLOD specifies the highest resolution mip level (minimum LOD value) that can be 
accessed, where LOD==0 corresponds to the base map.   This value is primarily used 
to deny access to high-resolution mip levels that have been evicted from memory 
when memory availability is low. 

MinLOD and MaxLOD have both integer and fractional bits.  The fractional parts will 
limit the inter-level filter weighting of the highest or lowest (respectively) resolution 
map.  For example if MinLOD is 4.5 and MipFilter is LINEAR, LOD 4 can contribute only 
up to 50% of the final texel color.   

4.2.1.4 Min/Mag Determination 

The biased and clamped LOD is used to determine whether the texture is being 
minified (scaled down) or magnified (scaled up).  

The BaseMipLevel state variable is subtracted from the biased and clamped LOD.  The 
BaseMipLevel state variable therefore has the effect of selecting the “base” mip level 
used to compute Min/Map Determination.  (This was added to match OpenGL 
semantics).  Setting BaseMipLevel to 0 has the effect of using the highest-resolution 
mip level as the base map. 
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If the biased and clamped LOD is non-positive, the texture is being magnified, and a 
single (high-resolution) miplevel will be sampled and filtered using the MagFilter state 
variable.  At this point the computed LOD is reset to 0.0.  Note that LOD Clamping can 
restrict access to high-resolution miplevels. 

If the biased LOD is positive, the texture is being minified.  In this case the MipFilter 
state variable specifies whether one or two mip levels are to be included in the texture 
filtering, and how that (or those) levels are to be determined as a function of the 
computed LOD.  

4.2.1.5 LOD Computation Pseudocode 

This section illustrates the LOD biasing and clamping computation in pseudocode, 
encompassing the steps described in the previous sections.  The computation of the 
initial per-pixel LOD value LOD is not shown. 

 
Bias:  S4.4 
MinLod:  U4.6 
MaxLod:  U4.6 
Base:  U4.1 
MIPCnt:   U4 
SurfMinLod:  U4 
 
MaxLod = min(MaxLod, MIPCnt) + SurfMinLod 
MinLod = min(MinLod, MIPCnt) + SurfMinLod 
 
if (sample_b) 
 LOD += Bias + bias_parameter 
else if (sample_l or ld) 
 LOD = Bias + lod_parameter + SurfMinLod 
else 

LOD += Bias 
 

If (PreClamp) 
 LOD = min(LOD, MaxLod) 
 LOD = max(LOD, MinLod) 
 
MagMode = (LOD - Base <= 0) 
If (MagMode or MipFlt = None) 
 LOD = 0 

LOD = min(LOD, ceil(MaxLod)) 
 LOD = max(LOD, floor(MinLod)) 
else if (MipFlt = Nearest) 
 LOD += 0.5 
 LOD = min(LOD, ceil(MaxLod)) 

LOD = max(LOD, floor(MinLod)) 
LOD = floor(LOD) 

else // MipFlt = Linear 
LOD = min(LOD, MaxLod) 

 LOD = max(LOD, MinLod) 
 TriBeta = frac(LOD) 
 LOD0 = floor(LOD) 
 LOD1 = LOD0 + 1 
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4.2.2 Inter-Level Filtering Setup 

The MipFilter state variable determines if and how texture mip maps are to be used 
and combined.  The following table describes the various mip filter modes: 
 

MipFilter Value Description 

MIPFILTER_NONE Mipmapping is DISABLED.  Apply a single filter on the highest resolution 
map available (after LOD clamping).   

MIPFILTER_NEAREST Choose the nearest mipmap level and apply a single filter to it.  Here the 
biased LOD will be rounded to the nearest integer to obtain the desired 
miplevel.  LOD Clamping may further restrict this miplevel selection. 

MIPFILTER_LINEAR Apply a filter on the two closest mip levels and linear blend the results 
using the distance between the computed LOD and the level LODs as the 
blend factor.  Again, LOD Clamping may further restrict the selection of 
miplevels (and the blend factor between them). 

When minifying and MIPFILTER_NEAREST is selected, the computed LOD is rounded to 
the nearest mip level. 

When minifying and MIPFILTER_LINEAR is selected, the fractional bits of the 
computed LOD are used to generate an inter-level blend factor.  The LOD is then 
truncated.  The mip level selected by the truncated LOD, and the next higher (lower 
resolution) mip level are determined. 

Regardless of MipFilter and the min/mag determination, all computed LOD values (two 
for MIPFILTER_LINEAR, otherwise one) are then unconditionally clamped to the range 
specified by the (integer bits of) MinLOD and MaxLOD state variables. 

4.2.3 Intra-Level Filtering Setup 

Depending on whether the texture is being minified or magnified, the MinFilter or 
MagFilter state variable (respectively)  is used to select the sampling filter to be used 
within a mip level (intra-level, as opposed to any inter-level filter).  Note that for 
volume maps, this selection also applies to filtering between layers. 

The processing at this stage is restricted to the selection of the filter type, 
computation of the number and texture map coordinates of the texture samples, and 
the computation of any required filter parameters.  The filtering of the samples occurs 
later on in the Sampling Engine function. 
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The following table summarizes the intra-level filtering modes. 

Sampler[]Min/MagFilter value Description 

MAPFILTER_NEAREST Supported on all surface types.  The texel nearest to the pixel’s U,V,Q 
coordinate is read and output from the filter. 

MAPFILTER_LINEAR Not supported on buffer surfaces.  The 2, 4, or 8 texels (depending on 
1D, 2D/CUBE, or 3D surface, respectively) surrounding the pixel’s U,V,Q 
coordinate are read and a linear filter is applied to produce a single 
filtered texel value. 

MAPFILTER_ANISOTROPIC Not supported on buffer or 3D surfaces.  A projection of the pixel onto 
the texture map is generated and “subpixel” samples are taken along the 
major axis of the projection (center axis of the longer dimension).  The 
outermost subpixels are weighted according to closeness to the edge of 
the projection, inner subpixels are weighted equally.  Each subpixel 
samples a bilinear 2x2 of texels and the results are blended according to 
weights to produce a filtered texel value.   

MAPFILTER_MONO Supported only on 2D surfaces.  This filter is only supported with the 
monochrome (MONO8) surface format.  The monochrome texel block  of 
the specified size surrounding the pixel is selected and filtered. 

4.2.3.1 MAPFILTER_NEAREST 

When the MAPFILTER_NEAREST is selected, the texel with coordinates nearest to the 
pixel’s texture coordinate is selected and output as the single texel sample coordinates 
for the level. 

4.2.3.2 MAPFILTER_LINEAR 

The following description indicates behavior of the MIPFILTER_LINEAR filter for 2D and 
CUBE surfaces.  1D and 3D surfaces follow a similar method but with a different 
number of dimensions available. 

When the MAPFILTER_LINEAR filter is selected on a 2D surface, the 2x2 region of 
texels surrounding the pixel’s texture coordinate are sampled and later bilinearly 
filtered. 
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Figure  4-3. Bilinear Filter Sampling 
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The four texels surrounding the pixel center are chosen for the bilinear filter.  The 
filter weights each texel’s contribution according to its distance from the pixel center.  
Texels further from the pixel center receive a smaller weight. 

4.2.3.3 MAPFILTER_ANISOTROPIC 

The MAPFILTER_ANISOTROPIC texture filter attempts to compensate for the 
anisotropic mapping of pixels into texture map space.   A possibly non-square set of 
texel sample locations will be sampled and later filtered.  The MaxAnisotropy state 
variable is used to select the maximum aspect ratio of the filter employed, up to 16:1. 

The algorithm employed first computes the major and minor axes of the pixel 
projection onto the texture map.  LOD is chosen based on the minor axis length in 
texel space.  The anisotropic “ratio” is equal to the ratio between the major axis 
length and the minor axis length.  The next larger even integer above the ratio 
determines the anisotropic number of “ways”, which determines how many subpixels 
are chosen.  A line along the major axis is determined, and “subpixels” are chosen 
along this line, spaced one texel apart, as shown in the diagram below.  In this 
diagram, the texels are shown in light blue, and the pixels are in yellow. 
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Each subpixel samples a bilinear 2x2 around it just as if it was a single pixel.  The 
result of each subpixel is then blended together using equal weights on all interior 
subpixels (not including the two endpoint subpixels).  The endpoint subpixels have 
lesser weight, the value of which depends on how close the “ratio” is to the number of 
“ways”.  This is done to ensure continuous behavior in animation. 

4.2.3.4 MAPFILTER_MONO 

When the MAPFILTER_MONO filter is selected, a block of monochrome texels 
surrounding the pixel sample location are read and filtered using the kernel described 
below.  The size of this block is controlled by Monochrome Filter Height and Width 
(referred to here as Nv and Nu, respectively) state.  Filters from 1x1 to 7x7 are 
supported (not necessarily square). 

The figure below shows a 6x5 filter kernel as an example.  The footprint of the filter 
(filter kernel samples) is equal to the size of the filter and the pixel center lies at the 
exact center of this footprint.  The position of the upper left filter kernel sample (uf, vf) 
relative to the pixel center at (u, v) is given by the following: 
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N
vv
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uu
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βu and βv are the fractional parts of uf and vf, respectively.  The integer parts select 
the upper left texel for the kernel filter, given here as T0,0. 
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Figure  4-4. Sampling Using MAPFILTER_MONO 
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The formula for the final filter output F is given by the following.  Since this is a 
monochrome filter, each texel value (T) is a single bit, and the output F is an intensity 
value that is replicated across the color and alpha channels. 
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4.2.4 Texture Address Control 

The [TCX,TCY,TCZ]ControlMode state variables control the access and/or generation 
of texel data when the specific texture coordinate component falls outside of the 
normalized texture map coordinate range [0,1). 

Note: For Wrap Shortest mode,  the setup kernel has already taken care of correctly 
interpolating the texture coordinates.  Software will need to specify 
TEXCOORDMODE_WRAP mode for the sampler that is provided with wrap-shortest 
texture coordinates, or artifacts may be generated along map edges. 

 

TC[X,Y,Z] Control  Operation 

TEXCOORDMODE_CLAMP Clamp to the texel value at the edge of the map. 

TEXCOORDMODE_CLAMP_BORDER Use the texture map’s border color for any texel 
samples falling outside the map.   The border color is 
specified via a pointer in SAMPLER_STATE. 

TEXCOORDMODE_WRAP Upon crossing an edge of the map, repeat at the other 
side of the map in the same dimension. 

TEXCOORDMODE_CUBE Only used for cube maps.  Here texels from adjacent 
cube faces can be sampled along the edges of faces.  
This is considered the highest quality mode for cube 
environment maps. 

TEXCOORDMODE_MIRROR Similar to the wrap mode, though reverse direction 
through the map each time an edge is crossed.  
INVALID for use with unnormalized texture 
coordinates. 

TEXCOORDMODE_MIRROR_ONCE Similar to the wrap mode, though reverse direction 
through the map each time an edge is crossed.  
INVALID for use with unnormalized texture 
coordinates. 

Separate controls are provided for texture TCX, TCY, TCZ coordinate components so, 
for example, the TCX coordinate can be wrapped while the TCY coordinate is clamped.  
Note that there are no controls provided for the TCW component as it is only used to 
scale the other 3 components before addressing modes are applied. 

Maximum Wraps/Mirrors 

The number of map wraps on a given object is limited to 32.  Going beyond this limit 
is legal, but may result in artifacts due to insufficient internal precision, especially 
evident with larger surfaces.  Precision loss starts at the subtexel level  (slight color 
inaccuracies) and eventually reaches the texel level (choosing the wrong texels for 
filtering). 
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4.2.4.1 TEXCOORDMODE_WRAP Mode 

In TEXCOORDMODE_WRAP addressing mode, the integer part of the texture 
coordinate is discarded, leaving only a fractional coordinate value.  This results in the 
effect of the base map ([0,1)) being continuously repeated in all (axes-aligned) 
directions. Note that the interpolation between coordinate values 0.1 and 0.9 passes 
through 0.5 (as opposed to WrapShortest mode which interpolates through 0.0). 

4.2.4.2 TEXCOORDMODE_MIRROR Mode 

TEXCOORDMODE_MIRROR addressing mode is similar to Wrap mode, though here the 
base map is flipped at every integer junction.  For example, for U values between 0 
and 1, the texture is addressed normally, between 1 and 2 the texture is flipped 
(mirrored), between 2 and 3 the texture is normal again, and so on.  The second row 
of pictures in the figure below indicate a map that is mirrored in one direction and 
then both directions.  You can see that in the mirror mode every other integer map 
wrap the base map is mirrored in either direction.    

Figure  4-5. Texture Wrap vs. Mirror Addressing Mode 
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4.2.4.3 TEXCOORDMODE_MIRROR_ONCE Mode 

The TEXCOORDMODE_MIRROR_ONCE addressing mode is a combination of Mirror and 
Clamp modes.  The absolute value of the texture coordinate component is first taken 
(thus mirroring about 0), and then the result is clamped to 1.0.  The map is therefore 
mirrored once about the origin, and then clamped thereafter.  This mode is used to 
reduce the storage required for symmetric maps. 
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4.2.4.4 TEXCOORDMODE_CLAMP Mode 

The TEXCOORDMODE_CLAMP addressing mode repeats the “edge” texel when the 
texture coordinate extends outside the [0,1) range of the base texture map.   This is 
contrasted to TEXCOORDMODE_CLAMPBORDER mode which defines a separate texel 
value for off-map samples.  TEXCOORDMODE_CLAMP is also supported for cube maps, 
where texture samples will only be obtained from the intersecting face (even along 
edges). 

The figure below illustrates the effect of clamp mode.  The base texture map is shown, 
along with a texture mapped object with texture coordinates extending outside of the 
base map region.     

Figure  4-6. Texture Clamp Mode 
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4.2.4.5 TEXCOORDMODE_CLAMPBORDER Mode 

For non-cube map textures, TEXCOORDMODE_CLAMPBORDER addressing mode 
specifies that the texture map’s border value BorderColor  is to be used for any texel 
samples that fall outside of the base map.  The border color is specified via a pointer 
in SAMPLER_STATE. 

4.2.4.6 TEXCOORDMODE_CUBE Mode 

For cube map textures TEXCOORDMODE_CUBE addressing mode can be set to allow 
inter-face filtering.  When texel sample coordinates that extend beyond the selected 
cube face (e.g., due to intra-level filtering near a cube edge), the correct sample 
coordinates on the adjoining face will be computed.  This will eliminate artifacts along 
the cube edges, though some artifacts at cube corners may still be present. 
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4.3 Texel Fetch 

The Texel Fetch function of the Sampling Engine reads the texture map contents 
specified by the texture addresses associated with each texel sample.  The texture 
data is read either directly from the memory-resident texture map, or from internal 
texture caches.  The texture caches can be invalidated by the Sampler Cache 
Invalidate field of the MI_FLUSH instruction or via the Read Cache Flush Enable bit 
of PIPE_CONTROL.  Except for consideration of coherency with CPU writes to textures 
and rendered textures, the texture cache does not affect the functional operation of 
the Sampling Engine pipeline. 

When the surface format of a texture is defined as being a compressed surface, the 
Sampler will automatically decompress from the stored format into the appropriate 
[A]RGB values.  The compressed texture storage formats and decompression 
algorithms can be found in the Memory Data Formats chapter.  When the surface 
format of a texture is defined as being an index into the texture palette (format 
names includiong  “Px”), the palette lookup of the index determines the appropriate 
RGB values. 

4.3.1 Texel Chroma Keying 

ChromaKey is a term used to describe a method of effectively removing or replacing a 
specific range of texel values from a map that is applied to a primitive, e.g., in order 
to define transparent regions in an RGB map.   The Texel Chroma Keying function of 
the Sampling Engine pipeline conditionally tests texel samples against a “key” range, 
and takes certain actions if any texel samples are found to match the key. 

4.3.1.1 Chroma Key Testing 

ChromaKey refers to testing the texel sample components to see if they fall within a 
range of texel values, as defined by ChromaKey[][High,Low] state variables.  If each 
component of a texel sample is found to lie within the respective (inclusive) range and 
ChromaKey is enabled, then an action will be taken to remove this contribution to the 
resulting texel stream output.  Comparison is done separately on each of the channels 
and only if all 4 channels are within range the texel will be eliminated.   

The Chroma Keying function is enabled on a per-sampler basis by the 
ChromaKeyEnable state variable. 

The ChromaKey[][High,Low] state variables define the tested color range for a 
particular texture map.   



 
 

 
 

116     

4.3.1.2 Chroma Key Effects 

There are two operations that can be performed to “remove” matching texel samples 
from the image.  The ChromaKeyEnable state variable must first enable the chroma 
key function.  The ChromaKeyMode state variable then specifies which operation to 
perform on a per-sampler basis. 

The ChromaKeyMode state variable has the following two possible values: 

• KEYFILTER_KILL_ON_ANY_MATCH:  Kill the pixel if any contributing texel sample 
matches the key 

• KEYFILTER_REPLACE_BLACK:  Here the sample is replaced with (0,0,0,0).   

The Kill Pixel operation has an effect on a pixel only if the associated sampler is 
referenced by a sample instruction in the pixel shader program.  If the sampler is not 
referenced, the chroma key compare is not done and pixels cannot be killed based on 
it. 

4.4 Shadow Prefilter Compare 

When a sample_c message type is processed, a special shadow-mapping 
precomparison is performed on the texture sample values prior to filtering.  
Specifically, each texture sample value is compared to the “ref” component of the 
input message, using a compare function selected by ShadowFunction, and described 
in the table below.  Note that only single-channel texel formats are supported for 
shadow mapping, and so there is no specific color channel on which the comparison 
occurs. 

 

ShadowFunction Result 

PREFILTEROP_ALWAYS 0.0 

PREFILTEROP_NEVER 1.0 

PREFILTEROP_LESS (texel < ref) ? 0.0 : 1.0 

PREFILTEROP_EQUAL (texel == ref) ? 0.0 : 1.0 

PREFILTEROP_LEQUAL (texel <= ref) ? 0.0 : 1.0 

PREFILTEROP_GREATER (texel > ref) ? 0.0 : 1.0 

PREFILTEROP_NOTEQUAL (texel != ref) ? 0.0 : 1.0 

PREFILTEROP_GEQUAL (texel >= ref) ? 0.0 : 1.0 

The binary result of each comparison is fed into the subsequent texture filter 
operation (in place of the texel’s value which would normally be used). 

Software is responsible for programming the ”ref” component of the input message 
such that it approximates the same distance metric programmed in the texture map 
(e.g., distance from a specific light to the object pixel).   In this way, the comparison 
function can be used to generate “in shadow” status for each texture sample, and the 
filtering operation can be used to provide soft shadow edges. 
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Programming Notes: 

• Refer to the Surface Formats table in section  4.7.2.1.1 for the specific surface 
formats that are supported with shadow mapping. 

4.5 Texel Filtering 

The Texel Filtering function of the Sampling Engine performs any required filtering of 
multiple texel values on and possibly between texture map layers and levels.  The 
output of this function is a single texel color value. 

The state variables MinFilter, MagFilter, and MipFilter are used to control the filtering 
of texel values.  The MipFilter state variable specifies how many mipmap levels are 
included in the filter, and how the results of any filtering on these separate levels are 
combined to produce a final texel color.  The MinFilter and MagFilter state variables 
specify how texel samples are filtered within a level. 

4.6 Texel Color Gamma Linearization 

This function is supported to allow pre-gamma-corrected texel RGB (not A) colors to 
be mapped back into linear (gamma=1.0) gamma space prior to (possible) blending 
with, and writing to the Color Buffer.  This permits higher quality  image blending by 
performing the blending on colors in linear gamma space. 

This function is enabled on a per-texture basis by use of a surface format with 
“_SRGB” in its name.  If enabled, the post-filtered texel RGB color to be converted 
from gamma=2.4 space to gamma=1.0 space by applying a ^(1/2.4) = ^0.4167 
exponential function.   
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4.7 State 

4.7.1 BINDING_TABLE_STATE 

The binding table binds surfaces to logical resource indices used by shaders and other 
compute engine kernels.  It is stored as an array of up to 256 elements, each of which 
contains one dword as defined here.  The start of each element is spaced one dword 
apart.  The first element of the binding table is aligned to a 32-byte boundary. 

 

DWord Bit Description 

0 31:5 Surface State Pointer. This 32-byte aligned address points to a surface state block.  
This pointer is relative to the Surface State Base Address. 

[DevBW-A,B] Errata BWT007: Surface State data pointed at by offsets from Surface 
State Base must be contained within 32-bit physical address space (that is, must map to 
memory pages under 4G.) 

Format = SurfaceStateOffset[31:5] 

 4:0 Reserved : MBZ 

4.7.2 SURFACE_STATE 

The surface state is stored as individual elements, each with its own pointer in the 
binding table.  Each surface state element is aligned to a 32-byte boundary. 

Surface state defines the state needed for the following objects: 
• texture maps (1D, 2D, 3D, cube) read by the sampling engine 
• buffers read by the sampling engine 
• constant buffers read by the data cache via the data port 
• render targets read/written by the render cache via the data port 
• media surfaces read from the texture cache or render cache via the data port 
• media surfaces written to the render cache via the data port 
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4.7.2.1 For Most Messages 

 

SURFACE_STATE 
Project: All 
This is the normal surface state used by all messages that use SURFACE_STATE except deinterlace and sample_8x8. 

DWord Bit Description 

0 31:29 Surface Type 

Project: All 

Format: U3 enumerated type FormatDesc 

This field defines the type of the surface. 
 

Value Name Description Project 

0h SURFTYPE_1D Defines a 1-dimensional map or array of 
maps 

All 

1h SURFTYPE_2D Defines a 2-dimensional map or array of 
maps 

All 

2h SURFTYPE_3D Defines a 3-dimensional (volumetric) 
map 

All 

3h SURFTYPE_CUBE Defines a cube map or array of cube 
maps 

All 

4h SURFTYPE_BUFFER Defines an element in a buffer All 

5h-6h Reserved  All 

7h SURFTYPE_NULL Defines a null surface All 
 

Programming Notes 

A null surface will be used in instances where an actual surface is not bound.  When a 
write message is generated to a null surface, no actual surface is written to.  When a 
read message (including any sampling engine message) is generated to a null surface, 
the result is all zeros.  All of the remaining fields in surface state are ignored for null 
surfaces, with the following exceptions: 

• Width, Height, Depth, LOD, MIP Map Layout Mode, and Render Target 
View Extent fields must match the depth buffer’s corresponding state for all 
render target surfaces, including null. 

The Surface Type of a surface used as a render target (accessed via the Data Port’s 
Render Target Write message) must be the same as the Surface Type of all other 
render targets and of the depth buffer (defined in 3DSTATE_DEPTH_BUFFER), unless 
either the depth buffer or render targets are SURFTYPE_NULL. 

  

28 Reserved Project: All Format: MBZ 
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SURFACE_STATE 
27 Data Return Format 

Project: All 

Format: U1 enumerated type FormatDesc 

For Sampling Engine Surfaces: 

This field determines the format of the return data from the sampling engine to the 
compute engine.  This field is ignored for surfaces used by other units. 

For Other Surfaces: 

This field is ignored. 

 
 

Value Name Description Project 

0h DATA_RETURN_FLOAT32 FLOAT32 data is returned All 

1h DATA_RETURN_S1.14 S1.14 fixed point data is 
returned 

All 

 

Programming Notes 

The S1.14 return format is only legal for returning data from normalized (UNORM, or 
SNORM) map formats where all channels have <= 8 bits.  It is not legal to use this 
format with any floating point or integer map format. 

S1.14 return format is only used for SIMD16 and SIMD8 messages from the sampling 
engine.  For SIMD4x2 messages, FLOAT32 format will be used for surfaces specifying 
S1.14 data return format. 

Data returned in format S1.14 will be converted to FLOAT32 before reaching the GRF 
register, thus the state of this bit does not affect the kernel. 

It is recommended that S1.14 format be used wherever it is legal, as the performance 
will generally be improved. 

  
26:18 Surface Format 

Project: All 

Format: U32 FormatDesc 

Specifies the format of the surface or element within this surface.  This field is ignored for 
all data port messages other than the render target message.  Some forms of the media 
block messages use the surface format. 

Refer to the table in section  4.7.2.1.1 for the formats supported and their encodings. 
 
 

Programming Notes 

Tile Walk TILEWALK_YMAJOR is UNDEFINED for render target formats that have 128 
bits-per-element (BPE). 

YUV (YCRCB) surfaces used as render targets can only be rendered to using 
3DPRIM_RECTLIST with even X coordinates on all of its vertices, and the pixel shader 
cannot kill pixels. 

 

Errata Description Project 

# surfaces with FLOAT format are not supported. [DevBW-A,B] 
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SURFACE_STATE 
17:14 Color Buffer Component Write Disables 

Project: All 

Format: U4 bit mask of disables (0 or logical OR 
of any of the enumerated values) 

FormatDesc 

For Render Target Surfaces: 
This field contains a bitmask that controls the writing of individual color components into 
the Color Buffer.  If a component is disabled (bit set) writes to the color buffer will not 
modify that component.  If enabled (bit clear), that component can be overwritten. 

For Other Surfaces: 

this field is ignored. 

 
 

Value Name Description Project 

1000b WRITEDISABLE_ALPHA  All 

0100b WRITEDISABLE_RED  All 

0010b WRITEDISABLE_GREEN  All 

0001b WRITEDISABLE_BLUE  All 
 

Programming Notes 

For YUV surfaces, this field must be set to 0000B (all channels enabled). 
 

Errata Description Project 

# Desc All 
 

13 Color Blend Enable 

Project: All 

Format: Enable FormatDesc 

For Render Target Surfaces: 
Specifies that color blend is enabled for this particular render target.  The Color Buffer 
Blend Enable state in COLOR_CALC_STATE provides global control over blending.  See 
Color Buffer Blending (Windower) for details. 

For Other Surfaces: 

 is ignored. 

 
 
 

Errata Description Project 

# This Color Blend Enable bit is not used, and acts as 
if it is ENABLED for each RenderTarget.  Blending is 
enabled or disabled only a a global basis by the Color 
Buffer Blend Enable state variable in 
COLOR_CALC_STATE. 

[DevBW-A,B] 
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SURFACE_STATE 
12 Vertical Line Stride 

Project: All 

Format: U1 in lines to skip between logically 
adjacent lines 

FormatDesc 

For 2D Non-Array Surfaces accessed via the Sampling Engine or Data Port: 

Specifies number of lines (0 or 1) to skip between logically adjacent lines – provides 
support of interleaved (field) surfaces as textures. 

For Other Surfaces: 

Vertical Line Stride must be zero. 
 
 

Programming Notes 

This bit must not be set if the surface format is a compressed type (BCn*). 

If this bit is set on a sampling engine surface, texture addess control modes cannot be 
set to any mode other than TEXCOORDMODE_CLAMP and the mip mode filter must be 
set to MIPFILTER_NONE. 

  
11 Vertical Line Stride Offset 

Project: All 

Format: U1 in lines of initial offset (when Vertical 
Line Stride == 1) 

FormatDesc 

For 2D Non-Array Surfaces accessed via the Sampling Engine or Data Port: 

Specifies the offset of the initial line from the beginning of the buffer.  Ignored when 
Vertical Line Stride is 0. 

For Other Surfaces: 

Vertical Line Stride Offset must be zero. 
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SURFACE_STATE 
10 MIP Map Layout Mode 

Project: All 

Format: U1 enumerated type FormatDesc 

For 1D and 2D Surfaces and 

This field specifies which MIP map layout mode is used, whether the map for LOD 1 is 
stored to the right of the LOD 0 map, or stored below it.  See Memory Data Formats for 
details on the specifics of each layout mode. 

For Other Surfaces: 

This field is reserved : MBZ 
 

Value Name Description Project 

0h MIPLAYOUT_BELOW  All 

1h MIPLAYOUT_RIGHT  All 
 

Programming Notes 

MIPLAYOUT_RIGHT is legal only for 2D non-array surfaces 
 

Errata Description Project 

# MIPLAYOUT_RIGHT is not supported with “ld” sampler 
message 

All 

# MIPLAYOUT_RIGHT is not supported with 
sample_c/sample_l_c/sample_b_c sampler messages. 

[DevCL] 

 

9 Reserved : MBZ 
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SURFACE_STATE 
8 Render Cache Read Write Mode 

Project: All 

Format: U1 enumerated type FormatDesc 

For Surfaces accessed via the Data Port to Render Cache: 

This field specifies the way Render Cache treats a write request. If unset, Render Cache 
allocates a write-only cache line for a write miss. If set, Render Cache allocates a read-
write cache line for a write miss. 

For Surfaces accessed via the Sampling Engine or Data Port to Texture Cache or 
Data Cache: 

This field is reserved : MBZ 
 

Value Name Description Project 

0h  Allocating write-only cache for a write miss All 

1h  Allocating read-write cache for a write miss All 
 

Programming Notes 

This field is provided for performance optimization for Render Cache read/write accesses 
(from Gen4 EU’s point of view). 

 

Errata Description Project 

# This field must be set to 0h. [DevBW-A,B] 
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SURFACE_STATE 
7:6 Media Boundary Pixel Mode 

Project: All 

Format: U2 enumerated type FormatDesc 

For 2D Non-Array Surfaces accessed via the Data Port Media Block Read 
Message: 

This field enables control of which rows are returned on vertical out-of-bounds reads using 
the Data Port Media Block Read Message.  In the description below, frame mode refers to 
Vertical Line Stride = 0, field mode is Vertical Line Stride = 1 in which only the even 
or odd rows are addressable.  The frame refers to the entire surface, while the field refers 
only to the even or odd rows within the surface.  Refer to Section  5.6.1 for more details. 

For Other Surfaces: 

Reserved : MBZ 
 

Value Name Description Project 

0h NORMAL_MODE the row returned on an out-of-
bound access is the closest row in 
the frame or field.  Rows from 
the opposite field are never 
returned. 

All 

1h Reserved   

2h Reserved   

3h Reserved   
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SURFACE_STATE 
5:0 Cube Face Enables 

Project: All 

Format: U6 bit mask of enables FormatDesc 

For SURFTYPE_CUBE Surfaces accessed via the Sampling Engine: 

Bits 5:0 of this field enable the individual faces of a cube map.  Enabling a face indicates 
that the face is present in the cube map, while disabling it indicates that that face is 
represented by the texture map’s border color.   Refer to Memory Data Formats for the 
correlation between faces and the cube map memory layout.  Note that storage for 
disabled faces must be provided. 

For other surfaces: 

This field is reserved : MBZ 
 

Value Name Description Project 

100000b  -X face All 

010000b  +X face All 

001000b  -Y face All 

000100b  +Y face All 

000010b  -Z face All 

000001b  +Z face All 
 

Programming Notes 

When TEXCOORDMODE_CLAMP is used when accessing a cube map, this field must be 
programmed to 111111b (all faces enabled). 

This field is ignored unless the Surface Type is SURFTYPE_CUBE. 
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SURFACE_STATE 
1 31:0 Surface Base Address 

Project: All 

Format: GraphicsAddress[31:0] FormatDesc 

Specifies the byte-aligned base address of the surface. 
 
 

Programming Notes 

For SURFTYPE_BUFFER render targets, this field specifies the base address of first 
element of the surface.  The surface is interpreted as a simple array of that single 
element type.  The address must be naturally-aligned to the element size (e.g., a buffer 
containing R32G32B32A32_FLOAT elements must be 16-byte aligned). 

For SURFTYPE_BUFFER non-rendertarget surfaces, this field specifies the base address of 
the first element of the surface, computed in software by adding the surface base 
address to the byte offset of the element in the buffer. 

Mipmapped, cube and 3D sampling engine surfaces are stored in a “monolithic” (fixed) 
format, and only require a single address for the base texture. 

Linear render target surface base addresses must be element-size aligned, for non-YUV 
surface formats, or a multiple of 2 element-sizes for YUV surface formats.  Other linear 
surfaces have no alignment requirements (byte alignment is sufficient.) 

Linear depth buffer surface base addresses must be 64-byte aligned.  Note that while 
render targets (color) can be SURFTYPE_BUFFER, depth buffers cannot. 

Tiled surface base addresses must be 4KB-aligned.  Note that only the offsets from 
Surface Base Address are tiled, Surface Base Address itself is not transformed using 
the tiling algorithm. 

Certain message types used to access surfaces have more stringent alignment 
requirements.  Please refer to the specific message documentation for additional 
restrictions. 
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SURFACE_STATE 
2 31:19 Height 

Project: All 

Format: U13 FormatDesc 

Range SURFTYPE_1D:  must be zero 

SURFTYPE_2D:  height of surface – 1 (y/v dimension) [0,8191] 

SURFTYPE_3D:  height of surface – 1 (y/v dimension) [0,2047] 

SURFTYPE_CUBE:  height of surface – 1 (y/v dimension) [0,8191] 

SURFTYPE_BUFFER:  contains bits [19:7] of the number of entries 
in the buffer – 1 [0,8191] 

This field specifies the height of the surface.  If the surface is MIP-mapped, this field 
contains the height of the base MIP level.  For buffers, this field specifies a portion of the 
buffer size. 
 
 

Programming Notes 

For buffer surfaces, the number of entries in the buffer ranges from 1 to 227.   After 
subtracting one from the number of entries, software must place the fields of the 
resulting 27-bit value into the Height, Width, and Depth fields as indicated, right-
justified in each field.  Unused upper bits must be set to zero. 

If Vertical Line Stride is 1, this field indicates the height of the field, not the height of 
the frame 

The Height of a render target must be the same as the Height of the other render 
targets and the depth buffer (defined in 3DSTATE_DEPTH_BUFFER), unless Surface 
Type is SURFTYPE_1D or SURFTYPE_2D with Depth = 0 (non-array) and LOD = 0 (non-
mip mapped). 

 

Errata Description Project 

# The number of entries in a SURFTYPE_BUFFER is 
restricted to 2^27 – 1 

[DevBW-A,B] 
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SURFACE_STATE 
18:6 Width 

Project: All 

Format: U13 FormatDesc 

Range SURFTYPE_1D:  width of surface – 1 (x/u dimension) [0,8191] 

SURFTYPE_2D:  width of surface – 1 (x/u dimension) [0,8191] 

SURFTYPE_3D:  width of surface – 1 (x/u dimension) [0,2047] 

SURFTYPE_CUBE:  width of surface – 1 (x/u dimension) [0,8191] 

SURFTYPE_BUFFER:  contains bits [6:0] of the number of entries in 
the buffer – 1 [0,127] 

This field specifies the width of the surface.  If the surface is MIP-mapped, this field 
specifies the width of the base MIP level.  The width is specified in units of pixels or texels.  
For buffers, this field specifies a portion of the buffer size. 

For surfaces accessed with the Media Block Read/Write message, this field is in units of 
DWords. 
 
 

Programming Notes 

The Width specified by this field must be less than or equal to the surface pitch (specified 
in bytes via the Surface Pitch field). 

For cube maps, Width must be set equal to the Height. 

For MONO8 textures, Width must be a multiple of 32 texels. 

The Width of a render target must be the same as the Width of the other render 
target(s) and the depth buffer (defined in 3DSTATE_DEPTH_BUFFER), unless Surface 
Type is SURFTYPE_1D or SURFTYPE_2D with Depth = 0 (non-array) and LOD = 0 (non-
mip mapped). 

The Width of a render target with YUV surface format must be a multiple of 2. 
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SURFACE_STATE 
5:2 MIP Count / LOD 

Project: All 

Format: Sampling Engine Surfaces:  U4 in (LOD units – 1) 

Render Target Surfaces:  U4 in LOD units 

FormatDesc 

Range Sampling Engine Surfaces:  [0,13] representing [1,14] MIP levels 

Render Target Surfaces:  [0,13] representing LOD 

Other Surfaces:  [0] 

For Sampling Engine Surfaces: 

This field indicates the number of MIP levels allowed to be accessed starting at Surface 
Min LOD, which must be less than or equal to the number of MIP levels actually stored in 
memory for this surface.   

Force the mip map access to be between the mipmap specified by the integer bits of the 
Min LOD and the ceiling of the value specified here. 

For Render Target Surfaces: 

This field defines the MIP level that is currently being rendered into.  This is the absolute 
MIP level on the surface and is not relative to the Surface Min LOD field, which is 
ignored for render target surfaces. 

For Other Surfaces: 

This field is reserved : MBZ 
 

Value Name Description Project 

0h Disable Desc All 

1h Enable Desc All 
 

Programming Notes 

The LOD of a render target must be the same as the LOD of the other render target(s) 
and of the depth buffer (defined in 3DSTATE_DEPTH_BUFFER). 

For render targets with YUV surface formats, the LOD must be zero. 
 

Errata Description Project 

# Desc All 
 

1:0 Reserved : MBZ 
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SURFACE_STATE 
3 31:21 Depth 

Project: All 

Format: U11 FormatDesc 

Range SURFTYPE_1D:  number of array elements – 1 [0,511] 

SURFTYPE_2D:  number of array elements – 1 [0,511] 

SURFTYPE_3D:  depth of surface – 1 (z/r dimension) [0,2047] 

SURFTYPE_CUBE:  number of array elements – 1 [see 
programming notes for range] 

SURFTYPE_BUFFER:  contains bits [26:20] of the number of entries 
in the buffer – 1 [0,127] 

This field specifies the total number of levels for a volume texture or the number of array 
elements allowed to be accessed starting at the Minimum Array Element for arrayed 
surfaces.  If the volume texture is MIP-mapped, this field specifies the depth of the base 
MIP level.  For buffers, this field specifies a portion of the buffer size. 
 
 

Programming Notes 

The Depth of a render target must be the same as the Depth of the other render 
target(s) and of the depth buffer (defined in 3DSTATE_DEPTH_BUFFER). 

For SURFTYPE_CUBE: 

for all cube surfaces, this field must be zero as cube arrays are not supported.  
  

20 Reserved Project: All Format: MBZ 
 

19:3 Surface Pitch 

Project: All 

Format: U17 pitch in (#Bytes – 1) FormatDesc 

Range For surfaces of type SURFTYPE_BUFFER:  [0,2047] -> [1B, 2048B] 

For other linear surfaces: [0, 131071] -> [1B, 128KB]  

For X-tiled surface: [511, 131071] –> [512B, 128KB] = [1tile, 256 
tiles] 

For Y-tiled surfaces: [127, 131071]->[128B,128KB] = [1 tile, 1024 
tiles] 

This field specifies the surface pitch in (#Bytes - 1). 

For surfaces of type SURFTYPE_BUFFER, this field indicates the size of the structure. 
 
 

Programming Notes 

For linear render target surfaces, the pitch must be a multiple of the element size for 
non-YUV surface formats.  Pitch must be a multiple of 2 * element size for YUV surface 
formats. 

For other linear surfaces, the pitch can be any multiple of bytes. 

For tiled surfaces, the pitch must be a multiple of the tile width. 
  

2 Reserved Project: All Format: MBZ 
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SURFACE_STATE 
1 Tiled Surface 

Project: All 

Format: U1 enumerated type FormatDesc 

This field specifies whether the surface is tiled. 
 

Value Name Description Project 

0h FALSE Linear surface All 

1h TRUE Tiled surface All 
 

Programming Notes 

Linear surfaces can be mapped to Main Memory (uncached) or System Memory 
(cacheable, snooped).  Tiled surfaces can only be mapped to Main Memory. 

The corresponding cache(s) must be invalidated before a previously accessed surface is 
accessed again with an altered state of this bit. 

If Surface Type is SURFTYPE_BUFFER, this field must be FALSE (buffers are supported 
only in linear memory) 

If the target cache via the Data Port is the Data Cache, this field must be disabled 
(zero).  The data cache only supports access to linear memory. 

If Surface Type is SURFTYPE_NULL, this field must be TRUE 
  

0 Tile Walk 

Project: All 

Format: U1 enumerated type FormatDesc 

This field specifies the type of memory tiling (XMajor or YMajor) employed to tile this 
surface. See Memory Interface Functions for details on memory tiling and restrictions. 
 

Value Name Description Project 

0h TILEWALK_XMAJOR X major tiling All 

1h TILEWALK_YMAJOR Y major tiling All 
 

Programming Notes 

Refer to Memory Data Formats for restrictions on TileWalk direction for the various buffer 
types.  (Of particular interest is the fact that YMAJOR tiling is not supported for 
display/overlay buffers). 

The corresponding cache(s) must be invalidated before a previously accessed surface is 
accessed again with an altered state of this bit. 

Use of TILEWALK_YMAJOR is UNDEFINED for render target formats that have 128 bits-
per-element (BPE). 

This field is ignored when the surface is linear. 
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SURFACE_STATE 
4 31:28 Surface Min LOD 

Project: All 

Format: U4 in LOD units FormatDesc 

Range [0,13] 

For Sampling Engine Surfaces: 

This field indicates the most detailed LOD that can be accessed as part of this surface.  
This field is added to the delivered LOD (sample_l, ld, or resinfo message types) before it 
is used to address the surface. 

For Other Surfaces: 

This field is ignored. 
 
 

Programming Notes 

This field must be zero if the Surface Format is MONO8 

[DevBW-A,B]:  this field must be zero 
  

27:17 Minimum Array Element 

Project: All 

Format: U11 FormatDesc 

Range 1D/2D/cube surfaces:  [0,511] 

3D surfaces:  [0,2047] 

For Sampling Engine and Render Target 1D and 2D Surfaces: 

This field indicates the minimum array element that can be accessed as part of this 
surface.  This field is added to the delivered array index before it is used to address the 
surface. 

For Render Target 3D Surfaces: 

This field indicates the minimum ‘R’ coordinate on the LOD currently being rendered to.  
This field is added to the delivered array index before it is used to address the surface. 

For Other Surfaces: 

This field must be set to zero. 
 
 

Errata Description Project 

# This field must be zero. [DevBW-A,B] 

# For sample_c/sample_b_c/sample_l_c instructions this 
field is ignored.  If it is tiled surface and not at a 4k 
boundary it must be copied to a 4k aligned surface.   
Then for any case it must be pointed to by the 
Surface Base Address. 

[DevBW-
A,B,C,D], 
[DevCL-A,B] 
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SURFACE_STATE 
16:8 Render Target View Extent 

Project: All 

Format: U9 FormatDesc 

Range [0,511] to indicate extent of [1,512] 

For Render Target 3D Surfaces: 

This field indicates the extent of the accessible ‘R’ coordinates minus 1 on the LOD 
currently being rendered to. 

For Render Target 1D and 2D Surfaces: 

This field must be set to the same value as the Depth field. 

For Other Surfaces: 

This field is ignored. 
  

7 Reserved Project: All Format: MBZ 
 

6:4 Number of Multisamples. Reserved : MBZ 
 

3 Reserved Project: All Format: MBZ 
 

2:0 Reserved : MBZ 
 

4.7.2.1.1 Surface Formats 

The following table indicates the supported surface formats and the 9-bit encoding for 
each.  Note that some of these formats are used not only by the Sampling Engine, but 
also by the Data Port and the Vertex Fetch unit. 

Support of each format and capability is as follows: 

Y supported on all products 
Y* Not used in PRM 
Y+ Not used in PRM 
Y~ Not used in PRM 
Y^ Not used in PRM 
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B
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s 
P

e
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E
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m
e
n
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P
E

) 

Y    Y Y Y Y  000 R32G32B32A32_FLOAT 128** 
Y    Y  Y Y  001 R32G32B32A32_SINT 128** 
Y    Y  Y Y  002 R32G32B32A32_UINT 128** 

      Y   003 R32G32B32A32_UNORM 128 
      Y   004 R32G32B32A32_SNORM 128 
      Y   005 R64G64_FLOAT 128 

Y         006 R32G32B32X32_FLOAT 128 
      Y   007 R32G32B32A32_SSCALED 128 
      Y   008 R32G32B32A32_USCALED 128 

Y      Y Y  040 R32G32B32_FLOAT 96 
Y      Y Y  041 R32G32B32_SINT 96 
Y      Y Y  042 R32G32B32_UINT 96 

      Y   043 R32G32B32_UNORM 96 
      Y   044 R32G32B32_SNORM 96 

      Y   045 R32G32B32_SSCALED 96 
      Y   046 R32G32B32_USCALED 96 

Y Y   Y  Y   080 R16G16B16A16_UNORM 64 
Y Y   Y  Y   081 R16G16B16A16_SNORM 64 
Y    Y  Y   082 R16G16B16A16_SINT 64 
Y    Y  Y   083 R16G16B16A16_UINT 64 
Y Y   Y Y Y   084 R16G16B16A16_FLOAT 64 
Y    Y Y Y Y  085 R32G32_FLOAT 64 
Y    Y  Y Y  086 R32G32_SINT 64 
Y    Y  Y Y  087 R32G32_UINT 64 
Y  Y       088 R32_FLOAT_X8X24_TYPELESS 64 
Y         089 X32_TYPELESS_G8X24_UINT 64 
Y         08A L32A32_FLOAT 64 

      Y   08B R32G32_UNORM 64 
      Y   08C R32G32_SNORM 64 
      Y   08D R64_FLOAT 64 

Y Y        08E R16G16B16X16_UNORM 64 
Y Y        08F R16G16B16X16_FLOAT 64 
Y         090 A32X32_FLOAT 64 
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Format Name 

B
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P

e
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m
e
n
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P
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Y         091 L32X32_FLOAT 64 
Y         092 I32X32_FLOAT 64 
      Y   093 R16G16B16A16_SSCALED 64 
      Y   094 R16G16B16A16_USCALED 64 
      Y   095 R32G32_SSCALED 64 
      Y   096 R32G32_USCALED 64 

Y Y  Y Y Y Y   0C0 B8G8R8A8_UNORM 32 
Y Y   Y Y    0C1 B8G8R8A8_UNORM_SRGB 32 
Y Y   Y Y Y   0C2 R10G10B10A2_UNORM 32 
Y Y        0C3 R10G10B10A2_UNORM_SRGB 32 
Y    Y  Y   0C4 R10G10B10A2_UINT 32 
Y Y     Y   0C5 R10G10B10_SNORM_A2_UNORM 32 
Y Y   Y Y Y   0C7 R8G8B8A8_UNORM 32 
Y Y   Y Y    0C8 R8G8B8A8_UNORM_SRGB 32 
Y Y   Y  Y   0C9 R8G8B8A8_SNORM 32 
Y    Y  Y   0CA R8G8B8A8_SINT 32 
Y    Y  Y   0CB R8G8B8A8_UINT 32 
Y Y   Y  Y   0CC R16G16_UNORM 32 
Y Y   Y  Y   0CD R16G16_SNORM 32 
Y    Y  Y   0CE R16G16_SINT 32 
Y    Y  Y   0CF R16G16_UINT 32 
Y Y   Y Y Y   0D0 R16G16_FLOAT 32 
Y Y   Y Y    0D1 B10G10R10A2_UNORM 32 
Y Y   Y Y    0D2 B10G10R10A2_UNORM_SRGB 32 
Y Y   Y Y Y   0D3 R11G11B10_FLOAT 32 
Y    Y  Y Y  0D6 R32_SINT 32 
Y    Y  Y Y  0D7 R32_UINT 32 
Y  Y  Y Y Y Y  0D8 R32_FLOAT 32 
Y  Y       0D9 R24_UNORM_X8_TYPELESS 32 
Y         0DA X24_TYPELESS_G8_UINT 32 
Y Y        0DF L16A16_UNORM 32 
Y  Y       0E0 I24X8_UNORM 32 
Y  Y       0E1 L24X8_UNORM 32 
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Format Name 

B
it

s 
P

e
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E
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m
e
n

t 
(B

P
E

) 

Y  Y       0E2 A24X8_UNORM 32 
Y  Y       0E3 I32_FLOAT 32 
Y  Y       0E4 L32_FLOAT 32 
Y  Y       0E5 A32_FLOAT 32 
Y Y  Y      0E9 B8G8R8X8_UNORM 32 
Y Y        0EA B8G8R8X8_UNORM_SRGB 32 
Y Y        0EB R8G8B8X8_UNORM 32 
Y Y        0EC R8G8B8X8_UNORM_SRGB 32 
Y Y        0ED R9G9B9E5_SHAREDEXP 32 
Y Y        0EE B10G10R10X2_UNORM 32 
Y Y        0F0 L16A16_FLOAT 32 
      Y   0F1 R32_UNORM 32 
      Y   0F2 R32_SNORM 32 
      Y   0F3 R10G10B10X2_USCALED 32 
      Y   0F4 R8G8B8A8_SSCALED 32 
      Y   0F5 R8G8B8A8_USCALED 32 
      Y   0F6 R16G16_SSCALED 32 
      Y   0F7 R16G16_USCALED 32 
      Y   0F8 R32_SSCALED 32 
      Y   0F9 R32_USCALED 32 

Y Y  Y Y Y    100 B5G6R5_UNORM 16 
Y Y   Y Y    101 B5G6R5_UNORM_SRGB 16 
Y Y  Y Y Y    102 B5G5R5A1_UNORM 16 
Y Y   Y Y    103 B5G5R5A1_UNORM_SRGB 16 
Y Y  Y Y Y    104 B4G4R4A4_UNORM 16 
Y Y   Y Y    105 B4G4R4A4_UNORM_SRGB 16 
Y Y   Y Y Y   106 R8G8_UNORM 16 
Y Y  Y Y  Y   107 R8G8_SNORM 16 
Y    Y  Y   108 R8G8_SINT 16 
Y    Y  Y   109 R8G8_UINT 16 
Y Y Y  Y  Y   10A R16_UNORM 16 
Y Y   Y  Y   10B R16_SNORM 16 
Y    Y  Y   10C R16_SINT 16 
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Format Name 

B
it

s 
P

e
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E
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m
e
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(B

P
E

) 

Y    Y  Y   10D R16_UINT 16 
Y Y   Y Y Y   10E R16_FLOAT 16 
         10F A8P8_UNORM [palette0] 16 
         110 A8P8_UNORM [palette1] 16 

Y Y Y       111 I16_UNORM 16 
Y Y Y       112 L16_UNORM 16 
Y Y Y       113 A16_UNORM 16 
Y Y  Y      114 L8A8_UNORM 16 
Y Y Y       115 I16_FLOAT 16 
Y Y Y       116 L16_FLOAT 16 
Y Y Y       117 A16_FLOAT 16 
         118 L8A8_UNORM_SRGB 16 

Y Y  Y      119 R5G5_SNORM_B6_UNORM 16 
    Y Y    11A B5G5R5X1_UNORM 16 
    Y Y    11B B5G5R5X1_UNORM_SRGB 16 
      Y   11C R8G8_SSCALED 16 
      Y   11D R8G8_USCALED 16 
      Y   11E R16_SSCALED 16 
      Y   11F R16_USCALED 16 
         122 P8A8_UNORM [palette0] 16 
         123 P8A8_UNORM [palette1] 16 

Y Y   Y Y Y   140 R8_UNORM 8 
Y Y   Y  Y   141 R8_SNORM 8 
Y    Y  Y   142 R8_SINT 8 
Y    Y  Y   143 R8_UINT 8 
Y Y  Y Y Y    144 A8_UNORM 8 
Y Y        145 I8_UNORM 8 
Y Y  Y      146 L8_UNORM 8 
Y Y        147 P4A4_UNORM [palette0] 8 
Y Y        148 A4P4_UNORM [palette0] 8 
      Y   149 R8_SSCALED 8 
      Y   14A R8_USCALED 8 
         14B P8_UNORM [palette0] 8 
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         14C L8_UNORM_SRGB 8 
         14D P8_UNORM [palette1]  8 
         14E P4A4_UNORM [palette1]  8 
         14F A4P4_UNORM [palette1]  8 
         180 BC1_RGB_SRGB 0 

Y Y        181 R1_UNORM/R1_UINT 1 
Y Y  Y Y     182 YCRCB_NORMAL 0 
Y Y  Y Y     183 YCRCB_SWAPUVY 0 
         184 P2_UNORM [palette0] 2 
         185 P2_UNORM [palette1]  2 

Y Y  Y      186 BC1_UNORM  0 
Y Y  Y      187 BC2_UNORM  0 
Y Y  Y      188 BC3_UNORM  0 
Y Y        18B BC1_UNORM_SRGB  0 
Y Y        18C BC2_UNORM_SRGB  0 
Y Y        18D BC3_UNORM_SRGB  0 
Y         18E MONO8 1 
Y Y   Y     18F YCRCB_SWAPUV 0 
Y Y   Y     190 YCRCB_SWAPY 0 
Y Y        191 BC1_RGB 0 
Y Y        192 FXT1 0 

      Y   193 R8G8B8_UNORM 24 
      Y   194 R8G8B8_SNORM 24 
      Y   195 R8G8B8_SSCALED 24 
      Y   196 R8G8B8_USCALED 24 
      Y   197 R64G64B64A64_FLOAT 256 
      Y   198 R64G64B64_FLOAT 192 

         19B R16G16B16_FLOAT 48 
      Y   19C R16G16B16_UNORM     48 
      Y   19D R16G16B16_SNORM 48 
      Y   19E R16G16B16_SSCALED 48 
      Y   19F R16G16B16_USCALED 48 
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** Note: 128 BPE Formats cannot be Tiled Y when used as render targets 

4.7.2.1.2 Sampler Output Channel Mapping 

The following table indicates the mapping of the channels from the surface to the 
channels output from the sampling engine.  Formats with all four channels (R/G/B/A) 
in their name map each surface channel to the corresponding output, thus those 
formats are not shown in this table. 

 

Surface Format Name  R G B A 

R32G32B32X32_FLOAT  R G B 1.0 

R32G32B32_FLOAT  R G B 1.0 

R32G32B32_SINT  R G B 1.0 

R32G32B32_UINT  R G B 1.0 

 R G 1.0 1.0 R32G32_FLOAT 

 R G 0.0 1.0 

R32G32_SINT  R G 0.0 1.0 

R32G32_UINT  R G 0.0 1.0 

R32_FLOAT_X8X24_TYPELESS  R 0.0 0.0 1.0 

X32_TYPELESS_G8X24_UINT  0.0 G 0.0 1.0 

L32A32_FLOAT  L L L A 

R16G16B16X16_UNORM  R G B 1.0 

R16G16B16X16_FLOAT  R G B 1.0 

A32X32_FLOAT  0.0 0.0 0.0 A 

L32X32_FLOAT  L L L 1.0 

I32X32_FLOAT  I I I I 

 R G 1.0 1.0 R16G16_UNORM 

 R G 0.0 1.0 

 R G 1.0 1.0 R16G16_SNORM 

 R G 0.0 1.0 

R16G16_SINT  R G 0.0 1.0 

R16G16_UINT  R G 0.0 1.0 

 R G 1.0 1.0 R16G16_FLOAT 

 R G 0.0 1.0 

R11G11B10_FLOAT  R G B 1.0 

R32_SINT  R 0.0 0.0 1.0 

R32_UINT  R 0.0 0.0 1.0 
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Surface Format Name  R G B A 

 R 1.0 1.0 1.0 R32_FLOAT 

 R 0.0 0.0 1.0 

R24_UNORM_X8_TYPELESS  R 0.0 0.0 1.0 

X24_TYPELESS_G8_UINT  0.0 G 0.0 1.0 

L16A16_UNORM  L L L A 

I24X8_UNORM  I I I I 

L24X8_UNORM  L L L 1.0 

A24X8_UNORM  0.0 0.0 0.0 A 

I32_FLOAT  I I I I 

L32_FLOAT  L L L 1.0 

A32_FLOAT  0.0 0.0 0.0 A 

B8G8R8X8_UNORM  R G B 1.0 

B8G8R8X8_UNORM_SRGB  R G B 1.0 

R8G8B8X8_UNORM  R G B 1.0 

R8G8B8X8_UNORM_SRGB  R G B 1.0 

R9G9B9E5_SHAREDEXP  R G B 1.0 

B10G10R10X2_UNORM  R G B 1.0 

L16A16_FLOAT  L L L A 

B5G6R5_UNORM  R G B 1.0 

B5G6R5_UNORM_SRGB  R G B 1.0 

 R G 1.0 1.0 R8G8_UNORM 

 R G 0.0 1.0 

 R G 1.0 1.0 R8G8_SNORM 

 R G 0.0 1.0 

R8G8_SINT  R G 0.0 1.0 

R8G8_UINT  R G 0.0 1.0 

R16_UNORM  R 0.0 0.0 1.0 

R16_SNORM  R 0.0 0.0 1.0 

R16_SINT  R 0.0 0.0 1.0 

R16_UINT  R 0.0 0.0 1.0 

 R 1.0 1.0 1.0 R16_FLOAT 

 R 0.0 0.0 1.0 

I16_UNORM  I I I I 

L16_UNORM  L L L 1.0 
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Surface Format Name  R G B A 

A16_UNORM  0.0 0.0 0.0 A 

L8A8_UNORM  L L L A 

I16_FLOAT  I I I I 

L16_FLOAT  L L L 1.0 

A16_FLOAT  0.0 0.0 0.0 A 

R5G5_SNORM_B6_UNORM  R G B 1.0 

R8_UNORM  R 0.0 0.0 1.0 

R8_SNORM  R 0.0 0.0 1.0 

R8_SINT  R 0.0 0.0 1.0 

R8_UINT  R 0.0 0.0 1.0 

A8_UNORM  0.0 0.0 0.0 1.0 

I8_UNORM  I I I I 

L8_UNORM  L L L 1.0 

L8_UNORM_SRGB  L L L 1.0 

R1_UNORM/R1_UINT  R 0.0 0.0 1.0 

YCRCB_NORMAL  Cr Y Cb 1.0 

YCRCB_SWAPUVY  Cr Y Cb 1.0 

YCRCB_SWAPUV  Cr Y Cb 1.0 

YCRCB_SWAPY  Cr Y Cb 1.0 

BC1_RGB  R G B 1.0 

BC1_RGB_SRGB  R G B 1.0 

4.7.3 SAMPLER_STATE 

SAMPLER_STATE has three different formats, depending on the message type used.  
All messages use the format described under “For most messages”.   

4.7.3.1 For Most Messages 

 

SAMPLER_STATE 
Project: All 

This is the normal sampler state used by all messages that use SAMPLER_STATE except sample_8x8 and deinterlace. 
The sampler state is stored as an array of up to 16 elements, each of which contains the dwords described here.  The 
start of each element is spaced 4 dwords apart.  The first element of the sampler state array is aligned to a 32-byte 
boundary. 
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SAMPLER_STATE 
DWord Bit Description 

0 31 Sampler Disable 

Project: All 

Format: Disable FormatDesc 

This field allows the sampler to be disabled.  If disabled, all output channels will return 0. 
  

30:29 Reserved Project: All Format: MBZ 
 

28 LOD PreClamp Enable 

Project: All 

Format: U1 enumerated type FormatDesc 

When enabled, the computed LOD is clamped to [max,min] mip level before the mag-vs-
min determination is performed.  This is how the standard API currently performs 
min/mag determination, and therefore it is expected that a standard API driver would 
need to set this bit.   
 
  

27 Reserved Project: All Format: MBZ 
 

26:22 Base Mip Level 

Project: All 

Format: U4.1 FormatDesc 

Range [0.0,13.0] 

Specifies which mip level is considered the “base” level when determining mag-vs-min 
filter and selecting the “base” mip level. 
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SAMPLER_STATE 
21:20 Mip Mode Filter 

Project: All 

Format: U2 enumerated type FormatDesc 

This field determines if and how mip map levels are chosen and/or combined when texture 
filtering.  
 

Value Name Description Project 

0h MIPFILTER_NONE Disable mip mapping – force 
use of the mipmap level 
corresponding to Min LOD. 

All 

1h MIPFILTER_NEAREST Nearest, Select the nearest mip 
map 

All 

2h Reserved  All 

3h MIPFILTER_LINEAR Linearly interpolate between 
nearest mip maps (combined 
with linear min/mag filters this 
is analogous to “Trilinear” 
filtering). 

All 

 

Programming Notes 

MIPFILTER_LINEAR is not supported for surface formats that do not support “Sampling 
Engine Filtering” as indicated in the Surface Formats table unless using the sample_c 
message type. 
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SAMPLER_STATE 
19:17 Mag Mode Filter 

Project: All 

Format: U2 enumerated type FormatDesc 

This field determines how texels are sampled/filtered when a texture is being “magnified” 
(enlarged).   For volume maps, this filter mode selection also applies to the 3rd (inter-
layer) dimension. 
 

Value Name Description Project 

0h MAPFILTER_NEAREST Sample the nearest 
texel 

All 

1h MAPFILTER_LINEAR Bilinearly filter the 4 
nearest texels 

All 

2h MAPFILTER_ANISOTROPIC Perform an “anisotropic” 
filter on the chosen mip 
level 

All 

3h-5h Reserved  All 

6h MAPFILTER_MONO Perform a monochrome 
convolution filter 

All 

7h Reserved  All 
 

Programming Notes 

Only MAPFILTER_NEAREST and MAPFILTER_LINEAR are supported for surfaces of type 
SURFTYPE_3D. 

Only MAPFILTER_NEAREST is supported for surface formats that do not support 
“Sampling Engine Filtering” as indicated in the Surface Formats table unless using the 
sample_c message type. 

MAPFILTER_MONO:  Only CLAMP_BORDER texture addressing mode is supported.  .  
Both Mag Mode Filter and Min Mode Filter must be programmed to 
MAPFILTER_MONO.  Mip Mode Filter must be MIPFILTER_NONE.  Only valid on surfaces 
with Surface Format MONO8 and with Surface Type SURFTYPE_2D. 

MAPFILTER_ANISOTROPIC may cause artifacts at cube edges if enabled for cube maps 
with the TEXCOORDMODE_CUBE addressing mode. 

MAPFILTER_ANISOTROPIC will be overridden to MAPFILTER_LINEAR when using a 
sample_l or sample_l_c message type or when Force LOD to Zero is set in the message 
header.  [DevBW, DevCL] Errata: Force LOD to Zero will not cause 
MAPFILTER_ANISOTROPIC to get forced to MAPFILTER_LINEAR and instead it will have 
to be worked around using sample_l or sample_l_c. 

  

16:14 Min Mode Filter 

Project: All 

Format: U2 enumerated type FormatDesc 

This field determines how texels are sampled/filtered when a texture is being “minified” 
(shrunk).  For volume maps, this filter mode selection also applies to the 3rd (inter-layer) 
dimension. 

See Mag Mode Filter 
 



 
 

 
 

146     

SAMPLER_STATE 
13:3 Texture LOD Bias 

Project: All 

Format: S4.6 2’s complement FormatDesc 

Range [-16.0, 16.0) 

This field specifies the signed bias value added to the calculated texture map LOD prior to 
min-vs-mag determination and mip-level clamping.  Assuming mipmapping is enabled, a 
positive LOD bias will result in a somewhat blurrier image (using less-detailed mip levels) 
and possibly higher performance, while a negative bias will result in a somewhat crisper 
image (using more-detailed mip levels) and may lower performance.   
 
 

Programming Notes 

There is no requirement or need to offset the LOD Bias in order to produce a correct LOD 
for texture filtering (as was required for correct bilinear and anisotropic filtering in some 
legacy devices). 

  

2:0 Shadow Function 

Project: All 

Format: U3 enumerated type FormatDesc 

This field is used for shadow mapping support via the sample_c message type, and 
specifies the specific comparison operation to be used.   The comparison is between the 
texture sample red channel (except for alpha-only formats which use the alpha channel), 
and the “ref” value provided in the input message. 
 

Value Name Description Project 

0h PREFILTEROP_ALWAYS  All 

1h PREFILTEROP_NEVER  All 

2h PREFILTEROP_LESS  All 

3h PREFILTEROP_EQUAL  All 

4h PREFILTEROP_LEQUAL  All 

5h PREFILTEROP_GREATER  All 

6h PREFILTEROP_NOTEQUAL  All 

7h PREFILTEROP_GEQUAL  All 
   



 
 
 
 

    147 

SAMPLER_STATE 
1 31:22 Min LOD 

Project: All 

Format: U4.6 in LOD units FormatDesc 

Range [0.0, 13.0], where the upper limit is also bounded by the Max 
LOD. 

This field specifies the minimum value used to clamp the computed LOD after LOD bias is 
applied.  Note that the minification-vs.-magnification status is determined after LOD bias 
and before this maximum (resolution) mip clamping is applied. 

The integer bits of this field are used to control the “maximum” (highest resolution) 
mipmap level that may be accessed (where LOD 0 is the highest resolution map).    

The fractional bits of this value effectively clamp the inter-level trilinear blend factor when 
trilinear filtering is in use. 
 
 

Programming Notes 

If Min LOD is greater than Max LOD, Min LOD takes precedence, i.e. the resulting LOD 
will always be Min LOD. 

This field must be zero if the Min or Mag Mode Filter is set to MAPFILTER_MONO 
 

Errata Description Project 

# If the Mip Mode Filter is set to MIPFILTER_NEAREST 
and the fractional portion of MIn LOD is < 0.5 but > 
0.0, the LOD chosen is one too large.  Zeroing the 
fractional portion of  Min LOD in these cases gives the 
correct behavior as a software workaround. 

All 

 

21:12 Max LOD 

Project: All 

Format: U4.6 in LOD units FormatDesc 

Range [0.0, 13.0] 

This field specifies the maximum value used to clamp the computed LOD after LOD bias is 
applied.  Note that the minification-vs.-magnification status is determined after LOD bias 
and before this minimum (resolution) mip clamping is applied. 

The integer bits of this field are used to control the “minimum” (lowest resolution) 
mipmap level that may be accessed. 

The fractional bits of this value effectively clamp the inter-level trilinear blend factor when 
trilinear filtering is in use. 

Force the mip map access to be between the mipmap specified by the integer bits of the 
Min LOD and the ceiling of the value specified here. 
 
 

Programming Notes 

If Min LOD is greater than Max LOD, Min LOD takes precedence, i.e. the resulting LOD 
will always be Min LOD. 

  

11:10 Reserved Project: All Format: MBZ 
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SAMPLER_STATE 
9 Cube Surface Control Mode 

Project: All 

Format: U1 enumerated type FormatDesc 

When sampling from a SURFTYPE_CUBE surface, this field controls whether the TC* 
Address Control Mode fields are interpreted as programmed or overridden to 
TEXCOORDMODE_CUBE. 
 

Value Name Description Project 

0h CUBECTRLMODE_PROGRAMMED  All 

1h CUBECTRLMODE_OVERRIDE  All 
 
 

Errata Description Project 

# this field must be set to 
CUBECTRLMODE_PROGRAMMED 

[DevBW-A,B], 
[DevCL-A] 
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SAMPLER_STATE 
8:6 TCX Address Control Mode 

Project: All 

Format: U3 enumerated type FormatDesc 

Controls how the 1st (TCX, aka U) component of input texture coordinates are mapped to 
texture map addresses – specifically, how coordinates “outside” the texture are handled 
(wrap/clamp/mirror).  The setting of this field is subject to being overridden by the Cube 
Surface Control Mode field when sampling from a SURFTYPE_CUBE surface. 
 

Value Name Description Project 

0h TEXCOORDMODE_WRAP Map is repeated in the 
U direction 

All 

1h TEXCOORDMODE_MIRROR Map is mirrored in the 
U direction 

All 

2h TEXCOORDMODE_CLAMP Map is clamped to the 
edges of the accessed 
map 

All 

3h TEXCOORDMODE_CUBE For cube-mapping, 
filtering in edges access 
adjacent map faces 

All 

4h TEXCOORDMODE_CLAMP_BORDER Map is infinitely 
extended with the 
border color 

All 

5h TEXCOORDMODE_MIRROR_ONCE Map is mirrored once 
about origin, then 
clamped 

All 

6h-7h Reserved  All 
 

Programming Notes 

When using cube map texture coordinates, only TEXCOORDMODE_CLAMP and 
TEXCOORDMODE_CUBE settings are valid, and each TC component must have the same 
Address Control mode. 

When TEXCOORDMODE_CLAMP is used when accessing a cube map, the map’s Cube 
Face Enable field must be programmed to 111111b (all faces enabled). 

MAPFILTER_MONO:  Texture addressing modes must all be set to 
TEXCOORDMODE_CLAMP_BORDER.  The Border Color is ignored in this mode, a 
constant value of 0 is used for border color.  Software must pad the border texels within 
the map itself with 0. 

  

5:3 TCY Address Control Mode 

Project: All 

Format: U3 enumerated type FormatDesc 

Controls how the 2nd (TCY, aka V) component of input texture coordinates are mapped to 
texture map addresses – specifically, how coordinates “outside” the texture are handled 
(wrap/clamp/mirror) or whether the “wrap shortest” mapping should be applied.  

See Address TCX Control Mode above for details 
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SAMPLER_STATE 
2:0 TCZ Address Control Mode 

Project: All 

Format: U3 enumerated type FormatDesc 

Controls how the 3rd (TCZ) component of input texture coordinates are mapped to texture 
map addresses – specifically, how coordinates “outside” the texture are handled 
(wrap/clamp/mirror) or whether the “wrap shortest” mapping should be applied. 

See Address TCX Control Mode above for details 
  

2 31:5 Border Color Pointer 

Project: All 

Format: GeneralStateOffset[31:5]  FormatDesc 

This field specifies the pointer to SAMPLER_BORDER_COLOR_STATE, which contains the 
“border” color to be used when accessing texels not contained within the texture map.  
This pointer is relative to the General State Base Address. 
  

4:0 Reserved Project: All Format: MBZ 
  

3 31:29 Monochrome Filter Height 

Project: All 

Format: U3 FormatDesc 

Range [1,7] 

This field specifies the height of the monochrome filter.  It is ignored if the monochrome 
filter is not enabled.  
  

28:26 Monochrome Filter Width 

Project: All 

Format: U3 FormatDesc 

Range [1,7] 

This field specifies the width of the monochrome filter.  It is ignored if the monochrome 
filter is not enabled.  
  

25 ChromaKey Enable 

Project: All 

Format: Enable FormatDesc 

This field enables the chroma key function. 
 
 

Programming Notes 

Supported only on a specific subset of surface formats.  See section  4.7.2.1.1 “Surface 
Formats” for supported formats. 

This field must be disabled if min or mag filter is MAPFILTER_MONO or 
MAPFILTER_ANISOTROPIC. 

This field must be disabled if used with a surface of type SURFTYPE_3D. 
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SAMPLER_STATE 
24:23 ChromaKey Index 

Project: All 

Format: U2 FormatDesc 

Range [0,3] 

This field specifies the index of the ChromaKey Table entry associated with this Sampler.  
This field is a “don’t care” unless ChromaKey Enable is ENABLED. 
  

22 ChromaKey Mode 

Project: All 

Format: U1 enumerated type FormatDesc 

This field specifies the behavior of the device in the event of a ChromaKey match.  This 
field is ignored if ChromaKey is disabled. 

KEYFILTER_KILL_ON_ANY_MATCH: 

In this mode, if any contributing texel matches the chroma key, the corresponding pixel 
mask bit for that pixel is cleared.  The result of this operation is observable only if the 
Killed Pixel Mask Return flag is set on the input message.  

KEYFILTER_REPLACE_BLACK: 

In this mode, each texel that matches the chroma key is replaced with (0,0,0,0) (black 
with alpha=0) prior to filtering.  For YCrCb surface formats, the black value is A=0, 
R(Cr)=0x80, G(Y)=0x10, B(Cb)=0x80.  This will tend to darken/fade edges of keyed 
regions.  Note that the pixel pipeline must be programmed to use the resulting filtered 
texel value to gain the intended effect, e.g., handle the case of a totally keyed-out region 
(filtered texel alpha==0) through use of alpha test, etc. 
 

Value Name Description Project 

0h KEYFILTER_KILL_ON_ANY_MATCH  All 

1h KEYFILTER_REPLACE_BLACK  All 
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SAMPLER_STATE 
21:19 Maximum Anisotropy 

Project: All 

Format: U3 enumerated type FormatDesc 

This field clamps the maximum value of the anisotropy ratio used by the 
MAPFILTER_ANISOTROPIC filter (Min or Mag Mode Filter). 
 

Value Name Description Project 

0h ANISORATIO_2 At most a 2:1 aspect ratio filter is used All 

1h ANISORATIO_4 At most a 4:1 aspect ratio filter is used All 

2h ANISORATIO_6 At most a 6:1 aspect ratio filter is used All 

3h ANISORATIO_8 At most a 8:1 aspect ratio filter is used All 

4h ANISORATIO_10 At most a 10:1 aspect ratio filter is used All 

5h ANISORATIO_12 At most a 12:1 aspect ratio filter is used All 

6h ANISORATIO_14 At most a 14:1 aspect ratio filter is used All 

7h ANISORATIO_16 At most a 16:1 aspect ratio filter is used All 
  

18:13 Address Rounding Enable 

Project: All 

Format: 6-bit mask of enables FormatDesc 

Controls whether the U/V/R texture address is rounded or truncated before being used to 
select texels to sample.  Each bit provides independent control of rounding on one texture 
address dimension (U/V/R) in either mag or min filter mode. 
 

Value Name Description Project 

100000b  U address mag filter All 

010000b  U address min filter All 

001000b  V address mag filter All 

000100b  V address min filter All 

000010b  R address mag filter All 

000001b  R address min filter All 
  

12:0 Reserved Project: All Format: MBZ 
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4.7.4 SAMPLER_BORDER_COLOR_STATE 

This structure is pointed to by a field in SAMPLER_STATE. 

The interpretation of the border color is as follows: 

• The format of the border color is R32G32B32A32_FLOAT, regardless of the surface 
format chosen.  For surface formats with one or more channels missing, the value 
from the border color is not used for the missing channels, resulting in these 
channels resulting in the overall default value (0 for colors and 1 for alpha) 
regardless of whether border color is chosen.  The surface formats with “L” and “I” 
have special behavior with respect to the border color.  The border color value 
used for the replicated channels (RGB for “L” formats and RGBA for “I” formats) 
comes from the red channel of border color.  In these cases, the green and blue 
channels, and also alpha for “I”, of the border color are ignored. 

Programming Notes: 

• The conditions under which this color is used depend on the Surface Type – 
1D/2D/3D surfaces use the border color when the coordinates extend beyond the 
surface extent; cube surfaces use the border color for “empty” (disabled) faces. 

• The border color itself is accessed through the texture cache hierarchy rather than 
the state cache hierarchy.  Thus, if the border color is changed in memory, the 
texture cache must be invalidated and the state cache does not need to be 
invalidated. 

• MAPFILTER_MONO:  The border color is ignored.  Border color is fixed at a value 
of 0 by hardware. 

 

DWord Bit Description 

0 31:0 Border Color Red 

Format = IEEE_FP 

1 31:0 Border Color Green 

Format = IEEE_FP 

2 31:0 Border Color Blue 

Format = IEEE_FP 

3 31:0 Border Color Alpha 

Format = IEEE_FP 
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4.7.5 3DSTATE_CHROMA_KEY 

 

3DSTATE_CHROMA_KEY 
Project: All Length Bias: 2 

The 3DSTATE_CHROMA_KEY instruction is used to program texture color/chroma-key key values.  A table containing 
four set of values is supported.  The ChromaKey Index sampler state variable is used to select which table entry is 
associated with the map.  Texture chromakey functions are enabled and controlled via use of the ChromaKey Enable 
texture sampler state variable. 

Texture Color Key (keying on a paletted texture index) is not supported. 

DWord Bit Description 

0 31:29 Command Type 

Default Value: 3h GFXPIPE Format: OpCode 
 

28:27 Command SubType 

Default Value: 3h GFXPIPE_3D Format: OpCode 
 

26:24 3D Command Opcode 

Default Value: 1h 3DSTATE Format: OpCode 
 

24:16 3D Command Sub Opcode 

Default Value: 04h 3DSTATE_CHROMA_KEY Format: OpCode 
 

15:8 Reserved Project: All Format: MBZ 
 

7:0 DWord Length 

Default Value: 2h Excludes DWord (0,1) 

Format: =n Total Length - 2 
 

1 31:30 ChromaKey Table Index 

Project: All 

Format: U2 index 

Range 0..3 

Selects which entry in the ChromaKey table is to be loaded 
  

29:0 Reserved Project: All Format: MBZ 
  

2 31:0 ChromaKey Low Value 

This field specifies the “low” (minimum) value of the chroma key range.  Texel samples 
are considered “matching the key” if each component of the texel falls within the 
(inclusive) chroma range. 

See ChromaKey High Value for further format, programming info. 
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3DSTATE_CHROMA_KEY 
3 31:0 ChromaKey High Value 

This field specifies the “high” (maximum) value of the chroma key range.  Texel samples 
are considered “matching the key” if each component of the texel falls within the 
(inclusive) chroma range. 
 
 

Programming Notes 

ChromaKey values are specified using 8-bit channels.  When using surface formats with 
less than 8 bits per channel, the device will expand channels by replicating the required 
number of  MSBs into the LSBs of each channel.  Software must account for this 
conversion when it programs Chromakey Low/High Values (e.g., by performing the same 
replication). 

For channels that do not exist in the actual surface (e.g., Alpha channel for non-ARGB 
maps), software must explicitly program full range high/low values (High=FFh, Low=0h 
for formats using unsigned chroma key values, High=7Fh, Low=FFh for formats using 
sign magnitude chroma key values) in order to effectively remove the comparison of that 
field from the ChromaKey function. 

For channels in SNORM format in the surface format, the value in the high/low value for 
that channel is interpreted in sign magnitude format.  Negative zero value is not 
supported (use positive zero instead).  For channels with mixed UNORM/SNORM formats 
(i.e. R5G5_SNORM_B6_UNORM), the ChromaKey is programmed as if all channels are 
SNORM. 

YUV ChromaKey will use an interpolated chrominance value from the map for 
comparison to the chroma key values for those texels without chrominance due to 
downsampling.  The chrominance value used is the average of values to the left and 
right of the texel in question. 

It is UNDEFINED to program any component of the ChromaKey High Value to be less 
than the corresponding component of ChromaKey Low Value. 

Format = interpreted according to associated texel format “class”:   

Only the surface formats listed as supported for chroma key in the surface formats table 
can be used with this feature.  Use of any other surface format with chroma key enabled 
is UNDEFINED. 

 

Surface Format 31:24 23:16 15:8 7:0 

ARGB and BC formats A R G B 

YCrCb formats  A Cr Y Cb 
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4.7.6 3DSTATE_SAMPLER_PALETTE_LOAD0 

3DSTATE_SAMPLER_PALETTE_LOAD0 
Project: All Length Bias: 2 

The 3DSTATE_SAMPLER_PALETTE_LOAD0 instruction is used to load 24-bit values into the first texture 
palette. The texture palette is used whenever a texture with a paletted format (containing “Px 
[palette0]”) is referenced by the sampler. 
This instruction is used to load all or a subset of the 16 entries of the first palette.  Partial loads always start from the 
first (index 0) entry.  

DWord Bit Description 

0 31:29 Command Type 

Default Value: 3h GFXPIPE Format: OpCode 
 

28:27 Command SubType 

Default Value: 3h GFXPIPE_3D Format: OpCode 
 

26:24 3D Command Opcode 

Default Value: 1h 3DSTATE Format: OpCode 
 

24:16 3D Command Sub Opcode 

Default Value: 02h 3DSTATE_SAMPLER_PALETTE_LOAD0 Format: OpCode 
 

15:8 Reserved Project: All Format: MBZ 
 

7:0 DWord Length 

Default Value: 0h Excludes DWord (0,1) 

Format: =n Total Length - 2 
 

1..n 31:24 Reserved : MBZ 

23:0 Palette Color[0:N-1] 

Project: All 

Colors loaded into the first N entries of the texture color palette.   

Format =  Bits 23:0 = U24 interpreted as RGB_888 color as follows: 

[23:16]  Red 

[15:8]  Green 

[7:0]  Blue 
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4.8 Messages 

Restrictions: 

• Use of any message to the Sampling Engine function with the End of Thread bit 
set in the message descriptor is not allowed. 

• [DevBW-A,B,C0, DevCL-A0] Errata:  use of any Sampling Engine message in 
the same workload (between pipeline flushes) with any Data Port read messages 
utilizing the Sampler Cache or Data Cache is not allowed.  

4.8.1 Initiating Message 

Execution Mask 

SIMD16.  The 16-bit execution mask forms the valid pixel signals.  This determines 
which pixels are sampled and results returned to the GRF registers.  Samples for 
invalid pixels are not overwritten in the GRF.  However, if LOD needs to be computed 
for a subspan based on the message type and MIP filter mode and at least one pixel in 
the subspan being valid, the sampling engine assumes that the parameters for the 
upper left, upper right, and lower left pixels in the subspan are valid regardless of the 
execution mask, as these are needed for the LOD computation. 

SIMD8.  The lower 8 bits of the execution mask forms the valid pixel signals.  If LOD 
needs to be computed based on MIP filter mode and at least one pixel in the subspan 
being valid, the sampling engine assumes that the parameters for the upper left, 
upper right, and lower left pixels in the subspan are valid regardless of the execution 
mask, as these are needed for the LOD computation. 

SIMD4x2.  The lower 8 bits of the execution mask is interpreted in groups of four.  If 
any of the high 4 bits are asserted, that sample is valid.  If any of the low 4 bits are 
asserted, that sample is valid.  The Write Channel Mask rather than the execution 
mask determines which channels are written back to the GRF. 
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4.8.1.1 Message Descriptor 

 

Bit Description 

15:14 Message Type: Specifies the type of message being sent, along with the message length (in the 
general message descriptor) 

Format = U2 

Refer to the table in section  4.8.1.3 for encoding details. 

13:12 Data Return Format: Specifies the format of the data returned to the requesting thread. 

00 =  FLOAT32 – return a signed 32-bit IEEE Float to the thread.  Required for all UNORM, 
SNORM, and FLOAT surface formats.  Can be used by resinfo messages regardless of surface 
format. 

01 = Reserved 

10 = UINT32 – return an unsigned 32-bit integer.  Required for all UINT surface formats.  Can be 
used by resinfo messages regardless of surface format. 

11 = SINT32 – return a signed 32-bit 2’s complement integer.  Required for all SINT surface 
formats. 

11:8 Sampler Index: Specifies the index into the sampler state table.  Ignored for “ld” and “resinfo” 
type messages. 

Format = U4 

Range = [0,15] 

7:0 Binding Table Index: Specifies the index into the binding table. 

Format = U8 

Range = [0,255] 
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4.8.1.2 Message Header 

The message header for the sampling engine is the same regardless of the message 
type. 

 

DWord Bit Description 

M0.7 31:0 Debug 

M0.6 31:0 Debug 

M0.5 31:0 Ignored 

M0.4 31:0 Ignored  

M0.3 31:5 Sampler State Pointer: Specifies the 32-byte aligned pointer to the sampler state 
table.  This field is ignored for “ld” and “resinfo” message types.  This pointer is relative 
to the General State Base Address. 

Format = GeneralStateOffset[31:5] 

 4:0 Ignored 

M0.2 31:17 Ignored 

 16 Force LOD to Zero: If this bit is enabled, the calculated LOD is replaced with zero.  The 
LOD is replaced just before entering the pseudocode in section  4.2.1.5, therefore the 
LOD is still subject to bias, overriding by sample_l delivered LOD, and clamping. 

Format = Enable 

 15 Alpha Write Channel Mask: Enables the alpha channel to be written back to the 
originating thread. 

0 = Alpha channel will be written back 

1 = Alpha channel will not be written back 

Programming Notes: 

• a message with all four channels masked is not allowed. 

• this field is ignored for the sample_unorm*.  The write channel mask is 
generated from the message type itself. 

• this field is ignored for the deinterlace message. 

• this field must be set to zero for sample_8x8 in VSA mode. 

 14 Blue Write Channel Mask: See Alpha Write Channel Mask 

 13 Green Write Channel Mask:  See Alpha Write Channel Mask 

 12 Red Write Channel Mask:  See Alpha Write Channel Mask 

 11:8 U Offset: the u offset from the _aoffimmi modifier on the “sample” or “ld” instruction.  
Must be zero if the Surface Type is SURFTYPE_CUBE or SURFTYPE_BUFFER.  Must be 
set to zero if _aoffimmi is not specified.  Format is S3 2’s complement. 

Programming Note: 

• this field is ignored for the sample_unorm*, sample_8x8, and deinterlace 
messages 
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DWord Bit Description 

 7:4 V Offset: the v offset from the _aoffimmi modifier on the “sample” or “ld” instruction.  
Must be zero if the Surface Type is SURFTYPE_CUBE or SURFTYPE_BUFFER.  Must be 
set to zero if _aoffimmi is not specified.  Format is S3 2’s complement. 

Programming Note: 

• this field is ignored for the sample_unorm*, sample_8x8, and deinterlace 
messages 

 3:0 R Offset: the r offset from the _aoffimmi modifier on the “sample” or “ld” instruction.  
Must be zero if the Surface Type is SURFTYPE_CUBE or SURFTYPE_BUFFER.  Must be 
set to zero if _aoffimmi is not specified.  Format is S3 2’s complement. 

Programming Note: 

• this field is ignored for the sample_unorm*, sample_8x8, and deinterlace 
messages 

M0.1 31:0 Ignored 

M0.0 31:0 Ignored 

4.8.1.3 Payload Parameter Definition 

The table below shows all of the messages supported by the sampling engine.  The 
message type field in the message descriptor in combination with the message length 
determines which message is being sent.  The table defines all of the parameters sent 
for each message type.  The position of the parameters in the payload is given in the 
section following corresponding to the SIMD mode given in the table.  The instruction 
column indicates the shader instructions expected to be translated to each message 
type.   

All parameters are of type IEEE_Float, except those in the ld and resinfo instruction 
message types, which are of type S31.  Any parameter indicated with a blank entry in 
the table is unused.  A message register containing only unused parameters not 
included as part of the message.  The response lengths given below assume all 
channels are unmasked.  SIMD16 messages with masked channels will have reduced 
response length. 
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00 3 8 u            SIMD16 sample 
00 5 8 u v           SIMD16 sample 
00 7 8 u v r          SIMD16 sample 
00 4 4 u v r          SIMD8 sample 
01 4 5 u v r          SIMD8 sample+killpix 
00 9 8 u v r bias         SIMD16 sample_b 
01 9 8 u v r lod         SIMD16 sample_l 
01 2 1 u v r lod         SIMD4x2 sample_l 
10 9 8 u v r ref         SIMD16 sample_c 
00 2 1 u v r ref         SIMD4x2 sample_c 
00 6 4 u v r bias ref        SIMD8 sample_b_c 
01 6 4 u v r lod ref        SIMD8 sample_l_c 
01 3 1 u v r lod ref        SIMD4x2 sample_l_c 
11 3 8 u            SIMD16 ld 
11 5 8 u v           SIMD16 ld 
11 7 8 u v r          SIMD16 ld 
11 4 4 u v r          SIMD8 ld 
11 9 8 u v r lod         SIMD16 ld 
11 2 1 u v r lod         SIMD4x2 ld 
10 7 4 u v dudx dvdx dudy dvdy       SIMD8 sample_g 
10 10 4 u v r dudx dvdx drdx dudy dvdy drdy    SIMD8 sample_g 
10 4 1 u v r  dudx dvdx drdx  dudy dvdy drdy  SIMD4x2 sample_g 
10 3 8 lod            SIMD16 resinfo 
10 2 1    lod         SIMD4x2 resinfo 

Note that the SIMD8 messages actually contain only eight pixels of data.  For the 
sample_g messages, this is due to the message length constraint of 16 registers not 
allowing these messages of 16 pixels.  The Jitter will need to send two messages to 
the sampler to get 16 pixels of data. 
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4.8.1.4 Message Types 

The behavior of each message type is as follows: 

 

Message Type Description 

sample The surface is sampled using the indicated sampler state.  LOD is computed using 
gradients between adjacent pixels.  One, two, or three parameters may be specified 
depending on how many coordinate dimensions the indicated surface type uses.  Extra 
parameters specified are ignored.  Missing parameters are defaulted to 0. 

Programming Notes: 

• The Surface Type of the associated surface must be SURFTYPE_1D, SURFTYPE_2D, 
SURFTYPE_3D, or SURFTYPE_CUBE.  

• The Surface Format of the associated surface cannot be MONO8 or any UINT or 
SINT format. 

• sample is not supported in SIMD4x2 mode. 

sample+killpix The surface is sampled as in the sample message type.  An additional register is returned 
after the sample results which contains the kill pixel mask.  This message type is 
required to allow the result of a chroma key enabled sampler in 
KEYFILTER_KILL_ON_ANY_MATCH mode to affect the final pixel mask. 

Programming Notes: 

• The Surface Type of the associated surface must be SURFTYPE_1D, SURFTYPE_2D, 
SURFTYPE_3D, or SURFTYPE_CUBE. 

• The Surface Format of the associated surface cannot be MONO8 or any UINT or 
SINT format. 

• sample+killpix is supported only in SIMD8 mode. 

sample_b The surface is sampled using the indicated sampler state.  LOD is computed using 
gradients between adjacent pixels, then the value in the “bias” parameter is added to the 
LOD for each pixel.  All four coordinates must be specified, however v and r may not be 
used depending on the indicated surface type.  The LOD bias delivered in the “bias” 
parameter is restricted to a range of [-16.0, +16.0).  Values outside this range produce 
undefined results. 

Programming Notes: 

• The Surface Type of the associated surface must be SURFTYPE_1D, SURFTYPE_2D, 
SURFTYPE_3D, or SURFTYPE_CUBE. 

• The Surface Format of the associated surface cannot be MONO8 or any UINT or 
SINT format. 

• sample_b is not supported in SIMD4x2 mode. 

sample_l The surface is sampled using the indicated sampler state.  LOD is not computed, but 
instead is taken from the “lod” parameter.  All four coordinates must be specified, 
however v and r may not be used depending on the indicated surface type. 

Programming Notes: 

• The Surface Type of the associated surface must be SURFTYPE_1D, SURFTYPE_2D, 
SURFTYPE_3D, or SURFTYPE_CUBE. 

• The Surface Format of the associated surface cannot be a UINT or SINT format. 
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Message Type Description 

sample_c The surface is sampled using the indicated sampler state.  All four coordinates must be 
specified, however v and r may not be used depending on the indicated surface type.  
The “ai” parameter indicates the array index for a cube surface.  The “ref” parameter 
specifies the reference value that is compared against the red channel of the sampled 
surface, and the texel is replaced with either white or black depending on the result of 
the comparison.  The WGF sample_c_lz instruction is implemented by issuing the 
sample_c message with Force LOD to Zero enabled in the message header or by 
issuing the sample_l_c message with the LOD parameter set to zero. 

Programming Notes: 

• The Surface Type of the associated surface must be SURFTYPE_1D, SURFTYPE_2D, 
or SURFTYPE_CUBE. 

• 1D and 2D arrays are not supported (Depth of the associated surface must be 0). 

• The Surface Format of the associated surface must be indicated as supporting 
shadow mapping as indicated in the surface format table. 

• With sample_c, MIPFILTER_LINEAR, MAPFILTER_LINEAR, MAPFILTER_ANISOTROPIC 
are allowed even for surface formats that are listed as not supporting filtering in the 
surface formats table. 

• Use of the SIMD4x2 form of sample_c without Force LOD to Zero enabled in the 
message header is not allowed, as it is not possible for the hardware to compute 
LOD for SIMD4x2 messages.   

• Use of sample_c with SURFTYPE_CUBE surfaces is undefined with the following 
surface formats:  I24X8_UNORM, L24X8_UNORM, A24X8_UNORM, I32_FLOAT, 
L32_FLOAT, A32_FLOAT. 

• [DevBW, DevCL] Errata: When sample_c is used on a texture map with 
A16_FLOAT surface format, any value read in from the texture map that is a NaN 
will be treated like a + inf. 

sample_b_c This is a combination of sample_b and sample_c.  Both the LOD bias and reference 
values are delivered.  All restrictions applying to both sample_b and sample_c must be 
honored. 

sample_l_c This is a combination of sample_l and sample_c.  Both the LOD and reference values are 
delivered.  All restrictions applying to both sample_l and sample_c must be honored.  
However, unlike sample_c, sample_l_c is allowed as a SIMD4x2 message. 

Programming Notes: 

• [DevBW, DevCL] Errata: SIMD4x2 sample_l_c is not allowed and must be worked 
around using SIMD8 sample_l_c. 

sample_g 
(sample_d) 

The surface is sampled using the indicated sampler state.  LOD is computed using the 
gradients present in the message.  The r coordinate and its gradients are required only 
for surface types that use the third coordinate.  Usage of this message type on cube 
surfaces assumes that the u, v, and gradients have already been transformed onto the 
appropriate face, but still in [-1,+1] range.  The r coordinate contains the faceid, and the 
r gradients are ignored by hardware. 

Programming Notes: 

• The Surface Type of the associated surface must be SURFTYPE_1D, SURFTYPE_2D, 
SURFTYPE_3D, or SURFTYPE_CUBE. 

• The Surface Format of the associated surface cannot be MONO8 or any UINT or 
SINT format. 
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Message Type Description 

resinfo The surface indicated in the surface state is not sampled.  Instead, the width, height, 
depth, and MIP count of the surface are returned in the red, green, blue, and alpha 
channels respectively (UINT32 format).  The width, height, and depth are shifted right, 
per pixel, by the LOD value provided in the “lod” parameter to give the dimensions of the 
specified mip level.  The “lod” parameter is an unsigned 32-bit integer in this mode (note 
that sending a signed 32-bit integer always has the same effect, as negative values are 
out-of-range when interpreted as unsigned integers).  The Sampler State Pointer and 
Sampler Index are ignored. 

Programming Notes: 

• [DevBW-A,B] Errata:  if lod is > 0xf it must be forced to 0xf. 

ld 
(includes ld2dms) 

The surface is sampled using a default sampler state, indicated below.  The “lod” 
parameter contains the LOD of the mip map to be sampled.  The v and r channel may 
also be ignored depending on the indicated surface type.  All incoming values are 
unsigned 32-bit integers in this mode.  The u, v, and r parameters contain integer texel 
addresses on the LOD indicated in the “lod” parameter.  The Sampler State Pointer 
and Sampler Index are ignored. 

For the ld message type, the sampler state is defaulted as follows: 

• min, mag, and mip filter modes are “nearest” 

• all address control modes are “zero” (a special mode in which any texel off the map 
or outside the MIP range of the surface has a value of zero in all channels, except for 
surface formats without an alpha channel, which will return a value of one in the 
alpha channel) 

Programming Notes: 

• The Surface Type of the associated surface must be SURFTYPE_1D, SURFTYPE_2D, 
SURFTYPE_3D, or SURFTYPE_BUFFER.   

• [DevBW-A,B] Errata:  Only non-array (Depth = 0) SURFTYPE_1D and 
SURFTYPE_2D are supported with “ld”.  

• The Surface Format of the associated surface cannot be MONO8. 

• [DevBW, DevCL] Errata: For ld with SURFTYPE_BUFFER the lod channel MBZ. 

• Errata:  Surface formats with 8 bits per channel and no alpha channel will return 
zero in the alpha channel. 

 

Programming Notes: 

• For surfaces of type SURFTYPE_CUBE, the sampling engine requires u, v, and 
r parameters that have already been divided by the absolute value of the 
parameter (u, v, or r) with the largest absolute value. 
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4.8.1.5 Parameter Types 

sample*, LOD, and load4 messages 

For all of the sample*, LOD, and load4 message types, all parameters are 32-bit 
floating point.  Usage of the u, v, and r parameters is as follows based on Surface 
Type.  Normalized values range from [0,1] across the surface, with values outside the 
surface behaving as specified by the Address Control Mode in that dimension.  
Unnormalized values range from [0,n-1] across the surface, where n is the size of the 
surface in that dimension, with values outside the surface being clamped to the 
surface. 
 

Surface Type u v r ai 

SURFTYPE_1D normalized ‘x’ 
coordinate 

unnormalized 
array index 

ignored ignored 

SURFTYPE_2D normalized ‘x’ 
coordinate 

normalized ‘y’ 
coordinate 

unnormalized 
array index 

ignored 

SURFTYPE_3D normalized ‘x’ 
coordinate 

normalized ‘y’ 
coordinate 

normalized ‘z’ 
coordinate 

ignored 

SURFTYPE_CUBE normalized ‘x’ 
coordinate 

normalized ‘y’ 
coordinate 

normalized ‘z’ 
coordinate 

unnormalized 
array index 

 

ld messages 

For the ld message types, all parameters are 32-bit signed integers.  Usage of the u, 
v, and r parameters is as follows based on Surface Type.  Unnormalized values range 
from [0,n-1] across the surface, where n is the size of the surface in that dimension.  
Input of any value outside of the range returns zero. 
 

Surface Type U v r 

SURFTYPE_1D unnormalized ‘x’ 
coordinate 

unnormalized array 
index 

ignored 

SURFTYPE_2D unnormalized ‘x’ 
coordinate 

unnormalized ‘y’ 
coordinate 

unnormalized 
array index 

SURFTYPE_3D unnormalized ‘x’ 
coordinate 

unnormalized ‘y’ 
coordinate 

unnormalized 
‘z’ coordinate 

SURFTYPE_BUFFER unnormalized ‘x’ 
coordinate 

ignored ignored 
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4.8.1.6 SIMD16 Payload 

The payload of a SIMD16 message provides addresses for the sampling engine to 
process 16 entities (examples of an entity are vertex and pixel).  The number of 
parameters required to sample the surface depends on the state that the 
sampler/surface is in.  Each parameter takes two message registers, with 8 entities, 
each a 32-bit floating point value, being placed in each register.  Each parameter 
always takes a consistent position in the input payload.  The length field can be used 
to send a shorter message, but intermediate parameters cannot be skipped as there is 
no way to signal this.  For example, a 2D map using “sample_b” needs only u, v, and 
bias, but must send the r parameter as well. 

 

DWord Bit Description 

M1.7 31:0 Subspan 1, Pixel 3 (lower right) Parameter 0 

Specifies the value of the pixel’s parameter 0.  The actual parameter that maps to 
parameter 0 is given in the table in section  4.8.1.3. 

Format = IEEE Float for all sample* message types, U32 for ld and resinfo message 
types. 

M1.6 31:0 Subspan 1, Pixel 2 (lower left) Parameter 0 

M1.5 31:0 Subspan 1, Pixel 1 (upper right) Parameter 0 

M1.4 31:0 Subspan 1, Pixel 0 (upper left) Parameter 0 

M1.3 31:0 Subspan 0, Pixel 3 (lower right) Parameter 0 

M1.2 31:0 Subspan 0, Pixel 2 (lower left) Parameter 0 

M1.1 31:0 Subspan 0, Pixel 1 (upper right) Parameter 0 

M1.0 31:0 Subspan 0, Pixel 0 (upper left) Parameter 0 

M2.7 31:0 Subspan 3, Pixel 3 (lower right) Parameter 0 

M2.6 31:0 Subspan 3, Pixel 2 (lower left) Parameter 0 

M2.5 31:0 Subspan 3, Pixel 1 (upper right) Parameter 0 

M2.4 31:0 Subspan 3, Pixel 0 (upper left) Parameter 0 

M2.3 31:0 Subspan 2, Pixel 3 (lower right) Parameter 0 

M2.2 31:0 Subspan 2, Pixel 2 (lower left) Parameter 0 

M2.1 31:0 Subspan 2, Pixel 1 (upper right) Parameter 0 

M2.0 31:0 Subspan 2, Pixel 0 (upper left) Parameter 0 

M3 – Mn  Repeat packets 1 and 2 to cover all required parameters 
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4.8.1.7 SIMD8 Payload 

This message is intended to be used in a SIMD8 thread, or in pairs from a SIMD16 
thread.  Each message contains sample requests for just 8 pixels. 

 

DWord Bit Description 

M1.7 31:0 Subspan 1, Pixel 3 (lower right) Parameter 0 

Specifies the value of the pixel’s parameter 0.  The actual parameter that maps to 
parameter 0 is given in the table in section  4.8.1.3. 

Format = IEEE Float for all sample* message types, U32 for ld and resinfo message 
types. 

M1.6 31:0 Subspan 1, Pixel 2 (lower left) Parameter 0 

M1.5 31:0 Subspan 1, Pixel 1 (upper right) Parameter 0 

M1.4 31:0 Subspan 1, Pixel 0 (upper left) Parameter 0 

M1.3 31:0 Subspan 0, Pixel 3 (lower right) Parameter 0 

M1.2 31:0 Subspan 0, Pixel 2 (lower left) Parameter 0 

M1.1 31:0 Subspan 0, Pixel 1 (upper right) Parameter 0 

M1.0 31:0 Subspan 0, Pixel 0 (upper left) Parameter 0 

M2 – Mn  Repeat packet 1 to cover all required parameters 

4.8.1.8 SIMD4x2 Payload 
DWord Bit Description 

M1.7 31:0 Sample 1 Parameter 3 

Specifies the value of the pixel’s parameter 3.  The actual parameter that maps to 
parameter 3 is given in the table in section  4.8.1.3. 

Format = IEEE Float for all sample* message types, U32 for ld and resinfo message 
types. 

M1.6 31:0 Sample 1 Parameter 2 

M1.5 31:0 Sample 1 Parameter 1 

M1.4 31:0 Sample 1 Parameter 0 

M1.3 31:0 Sample 0 Parameter 3 

M1.2 31:0 Sample 0 Parameter 2 

M1.1 31:0 Sample 0 Parameter 1 

M1.0 31:0 Sample 0 Parameter 0 

M2  Parameters 4-7 if present 

M3  Parameters 8-11 if present 
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4.8.2 Writeback Message 

Corresponding to the four input message definitions are four writeback messages.  
Each input message generates a corresponding writeback message of the same type 
(SIMD16, SIMD8  or SIMD4x2). 

4.8.2.1 SIMD16 

A SIMD16 writeback message consists of up to 8 destination registers.  Which 
registers are returned is determined by the write channel mask received in the 
corresponding input message.  Each asserted write channel mask results in both 
destination registers of the corresponding channel being skipped in the writeback 
message, and all channels with higher numbered registers being dropped down to fill 
in the space occupied by the masked channel.  For example, if only red and alpha are 
enabled, red is sent to regid+0 and regid+1, and alpha to regid+2 and regid+3.   The 
pixels written within each destination register is determined by the execution mask on 
the “send” instruction. 
 

 DWord Bit Description 

W0.7 31:0 Subspan 1, Pixel 3 (lower right) Red: Specifies the value of the pixel’s red channel. 

Format = IEEE Float, S31 signed 2’s comp integer, or U32 unsigned integer.  Format 
depends on the Data Return Format programmed for the surface being sampled. 

W0.6 31:0 Subspan 1, Pixel 2 (lower left) Red 

W0.5 31:0 Subspan 1, Pixel 1 (upper right) Red 

W0.4 31:0 Supspan 1, Pixel 0 (upper left) Red 

W0.3 31:0 Subspan 0, Pixel 3 (lower right) Red 

W0.2 31:0 Subspan 0, Pixel 2 (lower left) Red 

W0.1 31:0 Subspan 0, Pixel 1 (upper right) Red 

W0.0 31:0 Supspan 0, Pixel 0 (upper left) Red 

W1.7 31:0 Subspan 3, Pixel 3 (lower right) Red 

W1.6 31:0 Subspan 3, Pixel 2 (lower left) Red 

W1.5 31:0 Subspan 3, Pixel 1 (upper right) Red 

W1.4 31:0 Supspan 3, Pixel 0 (upper left) Red 

W1.3 31:0 Subspan 2, Pixel 3 (lower right) Red 

W1.2 31:0 Subspan 2, Pixel 2 (lower left) Red 

W1.1 31:0 Subspan 2, Pixel 1 (upper right) Red 

W1.0 31:0 Supspan 2, Pixel 0 (upper left) Red 

W2  Subspans 1 and 0 of Green: See W0 definition for pixel locations 

W3  Subspans 3 and 2 of Green: See W1 definition for pixel locations 

W4  Subspans 1 and 0 of Blue: See W0 definition for pixel locations 

W5  Subspans 3 and 2 of Blue: See W1 definition for pixel locations 

W6  Subspans 1 and 0 of Alpha: See W0 definition for pixel locations 

W7  Subspans 3 and 2 of Alpha: See W1 definition for pixel locations 
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4.8.2.2 SIMD8 

This writeback message consists of four registers, or five in the case of 
sample+killpix.  As opposed to the SIMD16 writeback message, channels that are 
masked in the write channel mask are not skipped, all four channels are always 
returned.  The masked channels, however, are not overwritten in the destination 
register. 

For the sample+killpix message types, an additional register (W4) is included after the 
last channel register.   

 

DWord Bit Description 

W0.7 31:0 Subspan 1, Pixel 3 (lower right) Red: Specifies the value of the pixel’s red channel. 

Format = IEEE Float, S31 signed 2’s comp integer, or U32 unsigned integer.  Format 
depends on the Data Return Format programmed for the surface being sampled. 

W0.6 31:0 Subspan 1, Pixel 2 (lower left) Red 

W0.5 31:0 Subspan 1, Pixel 1 (upper right) Red 

W0.4 31:0 Supspan 1, Pixel 0 (upper left) Red 

W0.3 31:0 Subspan 0, Pixel 3 (lower right) Red 

W0.2 31:0 Subspan 0, Pixel 2 (lower left) Red 

W0.1 31:0 Subspan 0, Pixel 1 (upper right) Red 

W0.0 31:0 Supspan 0, Pixel 0 (upper left) Red 

W1  Subspans 1 and 0 of Green: See W0 definition for pixel locations 

W2  Subspans 1 and 0 of Blue: See W0 definition for pixel locations 

W3  Subspans 1 and 0 of Alpha: See W0 definition for pixel locations 

W4.7:1  Reserved (not written) : W4 is only delivered for the sample+killpix message type 

W4.0 31:16 Dispatch Pixel Mask: This field is always 0xffff to allow dword-based ANDing with the 
R0 header in the pixel shader thread. 

 15:0 Active Pixel Mask: This field has the bit for all pixels set to 1 except those pixels that 
have been killed as a result of chroma key with kill pixel mode.  Since the SIMD8 
message applies to only 8 pixels, only the low 8 bits within this field are used.  The high 
8 bits are always set to 1. 

[DevBW, DevCL] Errata: Active Pixel Mask needs to be ORed with the inverse of the 
EMask  before it is ANDed with the DMask.  Also if the sample instruction is within a 
conditional then the active pixel mask will be overwritten with the partial mask on each 
different sample instruction so this will have to be done for each instance of the sample 
instruction not just as the end. 
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4.8.2.3 SIMD4x2 

A SIMD4x2 writeback message always consists of a single message register containing 
all four channels of each of the two “pixels” (called “samples” here, as they are not 
really pixels) of data.  The write channel mask bits as well as the execution mask on 
the “send” instruction are used to determine which of the channels in the destination 
register are overwritten.  If any of the four execution mask bits for a sample is 
asserted, that sample is considered to be active.  The active channels in the write 
channel mask will be written in the destination register for that sample.  If the sample 
is inactive (all four execution mask bits deasserted), none of the channels for that 
sample will be written in the destination register. 

 

DWord Bit Description 

W0.7 31:0 Sample 1 Alpha: Specifies the value of the pixel’s alpha channel. 

Format = IEEE Float, S31 signed 2’s comp integer, or U32 unsigned integer.  Format 
depends on the Data Return Format programmed for the surface being sampled. 

W0.6 31:0 Sample 1 Blue 

W0.5 31:0 Sample 1 Green 

W0.4 31:0 Sample 1 Red 

W0.3 31:0 Sample 0 Alpha 

W0.2 31:0 Sample 0 Blue 

W0.1 31:0 Sample 0 Green 

W0.0 31:0 Sample 0 Red 
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5 Data Port 

The Data Port provides all memory accesses for the Gen4 subsystem other than those 
provided by the sampling engine.  These include render target writes, constant buffer 
reads, scratch space reads/writes, and media surface accesses. 

The diagram below shows the two parts of the Data Port (Read and Write) and how 
they connect with the caches and memory subsystem.  The execution units and 
sampling engine are shown for clarity. 
 

Read Data Port

Write Data Port

Sampler Cache

Data Cache

Render Cache

Sampling Engine

Execution
Units

Memory
Subsystem

 

The kernel programs running in the execution units communicate with the data port 
via messages, the same as for the other shared function units.  The read and write 
data ports are considered to be separate shared functions, each with its own shared 
function identifier. 

5.1 Cache Agents 

The data port allows access to memory via various caches.  The choice of which cache 
to use for a given application is dictated by its restrictions, coherency issues, and how 
heavily that cache is used for other purposes. 

The cache to use is selected by the Target Cache field of the read data port message 
descriptor.  The write data port message descriptor does not have an equivalent field 
as it only supports writes to the render cache. 
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5.1.1 Render Cache 

The render cache is the only cache that supports both reads and writes.  All writes 
must use this cache.  In addition, all reads to a surface that is also being written 
should use this cache to avoid expensive flushing that would be required for 
coherency.  The render cache supports both linear and tiled memory. 

The render cache is intended to be used for the following surfaces: 

• 3D render target surfaces 

• destination surfaces for media applications 

• intermediate working surfaces for media applications 

• scratch space buffers 

5.1.2 Data Cache  

The data cache is a small, read-only cache that supports only linear memory.  For 3D 
graphics, it is intended to be used only for constant buffers. For media and other 
generic applications, it may be used to load kernel constants such as filter coefficients 
as well as other linear data buffers such as compressed data buffer for HWMC. 

In the hardware implementation on all of these devices, the data cache does not exist 
as a separate physical cache.  It is mapped in hardware to the sampler cache. 

5.1.3 Sampler Cache 

The sampler cache is a read-only cache that supports both linear and tiled memory.  
In addition to being used by the sampling engine (via the sampling engine messages), 
the sampler cache is intended to be used for source surfaces in media applications via 
the data port.  The same application may use the sampler cache via the sampling 
engine and data port without flushing the pipeline between accesses. 

5.2 Surfaces 

The data elements accessed by the data port are called “surfaces”.  There are two 
models used by the data port to access these surfaces:  surface state model and 
stateless model. 
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5.2.1 Surface State Model 

The data port uses the binding table to bind indices to surface state, using the same 
mechanism used by the sampling engine.  The surface state model is used when a 
Binding Table Index (specified in the message descriptor) of less than 255 is 
specified.  In this model, the Binding Table Index is used to index into the binding 
table, and the binding table entry contains a pointer to the SURFACE_STATE.  
SURFACE_STATE contains the parameters defining the surface to be accessed, 
including its location, format, and size. 

This model is intended to be used for constant buffers, render target surfaces, and 
media surfaces. 

5.2.2 Stateless Model 

The stateless model is used when a Binding Table Index (specified in the message 
descriptor) of 255 is specified.  In this model, the binding table is not accessed, and 
the parameters that define the surface state are overloaded as follows: 

• Surface Type = SURFTYPE_BUFFER 

• Surface Format = R32G32B32A32_FLOAT 

• Vertical Line Stride = 0 

• Surface Base Address = General State Base Address + Immediate Base 
Address 

• Buffer Size = checked only against General State Access Upper Bound  

• Surface Pitch = 16 bytes 

• Utilize Fence = false 

• Tiled = false 

This model is primarily intended to be used for scratch space buffers. 

[DevBW-A,B] Erratum BWT006:  Issuing a stateless access is UNDEFINED unless 
the DAP Stateless Access ECO bit in the SVG-Debug Workaround Control register is 
set.  This is a DEBUG ONLY mode that lacks necessary security checks. 

5.3 Write Commit 

For write messages, an optional write commit writeback message can be requested via 
the Send Write Commit Message bit in the message descriptor.  This bit causes a 
return message to the thread indicating when the write has been committed to the in-
order cache pipeline and it is safe to issue another access to the same data with the 
assurance that it will happen after the first write.  A read issued after the write 
commit ensures that the read will get the newly written data, and another write issued 
after the write commit will be the last to modify the data.  “Committed” does not 
guarantee that the data has been actually written to the memory subsystem, but only 
that the write has been scheduled and cannot be passed by another read or write 
issued subsequently. 
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If Send Write Commit Message is used on a Flush Render Cache message, the 
write commit is sent only when the render cache has completed its flush to memory.  
A read issued to another cache after the write commit is received will be guaranteed 
to retrieve the “new” data that was written before the Flush Render Cache message 
was issued. 

The write commit does not modify the destination register, but merely clears the 
dependency associated with the destination register.  Thus, a simple “mov” instruction 
using the register as a source is sufficient to wait for the write commit to occur.  The 
following code sequence indicates this: 

 
send r12 m1 DPWRITE ; issue write to render cache 
mov m1 r3   ; assemble read message 
mov r12 r12   ; block on write commit 
send r13 m1 DPREAD ; read same location as write 

5.4 Read/Write Ordering 

Hardware does not guarantee ordering between read and write messages issued to 
the data port, even between messages issued by the same thread.  If ordering is 
important, software must guarantee ordering.  For a write followed by a read to the 
same location, the write must use a write commit, and wait for the write commit to 
return before issuing the read message.  For a read followed by a write to the same 
location, software must wait for the read data to be returned before issuing the write 
message. 

5.5 Accessing Buffers 

There are three data port messages used to access buffers.  They are used for both 
constant buffers and scratch space buffers.  All of these messages support only 
buffers, and can use the surface state model as well as the stateless model. 

The following table indicates the intended applications of each of the buffer messages. 
 

Message Applications 

OWord Block 
Read/Write 

• constant buffer reads of a single constant or multiple contiguous 
constants 

• scratch space reads/writes where the index for each pixel/vertex is the 
same 

• block constant reads, scratch memory reads/writes for media 

OWord Dual 
Block Read/Write 

• SIMD4x2 constant buffer reads where the indices of each vertex/pixel 
are different  (if there are two indices and they are the same, 
hardware will optimize the cache accesses and do only one cache 
access) 

• SIMD4x2 scratch space reads/writes where the indices are different. 

DWord Scattered 
Read/Write 

• SIMD8/16 constant buffer reads where the indices of each pixel are 
different (read one channel per message) 

• SIMD8/16 scratch space reads/writes where the indices are different 
(read/write one channel per message) 

• general purpose DWord scatter/gathering, used by media 

These messages ignore the surface format field of the state and perform no format 
conversion.  The data contained in each channel is still not converted in any way. 
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5.6 Accessing Media Surfaces 

The Media Block Read/Write message is intended to be used to access 2D media 
surfaces.  The message specifies an X/Y coordinate into the 2D surface as input.  
Since this message only supports 2D surfaces, the stateless model cannot be used 
with this message. 

5.6.1 Boundary Behavior 

The table below summarizes the behavior of the Media Boundary Pixel Mode field 
(SURFACE_STATE) in combination with the Vertical Line Stride and Vertical Line 
Stride Offset fields (both of which are subject to being overridden by the Data Port 
message descriptor fields).  The Behavior column illustrates behavior for a surface 
with four rows numbered 0 to 3.  The bold indicators are off-surface behavior and the 
non-bold indicators are on-surface behavior.  Input row addresses range from -3 to 
+7 going left to right. 
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0 0 X normal frame 000001233333 
0 1 0 normal field even 000002222222 
0 1 1 normal field odd 111113333333 
2 0 X frame / progressive 000001233333 
2 1 0 field even / progressive 000002333333 
2 1 1 field odd / progressive 000013333333 
3 0 X frame / interlaced 010101232323 
3 1 0 field even / interlaced 000002222222 
3 1 1 field odd / interlaced 111113333333 
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5.7 Accessing Render Targets 

Render targets are the surfaces that the final results of pixel shaders are written to.  
The render targets support a large set of surface formats (refer to surface formats 
table in Sampling Engine for details) with hardware conversion from the format 
delivered by the thread.  The render target message also causes numerous side 
effects, including potentially alpha test, depth test, stencil test, alpha blend (which 
normally causes a read of the render target), and other functions.  These functions are 
covered in the Windower chapter as some of them (depth/stencil test) are also 
partially done in the Windower. 

The render target write messages are specifically for the use of pixel shader threads 
that are spawned by the windower, and may not be used by any other threads.  This 
is due to the pixel scoreboard side-effects that sending of this message entails.  The 
pixel scoreboard ensures that incorrect ordering of reads and writes to the same pixel 
does not occur. 

5.7.1 Single Source 

The “normal” render target messages are single source.  There are two forms, SIMD16 
and SIMD8, intended for the equivalent-sized pixel shader threads.  A single color (4 
channels) is delivered for each of the 16 or 8 pixels in the message payload.  Optional 
depth, stencil, and antialias alpha information can also be delivered with these 
messages. 

The pixel scoreboard bits corresponding to the dispatched pixel mask (or half of the 
mask in the case of SIMD8 messages) are cleared only if the Pixel Scoreboard Clear 
bit is set in the message descriptor. 

5.7.2 Dual Source [DevCL-B] 

Note: Dual Source messages are not supported in DevBW and DevCL-A devices. 

The dual source render target messages only have SIMD8 forms due to maximum 
message length limitations.  SIMD16 pixel shaders must send two of these messages 
to cover all of the pixels.  Each message contains two colors (4 channels each) for 
each pixel in the message payload.  In addition to the first source, the second source 
can be selected as a blend factor (BLENDFACTOR_*_SRC1_* options in the blend 
factor fields of COLOR_CALC_STATE or BLEND_STATE).  Optional depth, stencil, and 
antialias alpha information can also be delivered with these messages. 

Each dual source message delivered will clear the corresponding pixel scoreboard bits 
if the Pixel Scoreboard Clear bit in the message descriptor is set. 

It is UNDEFINED to utilize a DualSource RT Write message when Color Buffer Blend 
Enable is DISABLED. 
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5.7.3 Replicate Data 

The replicate data render target message is intended to be used for “fast clear” 
functionality in cases where the color data for each pixel is identical.  This message 
performs better than the other messages due to its smaller message length.  This 
message does not support depth, stencil, or antialias alpha data being sent with it.  
This message must target only tiled memory.  Access of linear memory using this 
message type is UNDEFINED.  The depth buffer can be cleared through the “early 
depth” function in conjunction with a pixel shader using this message.  Refer to the 
Windower chapter for more details on the early depth function. 

The pixel scoreboard bits corresponding to the dispatched pixel mask are cleared only 
if the Pixel Scoreboard Clear bit is set in the message descriptor. 

5.7.4 Multiple Render Targets (MRT) 

Multiple render targets are supported with the single source and replicate data 
messages.  Each render target is accessed with a separate Render Target Write 
message, each with a different surface indicated (different binding table index).  The 
depth buffer is written only by the message(s) to the last render target, indicated by 
the Last Render Target Select bit set to clear the pixel scoreboard bits. 

5.8 Flushing the Render Cache 

A message that allows flushing the render cache is available for applications or for 
debug purposes.  This message should not be used in normal 3D shaders, the render 
cache flushing mechanisms via PIPE_CONTROL or MI_FLUSH should be used instead 
as the render cache generally needs to be flushed on a level more global than that 
provided by a shader. 

5.9 State 

5.9.1 BINDING_TABLE_STATE 

The data port uses the binding table to retrieve surface state.  Refer to Sampling 
Engine for the definition of this state. 

5.9.2 SURFACE_STATE 

The data port uses the surface state for constant buffers, render targets, and media 
surfaces.  Refer to Sampling Engine for the definition of this state. 
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5.10 Messages 

5.10.1 Global Definitions 

For data port messages, part of the message descriptor is used to determine the 
message type.  This field is documented here.  The remainder of the message 
descriptor is defined differently depending on the message type, and is documented in 
the section for the corresponding message. 

The Data Port is actually two separate targets, Data Port Read and Data Port 
Write, each with its own target unit ID.  Each target has its own set of message type 
encodings as shown below. 

Restrictions: 

• [DevBW-A,B,C0, DevCL-A0] Errata:  use of any Sampling Engine message in 
the same workload (between pipeline flushes) with any Data Port read messages 
utilizing the Sampler Cache is not allowed. 

• Data port messages may not have the End of Thread bit set in the message 
descriptor other than the following exeptions: 
⎯ The Render Target Write message may have End of Thread set for pixel 

shader threads dispatched by the windower in non-contiguous dispatch mode. 
⎯ The Render Target UNORM Write message may have End of Thread set for 

pixel shader threads dispatched by the windower in contiguous dispatch mode. 
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5.10.1.1 Message Descriptor 

 

Bit Description 

DATA PORT READ TARGET DATA PORT WRITE TARGET 

15:14 Target Cache 

00 = Data Cache 

01 = Render Cache 

10 = Sampler Cache 

11 = Reserved 

15 Send Write Commit Message. Indicates 
that a write commit message will be sent 
back to the thread when the write has 
been committed. See section  5.3 for more 
details. 

Format = Enable 

13:12 Read Message Type 

00 = OWord Block Read 

01 = OWord Dual Block Read 

10 = Media Block Read 

11 = DWord Scattered Read 

14:12 Write Message Type 

000 = OWord Block Write 

001 = OWord Dual Block Write 

010 = Media Block Write 

011 = DWord Scattered Write 

100 = Render Target Write 

111 = Flush Render Cache 

All other encodings are reserved. 

11:8 Message Specific Control. Refer to the specific message section for the definition of these bits. 

7:0 Binding Table Index. Specifies the index into the binding table for the specified surface.   A 
binding table index of 255 indicates that a stateless model is to be used.  Refer to section  5.2.2 for 
details on the stateless model. 

Programming Notes: 

• [DevBW-A,B] Erratum BWT006:  Using a binding table index of 255 is UNDEFINED 
unless the DAP Stateless Access ECO bit in the SVG-Debug Workaround Control register 
is set.  This is a DEBUG ONLY mode that lacks necessary security checks. 

Format = U8 

Range = [0,255] 
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5.10.1.2 Message Header 

This header applies to the following data port messages: 
• OWord Block Read/Write 
• Unaligned OWord Block Read 
• OWord Dual Block Read/Write 
• DWord Scattered Read/Write 

The header definitions for the other data port messages is in the section for each 
message. 

 

DWord Bit Description 

M0.7 31:0 Debug 

M0.6 31:0 Debug 

M0.5 31:10 Immediate Buffer Base Address. Specifies the surface base address for messages in 
which the Binding Table Index is 255 (stateless model), otherwise this field is ignored.  
This pointer is relative to the General State Base Address. 

Format = GeneralStateOffset[31:10] 

 9:8 Ignored 

 7:0 Dispatch ID. This ID is assigned by the fixed function unit and is a unique identifier for 
the thread.  It is used to free up resources used by the thread upon thread completion. 

M0.4 31:0 Ignored (reserved for hardware delivery of binding table pointer) 

M0.3 31:0 Ignored 

M0.2 31:0 Global Offset. 

Specifies the global byte offset into the buffer. 

• For the OWord messages, this offset must be OWord aligned (bits 3:0 MBZ) 

• For the DWord messages, this offset must be DWord aligned (bits 1:0 MBZ) 

Format = U32 

Range = [0,FFFFFFF0h] for OWord messages 

Range = [0,FFFFFFFCh] for DWord messages 

M0.1 31:0 Ignored 

M0.0 31:0 Ignored 
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5.10.1.3 Write Commit Writeback Message  

The writeback message is only sent on Data Port Write messages if the Send Write 
Commit Message bit in the message descriptor is set.  The destination register is not 
modified.  Write messages without the Send Write Commit Message bit set will not 
return anything to the thread (response length is 0 and destination register is null). 

 

DWord Bit Description 

W0.7:0  Reserved 

5.10.2 OWord Block Read/Write 

This message takes one offset (Global Offset), and reads or writes 1, 2, 4, or 8 
contiguous OWords starting at that offset. 

Restrictions: 

• the only surface type allowed is SURFTYPE_BUFFER. 

• the surface format is ignored, data is returned from the constant buffer to the 
GRF without format conversion. 

• the surface pitch is ignored, the surface is treated as a 1-dimensional surface.  
An element size (pitch) of 16 bytes is used to determine the size of the buffer 
for out-of-bounds checking if using the surface state model. 

• the surface cannot be tiled 

• the surface base address must be OWord aligned 

• the Render Cache Read Write Mode field in SURFACE_STATE must be set 
to read/write mode when using this message with the render cache in the 
surface state model 

• the Stateless Render Cache Read-Write Mode field in the SVG_WORK_CTL 
register must be set to read/write mode when using this message with the 
render cache in the stateless model 

Applications: 

• constant buffer reads of a single constant or multiple contiguous constants 

• scratch space reads/writes where the index for each pixel/vertex is the same 

• block constant reads, scratch memory reads/writes for media  

Execution Mask.  The low 8 bits of the execution mask are used to enable the 8 
channels in the first and third GRF registers returned (W0, W2) for read, or the first 
and third write registers sent (M1, M3).  The high 8 bits are used similarly for the 
second and fourth (W1, W3 or M2, M4).  For reads, any mask bit asserted within a 
group of four will cause the entire OWord to be read and returned to the destination 
GRF register.  For writes, each mask bit is considered for its corresponding DWord 
written to the destination surface. 

For the 1-OWord messages, only the low 8 bits of the execution mask are used.  
Either the low 4 bits or the high 4 bits, depending on the position of the OWord to be 
read or written, is used as the single group of four with behavior following that in the 
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preceding paragraph.  [DevBW], [DevCL] Errata:  Execution mask bits outside of 
those corresponding to the OWord being read/written cannot be asserted. 

The above behavior enables a SIMD16 thread to use the 8-OWord form of this 
message to access two channels (red and green) of a single scratch register across 16 
pixels.  A second message would access the other two channels (blue and alpha).  The 
execution mask is used to ensure that data associated with inactive pixels are not 
overwritten. 

Out-of-Bounds Accesses.  Reads to areas outside of the surface return 0.  Writes to 
areas outside of the surface are dropped and will not modify memory contents. 

5.10.2.1 Message Descriptor 

 

Bit Description 

12 Ignored  

11 this bit is part of the Read Message Type field for the read version of this message) 

10:8 Block Size. Specifies the number of contiguous OWords to be read or written 

000 = 1 OWord, read into or written from the low 128 bits of the destination register 

001 = 1 OWord, read into or written from the high 128 bits of the destination register 

010 = 2 OWords 

011 = 4 OWords 

100 = 8 OWords 

101 = 6 OWords 

all other encodings are reserved. 

Programming Notes: 

• The 6 OWord block size is valid only with Data Port Constant Cache. 
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5.10.2.2 Message Payload (Write) 

For the write operation, the message payload consists of one, two, or four registers 
(not including the header) depending on the Block Size specified in the message.  For 
the one-constant case, data is taken from either the high or low half of the payload 
register depending on the half selected in Block Size.  In this case, the other half of 
the payload register is ignored. 

The Offset referred to below is the Global Offset and is in units of OWords (discard 
low 4 bits).  The OWord array index is also in units of OWords. 
 

DWord Bit Description 

M1.7:4 127:0 OWord[Offset + 1]. If the block size is 1 OWord to be written from the high 128 bits of 
the destination, OWord[Offset] will appear in this location 

M1.3:0 127:0 OWord[Offset] 

M2.7:4 127:0 OWord[Offset+3] 

M2.3:0 127:0 OWord[Offset+2] 

M3.7:4 127:0 OWord[Offset+5] 

M3.3:0 127:0 OWord[Offset+4] 

M4.7:4 127:0 OWord[Offset+7] 

M4.3:0 127:0 OWord[Offset+6] 

5.10.2.3 Writeback Message (Read) 

For the read operation, the writeback message consists of one, two, three, or four 
registers depending on the Block Size specified in the message.  For the one-
constant case, data is placed in either the high or low half of the returned register 
depending on the half selected in Block Size.  In this case, the other half of the 
register is not changed. 

The Offset referred to below is the Global Offset and is in units of OWords (discard 
low 4 bits).  The OWord array index is also in units of OWords. 
 

DWord Bit Description 

W0.7:4 127:0 OWord[Offset + 1]. If the block size is 1 OWord to be loaded into the high 128 bits of 
the destination, OWord[Offset] will appear in this location 

W0.3:0 127:0 OWord[Offset] 

W1.7:4 127:0 OWord[Offset+3] 

W1.3:0 127:0 OWord[Offset+2] 

W2.7:4 127:0 OWord[Offset+5] 

W2.3:0 127:0 OWord[Offset+4] 

W3.7:4 127:0 OWord[Offset+7] 

W3.3:0 127:0 OWord[Offset+6] 
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5.10.3 OWord Dual Block Read/Write 

This message takes two offsets, and reads or writes 1 or 4 contiguous OWords starting 
at each offset.  The Global Offset is added to each of the specific offsets. 

Restrictions: 

• the only surface type allowed is SURFTYPE_BUFFER. 
• the surface format is ignored, data is returned from the constant buffer to the 

GRF without format conversion. 
• the surface pitch is ignored, the surface is treated as a 1-dimensional surface.  

An element size (pitch) of 16 bytes is used to determine the size of the buffer 
for out-of-bounds checking if using the surface state model. 

• the surface cannot be tiled 
• the surface base address must be OWord aligned 

• the Render Cache Read Write Mode field in SURFACE_STATE must be set 
to read/write mode when using this message with the render cache in the 
surface state model 

• the Stateless Render Cache Read-Write Mode field in the SVG_WORK_CTL 
register must be set to read/write mode when using this message with the 
render cache in the stateless model 

Applications: 

• SIMD4x2 constant buffer reads where the indices of each vertex/pixel are 
different  (if there are two indices and they are the same, hardware will 
optimize the cache accesses and do only one cache access) 

• SIMD4x2 scratch space reads/writes where the indices are different  

Execution Mask.  The low 8 bits of the execution mask are used to enable the 8 
channels in the GRF registers returned  for read, or each of the write registers sent.  
For reads, any mask bit asserted within a group of four will cause the entire OWord to 
be read and returned to the destination GRF register.  For writes, each mask bit is 
considered for its corresponding DWord written to the destination surface. 

Out-of-Bounds Accesses.  Reads to areas outside of the surface return 0.  Writes to 
areas outside of the surface are dropped and will not modify memory contents. 

5.10.3.1 Message Descriptor 

 

Bit Description 

12 Ignored  

11:10 bit 11 is part of the Read Message Type field for the read version of this message) 

9:8 Block Size: Specifies the number of OWords in each block to be read or written 

00 = 1 OWord 
10 = 4 OWords 

all other encodings are reserved. 
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5.10.3.2 Message Payload 

 

DWord Bit Description 

M1.7 31:0 Ignored 

M1.6 31:0 Ignored 

M1.5 31:0 Ignored 

M1.4 31:0 Block Offset 1. 

Specifies the byte offset of OWord Block 1 into the surface.  Must be OWord aligned 
(bits 3:0 MBZ). 

Format = U32 

Range = [0,FFFFFFF0h] 

M1.3 31:0 Ignored 

M1.2 31:0 Ignored 

M1.1 31:0 Ignored 

M1.0 31:0 Block Offset 0 

5.10.3.3 Additional Message Payload (Write) 

For the write operation, the message payload consists of one or four registers (not 
including the header or the first part of the payload) depending on the Block Size 
specified in the message. 

The Offset1/0 referred to below is the Global Offset added to the corresponding 
Block Offset 1/0 and is in units of OWords (discard low 4 bits).  The OWord array 
index is also in units of OWords. 
 

DWord Bit Description 

M2.7:4 127:0 OWord[Offset1] 

M2.3:0 127:0 OWord[Offset0] 

M3.7:4 127:0 OWord[Offset1+1] 

M3.3:0 127:0 OWord[Offset0+1] 

M4.7:4 127:0 OWord[Offset1+2] 

M4.3:0 127:0 OWord[Offset0+2] 

M4.7:4 127:0 OWord[Offset1+3] 

M4.3:0 127:0 OWord[Offset0+3] 
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5.10.3.4 Writeback Message (Read) 

For the read operation, the writeback message consists of one or four registers 
depending on the Block Size specified in the message. 

The Offset1/0 referred to below is the Global Offset added to the corresponding 
Block Offset 1/0 and is in units of OWords (discard low 4 bits).  The OWord array 
index is also in units of OWords. 
 

DWord Bit Description 

W0.7:4 127:0 OWord[Offset1] 

W0.3:0 127:0 OWord[Offset0] 

W1.7:4 127:0 OWord[Offset1+1] 

W1.3:0 127:0 OWord[Offset0+1] 

W2.7:4 127:0 OWord[Offset1+2] 

W2.3:0 127:0 OWord[Offset0+2] 

W3.7:4 127:0 OWord[Offset1+3] 

W3.3:0 127:0 OWord[Offset0+3] 

5.10.4 Media Block Read/Write 

The read form of this message enables a rectangular block of data samples to be read 
from the source surface and written into the GRF.  The write form enables data from 
the GRF to be written to a rectangular block. 

Restrictions: 

• the only surface type allowed is SURFTYPE_2D.  Because of this, the stateless 
surface model is not supported with this message. 

• the surface format is used to determine the pixel structure for boundary clamp, 
the raw data from the surface is returned to the thread without any format 
conversion nor filtering operation 

• the target cache cannot be the data cache 

• the surface base address must be 32-byte aligned 

• When a surface is XMajor tiled, (tile walk field in the surface state is set to 
TILEWALK_XMAJOR), a memory area mapped through the Render Cache cannot 
be read and/or wrote in mixed frame and field modes. For example, if a memory 
location is first written with a zero Vertical Line Stride (frame mode), and later on 
(without render cache flush) read back using Vertical Line Stride of one (field 
mode), the read data stored in GRF are uncertain. 

• The block width and offset should be aligned to the size of pixels stored in the 
surface. For a surface with 8bpp pixels for example, the block width and offset can 
be byte aligned. For a surface with 16bpp pixels, it is word aligned. 
⎯ For YUV422 formats, the block width and offset must be pixel pair aligned (i.e. 

dword aligned). 

• The write form of message has the additional restriction that both X Offset and 
Block Width must be DWord aligned.  
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• The read form of message also has the additional restriction that both X Offset 
and Block Width must be DWord aligned.  

• [DevBW-A] Erratum BWT001: Surfaces being read with this message by the 
render cache must be tiled.  Writes to linear surfaces are allowed. 

• [DevBW-A] Erratum: A memory area mapped through the Render Cache cannot 
be read and/or written in mixed frame and field modes. 

Applications: 

• Block reads/writes for media 

Execution Mask.  The execution mask on the send instruction for this type of 
message is ignored.  The data that is read or written is determined completely by the 
block parameters. 

Out-of-Bounds Accesses.  Reads outside of the surface results in the address being 
clamped to the nearest edge of the surface and the pixel in the position being 
returned.  Writes outside of the surface are dropped and will not modify memory 
contents. 

Determining the boundary pixel value depends on the surface format. Surface format 
definitions can be found in the Surface Formats Section of the Sampling Engine 
Chapter. 

• For a surface with 8bpp pixels, the boundary byte is replicated. For example, for a 
boundary dword B0B1B2B3, to replicate the left boundary byte pixel, the out of 
bound dwords have the format of B0B0B0B0, and that for right boundary is 
B3B3B3B3. 
⎯ This rule applies to all surface formats with BPE of 8. As the data port does 

not perform format conversion, the most likely used surface formats are 
R8_UINT and R8_SINT. 

• For any other surfaces with 16bpp pixels, boundary pixel replication is on words. 
For example, for a boundary dword B0B1B2B3, to replicate the left boundary word 
pixel, the out of bound dwords have the format of B0B1B0B1, and that for right 
boundary is B2B3B2B3. 
⎯ This rule applies to all surface formats with BPE of 16. As the data port does 

not perform format conversion, only the formats with integer data types may 
be useful in practice. 

• For special surfaces with 16bpp pixels YUV422 packed format, there are two basic 
cases depending on the Y location: YUYV (surface format YCRCB_NORMAL) and 
UYVY (surface format YCRCB_SWAPY).  Boundary handling for YVYU (surface 
format YCRCB_SWAPUV) is the same as that for YUYV. Similarly, boundary 
handling for VYUY (surface format YCRCB_SWAPUVY) is the same as that for 
UYVY. Note that these four surface formats have 16bpp pixels, even though the 
BPE fields are set to zero according to the table in the Surface Formats Section. 
⎯ For a boundary dword Y0U0Y1V0, to replicate the left boundary, we get 

Y0U0Y0V0, and to replicate the right boundary, we get Y1U0Y1V0. 
⎯ For a boundary dword U0Y0V0Y1, to replicate the left boundary, we get 

U0Y0V0Y0, and to replicate the right boundary, we get U0Y1V0Y1. 

• For a surface with 32bpp pixels, the boundary dword pixel is replicated. 
⎯ This rule applies to all surface formats with BPE of 32. As the data port does 

not perform format conversion, some of the formats may not be useful in 
practice. 

Hardware behavior for any other surface types is undefined. 
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5.10.4.1 Message Descriptor 
 

Bit Description 

12 Cache Allocation Method 

This field is only allowed to be 1 only if resulting Vertical Line Stride (from surface state or being 
overridden by this message) is 1. 

This field is only valid for Sampler Cache read messages. 

This field is ignored for Render Cache messages (read/write). 

0 = frame cache lines 

1 = field cache lines 

this bit is part of the Message Type fields 

11 Pixel Scoreboard Clear. Reserved : MBZ 

10 Vertical Line Stride Override 

Specifies whether the Vertical Line Stride and Vertical Line Stride Offset fields in the surface 
state should be replaced by bits 9 and 8 below.  

If this field is 1, Height in the surface state (see SURFACE_STATE section of Sampling Engine 
chapter) is modified according the following rules: 

Vertical Line 
Stride  

(in surface state) 

Override 
Vertical Line 

Stride 

Derived 1-based surface height  

(As a function of the 0-based Height in 
surface state) 

0 0 Height + 1  

(Normal) 

0 1 (Height +1) / 2 

Restriction: (Height + 1) must be an even 
number. 

1 0 (Height + 1) * 2 

1 1 Height + 1 

(Normal) 

 

For example, for a 720x480 standard resolution video buffer, if Vertical Line Stride in surface state 
is 0, i.e. a frame, Height (of the frame) should be 479. When accessing the bottom field of this 
frame video buffer, both Override Vertical Line Stride and Override Vertical Line Stride Offset will be 
set to 1, then the derived surface height (of the field) will be 240 ((Height + 1) / 2). In contrary, if 
Vertical Line Stride in surface state is 1 and Vertical Line Stride Offset in surface state is 0, the 
surface state represents the top field of the video buffer. In this case, Height (of the top field) 
should be programmed as 239. Accessing the bottom video field will use the same surface height of 
240. Accessing the video frame (with Override Vertical Line Stride and Override Vertical Line Stride 
Offset set to 0) will result in a derived surface height of 480 ((Height + 1) * 2).  

0 = Use parameters in the surface state and ignore bits 9:8 

1 = Use bits 9:8 to provide the Vertical Line Stride and Vertical Line Stride Offset  

[DevBW-A] Erratum: This field is ignored by hardware. 
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Bit Description 

9 Override Vertical Line Stride 

Specifies number of lines (0 or 1) to skip between logically adjacent lines – provides support of 
interleaved (field) surfaces as textures.  

Format = U1 in lines to skip between logically adjacent lines 

[DevBW-A] Erratum: This field is ignored by hardware. 

8 Override Vertical Line Stride Offset 

Specifies the offset of the initial line from the beginning of the buffer.  Ignored when Override 
Vertical Line Stride is 0. 

Format = U1 in lines of initial offset (when Vertical Line Stride == 1) 

[DevBW-A] Erratum: This field is ignored by hardware. 

5.10.4.2 Message Header 

 

DWord Bit Description 

M0.7 31:0 Debug  

M0.6 31:0 Debug 

M0.5 31:8 Ignored 

 7:0 FFTID. This ID is assigned by the fixed function unit and is a unique identifier for the 
thread.  It is used to free up resources used by the thread upon thread completion. 

M0.4 31:0 Ignored  (reserved for hardware delivery of binding table pointer) 

M0.3 31:5 Ignored 

 4:3 Ignored 

 3:2 Ignored 

 1 Ignored 

 0 Ignored 

M0.2 31:22 Ignored 
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DWord Bit Description 

 21:16 Block Height. Height in rows of block being accessed.  

Programming Notes: 

• The Block Height is restricted to the following maximum values depending on 
the Block Width: 

Block Width (bytes) Maximum Block Height 
(rows) 

1-4 64 

5-8 32 

9-16 16 

17-32 8 

Format = U6 

Range = [0,63] representing 1 to 64 rows 

 15:5 Ignored 

 4:0 Block Width. Width in bytes of the block being accessed. 

Programming Notes:   

• Must be DWord aligned for the write form of the message. 

• This field must also be DWord aligned for the read form of the message. 

Format = U5 

Range = [0,31] representing 1 to 32 Bytes 

M0.1 31:0 Y offset. The Y offset of the upper left corner of the block into the surface. 

Format = S31 

M0.0 31:0 X offset. The X offset of the upper left corner of the block into the surface.   

Must be DWord aligned (Bits 1:0 MBZ) for the write form of the message. 

The X offset field defines the offset in the input message block.  This may differ from 
the offset in the surface if Color Processing is enabled due to format conversion. 

This field must also be DWord aligned for the read form of the message. 

Format = S31 
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5.10.4.3 Message Payload (Write) 
 

DWord Bit Description 

M1:n  Write Data. The format of the write data depends on the Block Height and Block 
Width.  The data is aligned to the least significant bits of the first register, and the 
register pitch is equal to the next power-of-2 that is greater than or equal to the Block 
Width. 

If Color Processing Enable is enabled, the write data is divided into pixels according 
to the Message Format field.  The fields within each pixel are defined below.  For the 
4:2:2 modes, each pixel position includes channels for two pixels. 

 

Message Format 31:24 23:16 15:8 7:0 

YUV 4:2:2, 8 bits per channel Cr (V) right pixel lum 
(Y1) 

Cb (U) left pixel lum (Y0) 

YUV 4:4:4, 8 bits per channel Alpha (A) luminance (Y) Cb (U) Cr (V) 

Message Format 63:48 47:32 31:16 15:0 

YUV 4:2:2, 16 bits per 
channel 

Cr (V) right pixel lum 
(Y1) 

Cb (U) left pixel lum (Y0) 

YUV 4:4:4, 16 bits per 
channel 

Alpha (A) Cr (V) luminance (Y) Cb (U) 

5.10.4.4 Writeback Message (Read) 

 

DWord Bit Description 

W0:n  Read Data. The format of the read data depends on the Block Height and Block 
Width.  The data is aligned to the least significant bits of the first register, and the 
register pitch is equal to the next power-of-2 that is greater than or equal to the Block 
Width. 



 
 

 
 

192     

5.10.5 DWord Scattered Read/Write 

This message takes a set of offsets, and reads or writes 8 or 16 scattered DWords 
starting at each offset.  The Global Offset is added to each of the specific offsets. 

For read messages with X/Y offsets that are outside the bounds of the surface, the 
address is clamped to the nearest edge of the surface.  For write messages with X/Y 
offsets that are outside the bounds of the surface, the behavior is undefined. 

Hardware does not check for or optimize for cases where offsets are equal or 
contiguous, thus for optimal performance in these cases a different message may 
provide higher performance. 

Restrictions: 

• the only surface type allowed is SURFTYPE_BUFFER. 

• the surface format is ignored, data is returned from the constant buffer to the 
GRF without format conversion. 

• the surface pitch is ignored, the surface is treated as a 1-dimensional surface.  
An element size (pitch) of 16 bytes is used to determine the size of the buffer 
for out-of-bounds checking if using the surface state model. 

• the surface cannot be tiled 

• the surface base address must be DWord aligned 

• the Render Cache Read Write Mode field in SURFACE_STATE must be set 
to read/write mode when using this message with the render cache in the 
surface state model 

• the Stateless Render Cache Read-Write Mode field in the SVG_WORK_CTL 
register must be set to read/write mode when using this message with the 
render cache in the stateless model 

Applications: 

• SIMD8/16 constant buffer reads where the indices of each pixel are different 
(read one channel per message) 

• SIMD8/16 scratch space reads/writes where the indices are different 
(read/write one channel per message) 

• general purpose DWord scatter/gathering, used by media 

 

Execution Mask.  Depending on the block size, either the low 8 bits or all 16 bits of 
the execution mask are used to determine which DWords are read into the destination 
GRF register (for read), or which DWords are written to the surface (for write). 

Out-of-Bounds Accesses.  Reads to areas outside of the surface return 0.  Writes to 
areas outside of the surface are dropped and will not modify memory contents. 
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5.10.5.1 Message Descriptor 

 

Bit Description 

12 Ignored  

11:10 bit 11 is part of the Read Message Type field for the read version of this message) 

9:8 Block Size. Specifies the number of DWords to be read or written 

10 = 8 DWords 

11 = 16 DWords 

All other encodings are reserved. 

5.10.5.2 Message Payload 

 

DWord Bit Description 

M1.7 31:0 Offset 7. 

Specifies the byte offset of DWord 7 into the surface.  Must be DWord aligned (bits 1:0 
MBZ). 

Format = U32 

Range = [0,FFFFFFFCh] 

M1.6 31:0 Offset 6 

M1.5 31:0 Offset 5 

M1.4 31:0 Offset 4 

M1.3 31:0 Offset 3 

M1.2 31:0 Offset 2 

M1.1 31:0 Offset 1 

M1.0 31:0 Offset 0 

M2.7 31:0 Offset 15. This message register is included only if the block size is 16 DWords. 

M2.6 31:0 Offset 14 

M2.5 31:0 Offset 13 

M2.4 31:0 Offset 12 

M2.3 31:0 Offset 11 

M2.2 31:0 Offset 10 

M2.1 31:0 Offset 9 

M2.0 31:0 Offset 8 
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5.10.5.3 Additional Message Payload (Write) 

For the write operation, either one or two additional registers (depending on the block 
size) of payload contain the data to be written. 

The Offsetn referred to below is the Global Offset added to the corresponding 
Offset n and is in units of DWords (discard low 2 bits).  The DWord array index is 
also in units of DWords. 

 

DWord Bit Description 

M3.7 31:0 DWord[Offset7] 

M3.6 31:0 DWord[Offset6] 

M3.5 31:0 DWord[Offset5] 

M3.4 31:0 DWord[Offset4] 

M3.3 31:0 DWord[Offset3] 

M3.2 31:0 DWord[Offset2] 

M3.1 31:0 DWord[Offset1] 

M3.0 31:0 DWord[Offset0] 

M4.7 31:0 DWord[Offset15]. This message register is included only if the block size is 16 DWords 

M4.6 31:0 DWord[Offset14] 

M4.5 31:0 DWord[Offset13] 

M4.4 31:0 DWord[Offset12] 

M4.3 31:0 DWord[Offset11] 

M4.2 31:0 DWord[Offset10] 

M4.1 31:0 DWord[Offset9] 

M4.0 31:0 DWord[Offset8] 
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5.10.5.4 Writeback Message (Read) 

For the read operation, the writeback message consists of either one or two registers 
depending on the block size. 

The Offsetn referred to below is the Global Offset added to the corresponding 
Offset n and is in units of DWords (discard low 2 bits).  The DWord array index is 
also in units of DWords. 
 

DWord Bit Description 

W0.7 31:0 DWord[Offset7] 

W0.6 31:0 DWord[Offset6] 

W0.5 31:0 DWord[Offset5] 

W0.4 31:0 DWord[Offset4] 

W0.3 31:0 DWord[Offset3] 

W0.2 31:0 DWord[Offset2] 

W0.1 31:0 DWord[Offset1] 

W0.0 31:0 DWord[Offset0] 

W1.7 31:0 DWord[Offset15]. This writeback message register is included only if the block size is 
16 DWords. 

W1.6 31:0 DWord[Offset14] 

W1.5 31:0 DWord[Offset13] 

W1.4 31:0 DWord[Offset12] 

W1.3 31:0 DWord[Offset11] 

W1.2 31:0 DWord[Offset10] 

W1.1 31:0 DWord[Offset9] 

W1.0 31:0 DWord[Offset8] 
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5.10.6 Render Target Write 

This message takes four subspans of pixels for write to a render target.  Depending on 
parameters contained in the message and state, it may also perform a depth and 
stencil buffer write and/or a render target read for a color blend operation.  Additional 
operations enabled in the Color Calculator state will also be initiated as a result of 
issuing this message (depth test, alpha test, logic ops, etc.).  This message is 
intended only for use by pixel shader kernels for writing results to render targets. 

Restrictions: 

• All surface types are allowed. 

• Dual Source messages are not supported on DevBW and DevCL-A 

• For SURFTYPE_BUFFER and SURFTYPE_1D surfaces, only the X coordinate is used 
to index into the surface.  The Y coordinate must be zero. 

• For SURFTYPE_1D, 2D, 3D, and CUBE surfaces, a Render Target Array Index is 
included in the input message to provide an additional coordinate.  The Render 
Target Array Index must be zero for SURFTYPE_BUFFER. 

• The surface format is restricted to the set supported as render target.  If 
source/dest color blend is enabled, the surface format is further restricted to the 
set supported as alpha blend render target. 

• Only one pair of dual source messages is allowed per thread, as these messages 
implicitly clear the pixel scoreboard.  In addition, a thread sending dual source 
messages is not allowed to send any other render target write messages. 

• The last message sent to the render target by a thread must have the End Of 
Thread bit set in the message descriptor and the dispatch mask set correctly in 
the message header to enable correct clearing of the pixel scoreboard. 

• The stateless model cannot be used with this message (Binding Table Index 
cannot be 255). 

• This message can only be issued from a kernel specified in WM_STATE or 
3DSTATE_WM (pixel shader kernel), dispatched in non-contiguous mode.  Any 
other kernel issuing this message will cause undefined behavior. 

• The dual source message cannot be used if the Antialias Alpha Present to 
Render Target bit in the message header is enabled. 

• The dual source message cannot be used if the Alpha Test Enable bit in 
COLOR_CALC_STATE is enabled. 

• This message cannot be used on a surface in field mode (Vertical Line Stride = 
1) 

Execution Mask.  The execution mask for render target messages is ignored.  
Control of which pixels are active is controlled by the Pixel/Sample Enables fields in 
the message header. 

Out-of-Bounds Accesses.  Accesses to pixels outside of the surface are dropped and 
will not modify memory contents.  However, if the Render Target Array Index is 
out of bounds, it is set to zero and the surface write is not surpressed. 
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5.10.6.1 Subspan/Pixel to Slot Mapping 

The following table indicates the mapping of subspans, pixels, and samples to slots in 
the pixel shader dispatch depending on the number of samples and message size.   

Pixels are numbered as follows within a subspan: 
0 = upper left 
1 = upper right 
2 = lower left 
3 = lower right 

sspi = Starting Sample Pair Index (from the message header) 

 

Message 
Size 

Num 
Samples 

Slot Mapping 

SIMD16 1X Slot[3:0]    = Subspan[0].Pixel[3:0].Sample[0] 

Slot[7:4]    = Subspan[1].Pixel[3:0].Sample[0] 

Slot[11:8]   = Subspan[2].Pixel[3:0].Sample[0] 

Slot[15:12] = Subspan[3].Pixel[3:0].Sample[0] 
SIMD8 1X Slot[3:0]    = Subspan[0].Pixel[3:0].Sample[0] 

Slot[7:4]    = Subspan[1].Pixel[3:0].Sample[0] 

5.10.6.2 Message Descriptor 

 

Bit Description 

11 Last Render Target Select.  This bit must be set on the last render target write message sent for 
each group of pixels.  For single render target pixel shaders, this bit is set on all render target write 
messages.  For multiple render target pixel shaders, this bit is set only on messages sent to the last 
render target. 

10:8 Message Type. This field specifies the type of render target message. 

For the dual source messages, the low bit indicates which subspan channels to use for the X/Y 
addresses, stencil, and antialias alpha data. 

Programming Notes: 

• Replicated data (Message Type = 001) is only supported when accessing tiled memory.  
Using this Message Type to access linear (untiled) memory is UNDEFINED. 

• [DevBW, DevCL-A] Errata:  Dual Source messages are not supported 

• [DevCL-B]: The SIMD8 dual source message using subspan 2 & 3 slots (encoding 011) is 
not supported 

000 = SIMD16 single source message 

001 = SIMD16 single source message with replicated data 

010 = SIMD8 dual source message, use subspan 0 & 1 slots 

011 = SIMD8 dual source message, use subspan 2 & 3 slots 

100 = SIMD8 single source message, use subspan 0 & 1 slots 

101-111:  Reserved 
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5.10.6.3 Message Header 

The render target write message has a two-register message header. 

 

DWord Bit Description 

M0.7 31:0 Debug  

M0.6 31:0 Debug 

M0.5 31:8 Ignored 

 7:0 FFTID. The Fixed Function Thread ID is assigned by the fixed function unit and is a 
unique identifier for the thread.  It is used to free up resources used by the thread upon 
thread completion. 

M0.4 31:0 Ignored (reserved for hardware delivery of binding table pointer) 

M0.3 31:0 Ignored 

M0.2 31:0 Ignored 

M0.1 31:6 Color Calculator State Pointer. Specifies the 64-byte aligned pointer to the color 
calculator state.  This pointer is relative to the General State Base Address. 

Format = GeneralStateOffset[31:6] 

 5:0 Ignored 

M0.0 31:16 Dispatched Pixel Enables. One bit per pixel indicating which pixels were originally 
enabled when the thread was dispatched.  This field is only required for the end-of-
thread message and on all dual-source messages. 

The Dispatched Pixel Enables must be unmodified from the ones sent when the pixel 
shader thread was initiated.  If the Dispatched Pixel Enables are modified, behavior is 
undefined. 

 15:0 Pixel Enables. One bit per pixel indicating which pixels are still lit based on kill 
instruction activity in the pixel shader.  This mask is used to control actual writes to the 
color buffer. 

M1.7 31 Ignored 

 30:27 Viewport Index. Specifies the index of the viewport currently being used. 

Format = U4 

Range = [0,15] 
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DWord Bit Description 

 26:16 Render Target Array Index. Specifies the array index to be used for the following 
surface types: 

SURFTYPE_1D:  specifies the array index.  Range = [0,511] 

SURFTYPE_2D:  specifies the array index.  Range = [0,511] 

SURFTYPE_3D:  specifies the “z” or “r” coordinate.  Range = [0,2047] 

SURFTYPE_CUBE:  specifies the face identifier.  Range = [0,5] 

SURFTYPE_BUFFER:  must be zero. 

fa
ce 

Render Target Array 
Index 

x 
0 

-
x 

1 

y 
2 

-
y 

3 

z 
4 

-
z 

5 

Format = U11 

The Render Target Array Index used by hardware for access to the Render Target is 
overridden with the Minimum Array Element defined in SURFACE_STATE if it is out of 
the range between Minimum Array Element and Depth.  For cube surfaces, a depth 
value of 5 is used for this determination. 

 15:0 Ignored 

M1.6 31 Front/Back Facing Polygon. Determines whether the polygon is front or back facing.  
Used by the render cache to determine which stencil test state to use. 

0 = Front Facing 

1 = Back Facing 

 30 Ignored 

 29 Source Depth Present to Render Target. Indicates that source depth is included in 
the message.  If Destination Depth Present is also set, the depth test and conditional 
write of the depth buffer must be performed.  If Destination Depth Present is not set, 
no depth test is performed but the source depth value is conditionally written to the 
depth buffer. 

 28 Destination Depth Present to Render Target. Indicates that destination depth is 
included in the message, and that the depth test and conditional write of the depth 
buffer must be performed.  It is not valid to have Destination Depth Present without 
Source Depth Present. 

 27 Destination Stencil Present to Render Target. Indicates that destination stencil is 
included in the message, and that the stencil test and conditional write of the stencil 
buffer must be performed. 

 26 Antialias Alpha Present to Render Target. Indicates that antialias alpha is included in 
the message, and that the antialias function must be performed. 

 25:0 Ignored 
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DWord Bit Description 

M1.5 31:16 Y3. Y coordinate for upper-left pixel of subspan 3 

Format = U16 

 15:0 X3. X coordinate for upper-left pixel of subspan 3 

Format = U16 

M1.4 31:16 Y2 

 15:0 X2 

M1.3 31:16 Y1 

 15:0 X1 

M1.2 31:16 Y0 

 15:0 X0 

M1.1 31:0 Ignored 

M1.0 31:0 Ignored 

5.10.6.4 Stencil and Antialias Alpha Payload  

The stencil and antialias alpha registers, if included, appears as message register 2 
(M2), immediately following the header.   

Note that the Antialias Alpha values are U0.4. 
 

DWord Bit Description 

   

M2.7 31:28 Antialias Alpha for Subspan 3, Pixel 3 (lower right) 

Format = U0.4 

This register is only included if the Antialias Alpha Present or Destination Stencil 
Present bit is set. 

 27:24 Antialias Alpha for Subspan 3, Pixel 2 (lower left) 

 23:20 Antialias Alpha for Subspan 3, Pixel 1 (upper right) 

 19:16 Antialias Alpha for Subspan 3, Pixel 0 (upper left) 

 15:12 Antialias Alpha for Subspan 2, Pixel 3 (lower right) 

 11:8 Antialias Alpha for Subspan 2, Pixel 2 (lower left) 

 7:4 Antialias Alpha for Subspan 2, Pixel 1 (upper right) 

 3:0 Antialias Alpha for Subspan 2, Pixel 0 (upper left) 

M2.6 31:28 Antialias Alpha for Subspan 1, Pixel 3 (lower right) 

 27:24 Antialias Alpha for Subspan 1, Pixel 2 (lower left) 

 23:20 Antialias Alpha for Subspan 1, Pixel 1 (upper right) 

 19:16 Antialias Alpha for Subspan 1, Pixel 0 (upper left) 

 15:12 Antialias Alpha for Subspan 0, Pixel 3 (lower right) 

 11:8 Antialias Alpha for Subspan 0, Pixel 2 (lower left) 

 7:4 Antialias Alpha for Subspan 0, Pixel 1 (upper right) 
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DWord Bit Description 

 3:0 Antialias Alpha for Subspan 0, Pixel 0 (upper left) 

M2.5:4  Reserved 

   

M2.3 31:24 Destination Stencil for Subspan 3, Pixel 3 (lower right) 

Format = U8 

 23:16 Destination Stencil for Subspan 3, Pixel 2 (lower left) 

 15:8 Destination Stencil for Subspan 3, Pixel 1 (upper right) 

 7:0 Destination Stencil for Subspan 3, Pixel 0 (upper left) 

M2.2 31:24 Destination Stencil for Subspan 2, Pixel 3 (lower right) 

 23:16 Destination Stencil for Subspan 2, Pixel 2 (lower left) 

 15:8 Destination Stencil for Subspan 2, Pixel 1 (upper right) 

 7:0 Destination Stencil for Subspan 2, Pixel 0 (upper left) 

M2.1 31:24 Destination Stencil for Subspan 1, Pixel 3 (lower right) 

 23:16 Destination Stencil for Subspan 1, Pixel 2 (lower left) 

 15:8 Destination Stencil for Subspan 1, Pixel 1 (upper right) 

 7:0 Destination Stencil for Subspan 1, Pixel 0 (upper left) 

M2.0 31:24 Destination Stencil for Subspan 0, Pixel 3 (lower right) 

 23:16 Destination Stencil for Subspan 0, Pixel 2 (lower left) 

 15:8 Destination Stencil for Subspan 0, Pixel 1 (upper right) 

 7:0 Destination Stencil for Subspan 0, Pixel 0 (upper left) 
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This payload is included if the Message Type is SIMD16 single source.  The value of 
‘m’ here is equal to 2 if both stencil and antialias alpha are not present, otherwise it is 
equal to 3. 
 

DWord Bit Description 

Mm.7 31:0 Subspan 1, Pixel 3 (lower right) Red. Specifies the value of the pixel’s red channel. 

Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface 
being accessed.  SINT formats use S31, UINT formats use U32, and all other formats use 
Float. 

Mm.6 31:0 Subspan 1, Pixel 2 (lower left) Red 

Mm.5 31:0 Subspan 1, Pixel 1 (upper right) Red 

Mm.4 31:0 Supspan 1, Pixel 0 (upper left) Red 

Mm.3 31:0 Subspan 0, Pixel 3 (lower right) Red 

Mm.2 31:0 Subspan 0, Pixel 2 (lower left) Red 

Mm.1 31:0 Subspan 0, Pixel 1 (upper right) Red 

Mm.0 31:0 Supspan 0, Pixel 0 (upper left) Red 

M(m+1)  Subspans 1 and 0 of Green. See Mm definition for pixel locations 

M(m+2)  Subspans 1 and 0 of Blue. See Mm definition for pixel locations 

M(m+3)  Subspans 1 and 0 of Alpha 

See Mm definition for pixel locations 

M(m+4).7 31:0 Subspan 3, Pixel 3 (lower right) Red 

M(m+4).6 31:0 Subspan 3, Pixel 2 (lower left) Red 

M(m+4).5 31:0 Subspan 3, Pixel 1 (upper right) Red 

M(m+4).4 31:0 Supspan 3, Pixel 0 (upper left) Red 

M(m+4).3 31:0 Subspan 2, Pixel 3 (lower right) Red 

M(m+4).2 31:0 Subspan 2, Pixel 2 (lower left) Red 

M(m+4).1 31:0 Subspan 2, Pixel 1 (upper right) Red 

M(m+4).0 31:0 Supspan 2, Pixel 0 (upper left) Red 

M(m+5)  Subspans 3 and 2 of Green. See M3 definition for pixel locations 

M(m+6)  Subspans 3 and 2 of Blue. See M3 definition for pixel locations 

M(m+7)  Subspans 3 and 2 of Alpha. See M3 definition for pixel locations 
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5.10.6.5 Color Payload:  SIMD8 Single Source 

This payload is included if the Message Type is SIMD8 single source. The value of ‘m’ 
here is equal to 2 if both stencil and antialias alpha are not present, otherwise it is 
equal to 3.   

 

DWord Bit Description 

Mm.7 31:0 Slot 7 Red. Specifies the value of the slot’s red component. 

Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface 
being accessed.  SINT formats use S31, UINT formats use U32, and all other formats use 
Float. 

Mm.6 31:0 Slot 6 Red 

Mm.5 31:0 Slot 5 Red 

Mm.4 31:0 Slot 4 Red 

Mm.3 31:0 Slot 3 Red 

Mm.2 31:0 Slot 2 Red 

Mm.1 31:0 Slot 1 Red 

Mm.0 31:0 Slot 0 Red 

M(m+1)  Slot[7:0] Green. See Mm definition for slot locations 

M(m+2)  Slot[7:0] Blue. See Mm definition for slot locations 

M(m+3)  Slot[7:0] Alpha. See Mm definition for slot locations 
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5.10.6.6 Color Payload:  SIMD16 Replicated Data 

This payload is included if the Message Type specifies single source message with 
replicated data.  One set of R/G/B/A data is included in the message, and this data is 
replicated to all 16 pixels. 

This message is legal with color data only. The registers for depth, stencil, and 
antialias alpha data cannot be included with this message, and the corresponding bits 
in the message header must indicate that these registers are not present. 

The value of ‘m’ here is equal to 2.   

Programming Notes: 

• This message is allowed only on tiled surfaces  

 

DWord Bit Description 

Mm.7:4 31:0 Reserved 

Mm.3 31:0 Alpha. Specifies the value of all slots’ alpha channel. 

Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface 
being accessed.  SINT formats use S31, UINT formats use U32, and all other formats 
use Float. 

Mm.2 31:0 Blue 

Mm.1 31:0 Green 

Mm.0 31:0 Red 
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5.10.6.7 Color Payload:  SIMD8 Dual Source [DevCL-B] 

This payload is included if the Message Type specifies dual source message.  The 
value of ‘m’ here is equal to 2 if both stencil and antialias alpha are not present, 
otherwise it is equal to 3.   

The dual source message contains only 2 subspans (8 pixels) due to limitations in 
message length. 
 

DWord Bit Description 

Mm.7 31:0 Slot 7 Source 0 Red. Specifies the value of the slot’s red component. 

Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface 
being accessed.  SINT formats use S31, UINT formats use U32, and all other formats use 
Float. 

Mm.6 31:0 Slot 6 Source 0 Red 

Mm.5 31:0 Slot 5 Source 0 Red 

Mm.4 31:0 Slot 4 Source 0 Red 

Mm.3 31:0 Slot 3 Source 0 Red 

Mm.2 31:0 Slot 2 Source 0 Red 

Mm.1 31:0 Slot 1 Source 0 Red 

Mm.0 31:0 Slot 0 Source 0 Red 

M(m+1)  Slot[7:0] Source 0 Green. See Mm definition for slot locations 

M(m+2)  Slot[7:0] Source 0 Blue. See Mm definition for slot locations 

M(m+3)  Slot[7:0] Source 0 Alpha. See Mm definition for slot locations 

M(m+4)  Slot[7:0] Source 1 Red. See Mm definition for slot locations 

M(m+5)  Slot[7:0] Source 1 Green. See Mm definition for slot locations 

M(m+6)  Slot[7:0] Source 1 Blue. See Mm definition for slot locations 

M(m+7)  Slot[7:0] Source 1 Alpha. See Mm definition for slot locations 
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5.10.6.8 Depth Payload 

The depth registers, if included, appear immediately following the color payload. 

For the SIMD8 messages, only slot 7:0 data is sent, or only slot 15:8 depending on 
the Message Type encoding.  Any complete message register containing ignored data 
cannot be delivered.   

 

DWord Bit Description 

Mn.7 31:0 Source Depth for Slot 7 

Format = IEEE_Float 

This and the next register is only included if Source Depth Present bit is set.  

Mn.6 31:0 Source Depth for Slot 6 

Mn.5 31:0 Source Depth for Slot 5 

Mn.4 31:0 Source Depth for Slot 4 

Mn.3 31:0 Source Depth for Slot 3  

Mn.2 31:0 Source Depth for Slot 2 

Mn.1 31:0 Source Depth for Slot 1 

Mn.0 31:0 Source Depth for Slot 0 

M(n+1).7 31:0 Source Depth for Slot 15  

M(n+1).6 31:0 Source Depth for Slot 14 

M(n+1).5 31:0 Source Depth for Slot 13 

M(n+1).4 31:0 Source Depth for Slot 12 

M(n+1).3 31:0 Source Depth for Slot 11  

M(n+1).2 31:0 Source Depth for Slot 10 

M(n+1).1 31:0 Source Depth for Slot 9 

M(n+1).0 31:0 Source Depth for Slot 8 

Mk.7 31:0 Destination Depth for Slot 7 

Format depends on depth buffer surface format.  Software should not modify the 
destination depth fields from what was delivered in the thread payload. 

This and the next register is only included if Destination Depth Present bit is set.  

Mk.6 31:0 Destination Depth for Slot 6 

Mk.5 31:0 Destination Depth for Slot 5 

Mk.4 31:0 Destination Depth for Slot 4 

Mk.3 31:0 Destination Depth for Slot 3  

Mk.2 31:0 Destination Depth for Slot 2 

Mk.1 31:0 Destination Depth for Slot 1 
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DWord Bit Description 

Mk.0 31:0 Destination Depth for Slot 0 

M(k+1).7 31:0 Destination Depth for Slot 15  

M(k+1).6 31:0 Destination Depth for Slot 14 

M(k+1).5 31:0 Destination Depth for Slot 13 

M(k+1).4 31:0 Destination Depth for Slot 12 

M(k+1).3 31:0 Destination Depth for Slot 11  

M(k+1).2 31:0 Destination Depth for Slot 10 

M(k+1).1 31:0 Destination Depth for Slot 9 

M(k+1).0 31:0 Destination Depth for Slot 8 

5.10.6.9 Message Sequencing Summary 
This section summarizes the sequencing that occurs for each legal render target write 
message.  All messages have the M0 and M1 header registers, thus they are not 
shown in the table.  All cases not shown in this table are illegal. 

Key: 
s0, s1 = source 0, source 1 
1/0 = subspan 1 & 0 
3/2 = subspan 3 & 2 
sZ = source depth 
dZ = destination depth 
sten = stencil & antialias alpha 
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M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 
000 0 0 0 1/0R 1/0G 1/0B 1/0A 3/2R 3/2G 3/2B 3/2A      
001 0 0 0 RGBA             
010 0 0 0 1/0s0R 1/0s0G 1/0s0B 1/0s0A 1/0s1R 1/0s1G 1/0s1B 1/0s1A      
011 0 0 0 3/2s0R 3/2s0G 3/2s0B 3/2s0A 3/2s1R 3/2s1G 3/2s1B 3/2s1A      
100 0 0 0 R G B A          
000 1 0 0 1/0R 1/0G 1/0B 1/0A 3/2R 3/2G 3/2B 3/2A 1/0sZ 3/2sZ    
010 1 0 0 1/0s0R 1/0s0G 1/0s0B 1/0s0A 1/0s1R 1/0s1G 1/0s1B 1/0s1A 1/0sZ     
011 1 0 0 3/2s0R 3/2s0G 3/2s0B 3/2s0A 3/2s1R 3/2s1G 3/2s1B 3/2s1A 3/2sZ     
100 1 0 0 R G B A sZ         
000 1 0 1 1/0R 1/0G 1/0B 1/0A 3/2R 3/2G 3/2B 3/2A 1/0sZ 3/2sZ 1/0dZ 3/2dZ  
010 1 0 1 1/0s0R 1/0s0G 1/0s0B 1/0s0A 1/0s1R 1/0s1G 1/0s1B 1/0s1A 1/0sZ 1/0dZ    
011 1 0 1 3/2s0R 3/2s0G 3/2s0B 3/2s0A 3/2s1R 3/2s1G 3/2s1B 3/2s1A 3/2sZ 3/2dZ    
100 1 0 1 R G B A sZ dZ        
000 1 1 0 sten 1/0R 1/0G 1/0B 1/0A 3/2R 3/2G 3/2B 3/2A 1/0sZ 3/2sZ   
010 1 1 0 sten 1/0s0R 1/0s0G 1/0s0B 1/0s0A 1/0s1R 1/0s1G 1/0s1B 1/0s1A 1/0sZ    
011 1 1 0 sten 3/2s0R 3/2s0G 3/2s0B 3/2s0A 3/2s1R 3/2s1G 3/2s1B 3/2s1A 3/2sZ    
100 1 1 0 sten R G B A sZ        
000 1 1 1 sten 1/0R 1/0G 1/0B 1/0A 3/2R 3/2G 3/2B 3/2A 1/0sZ 3/2sZ 1/0dZ 3/2dZ 
100 1 1 1 sten R G B A sZ dZ       
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5.10.7 Flush Render Cache 

This message causes a flush of the render cache.  The flush occurs in-order relative to 
message arrival at the write data port.  It is not synchronized with messages to the 
read data port. 

If the Send Write Commit Message bit in the message descriptor is set for this 
message, the writeback message is delivered after the cache flush has been 
completed. 

5.10.7.1 Message Descriptor 

 

Bit Description 

12 Ignored  

11:8 Ignored 

5.10.7.2 Message Payload 

 

DWord Bit Description 

M0.7 31:0 Debug  

M0.6 31:0 Debug 

M0.5:0 31:0 Ignored 

 

§§ 



 
 

 
 

210     
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6 Extended Math 

The Extended Math (EM) shared function supports math functions not available in the 
GEN4 execution units.  These math functions include reciprocal, logarithms, square 
root, integer divide, and transcendental functions, etc.  EM does not use any state:  all 
information needed to perform its operations is provided in the incoming messages.    

The Extended Math operates on one data element per clock through a compute 
pipeline. A request message may contain multiple data elements. These data elements 
are put in the compute pipeline in series. Data elements from different request 
messages are also put in the pipeline. When the computation is completed for all data 
elements in a request message, output data are assembled for the request and sent 
back to the requesting thread as a writeback message. Many math functions require 
data to be processed through the compute pipeline in multiple passes. The throughput 
and latency for a given message depends on the math function type and some times 
depends on the input data values.  

Unlike other shared functions in the GEN4 architecture, when a thread issues multiple 
requests to the Extended Math, EM may return the results of those requests out of 
order. Note that result register dependency makes this behavior transparent to the 
thread (except in the case where the thread manually manages post-destination 
register dependency). 

Like other shared functions in the GEN4 architecture, EM does not guarantee any 
ordering between requests from different threads. 
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6.1 Messages 

Restrictions: 

• Use of any message to the Extended Math with the End of Thread bit set in the 
message descriptor is not allowed. 

• The Extended Math supports vector operations up to 8 channels. It only looks at 
the lower 8 channel enables (execution mask bits), and ignores the higher 8.  

6.1.1 Initiating Message 

6.1.1.1 Message Descriptor 

 

Bit Description 

19 This bit is not part of the shared function specific message descriptor. 

18:9 Reserved : MBZ 

Bits 18:16 are not part of the shared function specific message descriptor. 

8 Snapshot bit. When set to 1 the EM unit will latch debugging information for this message 
into a MMIO register.  See the Debugging chapter for a description and layout of bits in the 
MMIO 

7 Source Structure. This bit indicates whether the operation is based on vector inputs or 
scalar inputs. If this bit is not set, the Extended Math performs the indicated math function 
on a channel by channel basis. For an enabled channel, EM takes the input data from the 
corresponding channel and outputs the result in the same position. If this bit is set, EM 
performs the math function on a 4-channel group basis.  If any of the 4 channels within a 
group is enabled, the data on the first channel (channel 0) is used as the input. The result is 
broadcasted to all enabled channels within the group.  

See section  6.1.1.2 below for more details. 

0 = vector structure 

1 = scalar structure 

6 Saturate Control 

0 = no saturate 

1 = saturate result to [0,1] range (allowed only on floating point math functions) 

5 Precision. This bit provides a hint whether the indicated math function is performed in full 
precision or partial precision. It is only valid for floating point math functions when the 
floating point mode is in alternative mode. It is ignored if the floating point mode is in 
IEEE754 mode.  Floating point mode is selected via the Floating Point Mode bit in CR0.  
This bit is also ignored for integer math functions.   

See section  � for more details. 

0 = use full precision  

1 = use partial precision  
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Bit Description 

4 Integer Type. Determines the data type for both source and destination operands of the 
INT DIV functions.  Ignored for other functions. 

0 = unsigned integer 

1 = signed integer 

3:0 Math Function. For floating point math functions (1h to Ah), the floating point mode signal 
in the request message (originated from the Floating Point Mode bit in CR0) determines 
whether the operation is in IEEE754 floating point mode or in alternative floating point 
mode. 

Functions LOG and EXP are base 2. SIN, COS, SINCOS take inputs in radians. 

0h:  Reserved 
1h:  INV (reciprocal) 
2h:  LOG  
3h:  EXP  
4h:  SQRT 
5h:  RSQ 
6h:  SIN  
7h:  COS  
8h: SINCOS 
9h: Reserved 
Ah:  POW 
Bh:  INT DIV – return quotient and remainder 
Ch:  INT DIV – return quotient only 
Dh:  INT DIV – return remainder only 
Eh:  Reserved 
Fh:  Reserved 

6.1.1.2 Scalar and Vector Mode 

For a given request message, the Extended Math examines the 8-bit channel enable 
field and the Source Structure field in the message descriptor to determine which 
dwords contain valid inputs.  There are two general cases that EM sees.   

• Vector mode: The first case is when the Source Structure is a vector structure.  
In this vector mode, 8 input data channels contain 8 unique input values. The 
channel enable bits in the sideband determine which one of the 8 input values are 
valid and therefore need to be computed and outputted.  It is possible that none 
of the channels are enabled, or all 8 channels are enabled, or anything in 
between. EM only sends the valid input values into the compute pipeline to 
achieve higher throughput. As the channel enable field is forwarded to the 
writeback message bus, only the resulting values with channel enable bit on are 
written back to the requesting thread’s GRF register.  

• Scalar mode: The second case is when the Source Structure is a scalar structure. 
In this scalar mode, there may be up to 2 unique input values present, one for 
each group of 4 channels. The 2 unique input values reside in the first channel of 
each group of 4, channel 0 and channel 4, specifically. The computed results of 
the two scalar inputs are replicated to the corresponding 4 channels. The sideband 
channel enable field determines which channels are enabled at the final output. It 
is obvious that as long as any bit out of a group of four channel-enable bits are 
set, the corresponding scalar data must be computed. Inversely, if all four channel 
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enable bits in a group are zero, computation of the corresponding scalar is 
skipped.  

A subset of the scalar mode is when there is only one valid input.  In this case the 
channel enable field will show that one of the two groups of four does not contain 
valid data.  These three cases are illustrated below: 
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6.1.1.3 Message Payload 

All incoming messages are comprised of a single message register except the POW 
function and INT DIV, which consist of two message registers. 

The lower 8 bits of the channel enables (execution mask) are used as the (dword) 
channel enables for the math function operation. 

 

DWord Bit Description 

M0.7 31:0 Operand0[7]. The value of Operand0 for element 7 

For the POW function, this operand is the base 

For the INT DIV functions, this operand is the denominator 

For all other functions, this operand is the single input operand 

Format = S31 or U32 depending on Integer Type for INT DIV functions 

Format = IEEE Float or Alternative Float depending on floating point mode signal for all 
other functions 

M0.6 31:0 Operand0[6]. Refer to Operand0[7] above for the function of this operand. 

M0.5 31:0 Operand0[5]. Refer to Operand0[7] above for the function of this operand. 

M0.4 31:0 Operand0[4]. Refer to Operand0[7] above for the function of this operand. 

M0.3 31:0 Operand0[3]. Refer to Operand0[7] above for the function of this operand. 

M0.2 31:0 Operand0[2]. Refer to Operand0[7] above for the function of this operand. 

M0.1 31:0 Operand0[1]. Refer to Operand0[7] above for the function of this operand. 

M0.0 31:0 Operand0[0]. Refer to Operand0[7] above for the function of this operand. 

M1.7 31:0 Operand1[7]. The value of Operand1 for element 7 

For the POW function, this operand is the power 

For the INT DIV functions, this operand is the numerator 

For all other functions, this data phase of the message is not present 

Format = S31 or U32 depending on Integer Type for INT DIV functions 

Format = IEEE Float or Alternative Float depending on floating point mode signal for all 
other functions 

M1.6 31:0 Operand1[6]. Refer to Operand1[7] above for the function of this operand. 

M1.5 31:0 Operand1[5]. Refer to Operand1[7] above for the function of this operand. 

M1.4 31:0 Operand1[4]. Refer to Operand1[7] above for the function of this operand. 

M1.3 31:0 Operand1[3]. Refer to Operand1[7] above for the function of this operand. 

M1.2 31:0 Operand1[2]. Refer to Operand1[7] above for the function of this operand. 

M1.1 31:0 Operand1[1]. Refer to Operand1[7] above for the function of this operand. 

M1.0 31:0 Operand1[0]. Refer to Operand1[7] above for the function of this operand. 
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6.1.2 Writeback Message 

Writeback messages for most EM functions contain a single GRF register.  The 
exceptions to this rule are SINCOS and INT DIV.  SINCOS returns two GRF registers, 
the first register contains the computed Sine of the inputs, and the second contains 
the computed Cosine values.  INT DIV returns the quotient in the first GRF register 
and the remainder in the second GRF register.  The two GRF registers are adjacent. 

The lower 8 bits of the channel enables (execution mask) of the writeback bus are the 
same 8 (dword) channel enables of the request message. Because EM supports vector 
operations with a maximum of 8 channels, the higher 8 bits of the channel enables 
are set to 0. The same 16-bit channel enables are repeated for the second GRF 
register write, if present.  

 

DWord Bit Description 

W0.7 31:0 Result0[7]. The value of Result0 for element 7 

For the SINCOS function, this result is the sine 

For the INT DIV (return quotient and remainder) functions, this result is the quotient 

For all other functions, this result is the single output result 

Format = S31 or U32 depending on Integer Type for INT DIV functions 

Format = IEEE Float or Alternative Float depending on floating point mode signal for all 
other functions 

W0.6 31:0 Result0[6] 

W0.5 31:0 Result0[5] 

W0.4 31:0 Result0[4] 

W0.3 31:0 Result0[3] 

W0.2 31:0 Result0[2] 

W0.1 31:0 Result0[1] 

W0.0 31:0 Result0[0] 

W1.7 31:0 Result1[7]. The value of Result1 for element 7 

For the SINCOS function, this result is the cosine 

For the INT DIV (return quotient and remainder) functions, this result is the remainder 

For all other functions, this data phase of the message is not present 

Format = S31 or U32 depending on Integer Type for INT DIV functions 

Format = IEEE Float or Alternative Float depending on floating point mode signal for all 
other functions 

W1.6 31:0 Result1[6] 

W1.5 31:0 Result1[5] 

W1.4 31:0 Result1[4] 

W1.3 31:0 Result1[3] 

W1.2 31:0 Result1[2] 

W1.1 31:0 Result1[1] 

W1.0 31:0 Result1[0] 
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6.2 Performance 

The Extended Math shared function unit supports extended math functions with up to 
8 data channels per request. Computations for a vector request are performed channel 
by channel on a serial execution pipeline. Most functions require iterative 
computations. For example, SQRT takes three rounds of computation in the serial 
execution pipeline. The latency for each round is about 22 clocks.  Trigonometric 
functions may take variable number of rounds depending on the input data. For 
certain math functions, the throughput with partial precision computation in 
alternative floating point mode is higher than the full precision computation. After 
computations for all channels of a request are completed, data vectors (of one or two 
phases) are assembled before the writeback message is sent back to the requesting 
thread. 

The following table shows the number of rounds per element for each function type. 
The table may be used to estimate the utilization of the extended math unit and the 
minimal latency of the message.  
 

Function Throughput 
(rounds/element) 

Note 

INV 1   

LOG Partial:    2 

Full:        3 

Computes Log base 2 

SQRT 3 Implemented as: √x = x * 1/√x 

RSQ 2  

EXP Full:      4 

Partial:  3 

Both partial and full precision versions have the same 
throughput. 

Computes 2x (anti-log) 

POW 8  

SIN Min:       5 

Max:     12 

Typical:   6 

Trigonometric functions are the only ones with 
variable throughput.  Throughput depends on the 
input data range.  

Input is in radians 

COS Same as SIN Input is in radians 

SINCOS See SIN The two-output-phase SINCOS function is 
implemented as back to back SIN and COS functions.   

Input is in radians 

INT DIV Quotient: 3 

Remainder: 4 

 

To best utilize the extended math shared function, programmers should consider the 
following characteristics of the shared function: 

• In vector mode, only the enabled channels consume computation rounds, while 
the disabled channels do not. 

• In scalar mode, one data element is computed for a group of 4 channels if any of 
the 4 channels is enabled. If all 4 channels are disabled, no compute cycle is 
wasted for the group. 
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6.3 Function Reference 

A math function may take one request message register (src0) or two request 
message registers (src0 and src1), and may output one writeback message register 
(dst0) or two writeback message registers (dst0 and dst1). 

Vector mode or scalar mode is determined by the Source Structure field of message 
descriptor. 

The operations is based on the channel enables as noted by EMask. 

6.3.1 INV 
Description Computes reciprocal of src0 (32-bit float format) and stores computed 
result in dest as a 32-bit float 
 
Format:  INV   <dst0>  <src0> 
 
Pseudocode: for (n = 0; n < 8; n++) { 
  int srcCh = (vector mode) ? n : ((n < 4) ? 0 : 4) 
  if (EMask.channel[n] == 1) { 

  dst0.channel[n] = 1 / src0.channel[srcCh]  
  } 
 } 
Precision: 1 ULP 
 

Src-> +inf +0 / 

+Denorm 

- 0 / -

Denorm 

-inf NaN 

Dest – 

IEEE 

mode 

+0 +inf -inf -0 NaN 

Dest – 

ALT 

mode 

 +FLT_MA

X 

-

FLT_MA

X 

 NaN 

6.3.2 LOG 
Description: Computes Log2 of Src0 and stores computed result in Dest.  Both src0 
and dest are 32-bit FP values 
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Format:  LOG <dst0>  <src0> 
 
Pseudocode: for (n = 0; n < 8; n++) { 
  int srcCh = (vector mode) ? n : ((n < 4) ? 0 : 4) 
  if (EMask.channel[n] == 1) { 

  dst0.channel[n] = Log2(src0.channel[srcCh]) 
  } 
 } 
 
Precision: +/- 2-21 max relative error – Full precision 
  + / - 2-10 max relative error- partial precision 
 
Notes:  In ALT mode log is computed as Log2 (abs (src0))  
 

Src-> +inf +0 / 

+Deno

rm 

-0 / -

Denor

m 

-inf -F NaN 

Dest 

– 

IEEE 

mode 

+in

f 

-inf -inf NaN NaN NaN 

Dest 

– ALT 

mode 

 -

FLT_M

AX 

-

FLT_M

AX 

 +F NaN 

6.3.3 EXP 
Description: Computes 2src0 and stores computed result in Dest.  Both src0 and 
dest are 32-bit FP values 
 
Format:  EXP <dst0>  <src0> 
 
Pseudocode: for (n = 0; n < 8; n++) { 
  int srcCh = (vector mode) ? n : ((n < 4) ? 0 : 4) 
  if (EMask.channel[n] == 1) { 
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  dst0.channel[n] = 2src0.channel[srcCh]  
  } 
 } 
 
Precision: + / - 2-21 max relative error – full precision 
  +/- 2-10 max relative error – partial precision 
 

Src-> +i
nf 

+0 / 
+Denorm 

-0 / -
Denorm 

-inf -F NaN 

Dest – 
IEEE 
mode 

+i
nf 

1 1 0 +F NaN 

Dest – 
ALT mode 

 1 1  +F NaN 
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6.3.4 SQRT 
Description: Computes square-root of src0 and stores computed result in dest.  

Both src0 and dest are 32-bit FP  
values 
 

Format:  SQRT <dst0>  <src0> 
 
Pseudocode: for (n = 0; n < 8; n++) { 
  int srcCh = (vector mode) ? n : ((n < 4) ? 0 : 4) 
  if (EMask.channel[n] == 1) { 

  dst0.channel[n] = rcCh].channel[s0SRC  

  } 
 } 

 
Precision: 1 ULP 
Notes:  In ALT mode SQRT is computed as SQRT(abs (src0))  
 

Src-> +
in
f 

+0 / 
+Denorm 

-0 / -
Denorm 

-inf -F NaN 

Dest – 
IEEE 
mode 

+
i
n
f 

0 -0 NaN NaN NaN 

Dest – 
ALT mode 

 0 0  +F NaN 
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6.3.5 RSQ 
Description: Computes reciprocal square-root of src0 and stores computed result in 

dest.  Both src0 and dest are  
32-bit FP values 

Format:  RSQ <dst0>  <src0> 
Pseudocode: for (n = 0; n < 8; n++) { 
  int srcCh = (vector mode) ? n : ((n < 4) ? 0 : 4) 
  if (EMask.channel[n] == 1) { 

  dst.channel[n] = ].channel[n01 SRC  

  } 
 } 
Precision: 1 ULP 
Notes:  In ALT mode RSQ is computed as RSQ(abs (src0))  
 

Src-
> 

+inf +0 / 
+Denorm 

-0 / -
Denorm 

-inf -F NaN 

Dest 
– 
IEEE 
mod
e 

+0 +inf -inf NaN NaN NaN 

Dest 
– 
ALT 
mod
e 

 +FLT_MAX +FLT_MAX  +F NaN 

6.3.6 POW 
Description: Computes abs(src0) raised to the src1 power and stores computed 

result in dst0.  Src0, src1, and dst0 are 32-bit FP values. Src1 is 
always scalar value. 
 

Format:  POW <dst0>  <src0>  <src1> 
 
Pseudocode: for (n = 0; n < 8; n++) { 
  int srcCh = (vector mode) ? n : ((n < 4) ? 0 : 4) 
  if (EMask.channel[n] == 1) { 

  dst0.channel[n] = ))rcCh].channel[s0((log1 22 srcabssrc ⋅  

  } 
 } 

 
Precision: 2^-15 relative error 
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IEEE Mode: 

Src0->   

Src1 abs(F 
> 1) 

abs
(F 
< 
1) 

abs(+F 
= = 1) 

+in
f 

+0 / 
+De
norm 

-Denorm 
/ -0 

-
inf 

N
a
N 

+inf +inf 0 NaN +in
f 

0 0 +i
nf 

N
a
N +0 / 

Denorm 
1 1 1 Na

N 
NaN NaN Na

N 
N
a
N 

-0 / 
Denorm 

1 1 1 Na
N 

NaN NaN Na
N 

N
a
N -inf 0 +in

f 
NaN 0 +inf +inf 0 N

a
N -F  +F +F +F 0 +inf +inf 0 N
a
N NaN NaN Na

N 
NaN Na

N 
NaN NaN Na

N 
N
a
N +F  +F   +in

f 
0 0 Na

N 
N
a
N 

 
 
 
ALT Mode: 

Src0->  

Src1 +F +
i
n
f 

+0 / +Denorm -0 / -
Denorm 

-
inf 

-F N
a
N +inf        

+0 / 
Denorm 

1  1 1  1 N
a
N 

-0 / 
Denorm 

1  1 1  1 N
a
N -inf        

-F +F  +FLT_MAX +FLT_MAX  +
F 

N
a
N NaN   NaN NaN  N

a
N 

N
a
N +F +F  0 0  +

F 
N
a
N 
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6.3.7 SIN 
Description: Computes the sine of src0 (in radians) and stores computed result in 

dst0.  Src0 and dst0 are 32-bit FP values.  
 
Format:  SIN <dst0>  <src0> 
 
Pseudocode: for (n = 0; n < 8; n++) { 
  int srcCh = (vector mode) ? n : ((n < 4) ? 0 : 4) 
  if (EMask.channel[n] == 1) { 

  dst.channel[n] = Sin(src0.channel[srcCh]) 

  } 
 } 

 
Precision: Max absolute error of 0.0008 for the range of +/- 100 * pi 

Outside of the above range the function will remain periodic, 
producing values between -1 and 1.  However, the period of SIN is 
determined by the internal representation of Pi, meaning that as the 
magnitude of input increases the absolute error will, in general, also 
increase. 

 
 

Src-> +inf +0 / 
+Denorm 

-0 / -
Denor
m 

-inf -F NaN 

Dest – 
IEEE 
mode 

NaN +0 -0 NaN -1 
to 1 

NaN 

Dest – 
ALT 
mode 

 +0 -0  -1 
to 1 

NaN 
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6.3.8 COS 
Description: Computes the cosine of src0 (in radians) and stores computed result 

in dst0.  Src0 and dst0 are 32-bit FP values.  
 
Format:  SIN <dst0>  <src0> 
 
Pseudocode: for (n = 0; n < 8; n++) { 
  int srcCh = (vector mode) ? n : ((n < 4) ? 0 : 4) 
  if (EMask.channel[n] == 1) { 

  dst.channel[n] = Cos(src0.channel[srcCh]) 

  } 
 } 

 
Precision: Max absolute error of 0.0008 for the range of +/- 100 * pi 

Outside of the above range the function will remain periodic, 
producing values between -1 and 1.  However, the period of COS is 
determined by the internal representation of Pi, meaning that as the 
magnitude of input increases the absolute error will, in general, also 
increase. 

 

Src-> +inf +0 / 
+Denorm 

-0 / -
Denorm 

-inf -F NaN 

Dest – IEEE 
mode 

NaN +0 -0 NaN -1 to 1 NaN 

Dest – ALT 
mode 

 +1 +1  -1 to 1 NaN 
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6.3.9 SINCOS 
Description: Computes the sine of src0 (in radians) and stores computed result in 

dst0.  Computes the cosine of src0 (in radians) and returns the result 
to dst1.  Src0, dst0 and dst1 are 32-bit FP values.  

 
Format:  SINCOS <dst0> <dst1> <src0> 
 
Pseudocode: for (n = 0; n < 8; n++) { 
  int srcCh = (vector mode) ? n : ((n < 4) ? 0 : 4) 
  if (EMask.channel[n] == 1) { 
   if(dst0 != NULL){ 

   dst0.channel[n] = Sin(src0.channel[srcCh]) 
  } 
  if(dst1 != NULL){ 
   dst1.channel[n] = Cos(src0.channel[srcCh]) 
  } 

  } 
 } 

 
Precision: Max absolute error of 0.0008 for the range of +/- 100 * pi.   

Outside of the above range the function will remain periodic, 
producing values between -1 and 1.  However, the period of SINCOS 
is determined by the internal representation of Pi, meaning that as the 
magnitude of input increases the absolute error will, in general, also 
increase. 

 
Notes:  See individual Sin and Cos tables for error handling  
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6.3.10 INT DIV 
Description: Computes src0 divided by src1 and returns an integer result to dst0.  
Src0, src1 and dst0 are 32-bit integers. 
 
Format:  INTDIV <dst0> <dst1> <src0> <src1> 
 
Pseudocode: for (n = 0; n < 8; n++) { 
  int srcCh = (vector mode) ? n : ((n < 4) ? 0 : 4) 
  if (EMask.channel[n] == 1) { 
   if(dst0 != NULL){ 

 dst0.channel[n] = quotient (src0.channel[srcCh] / 
src1.channel[srcCh]) 

    } 
   if(dst1 != NULL){ 

dst1.channel[n] = remainder (src0.channel[srcCh] / 
src1.channel[srcCh]) 

} 
  } 
 } 
 
Precision: 32-bit integer 

For signed inputs, INT DIV behavior is illustrated by the table below: 

 

Inputs: Numerato
r 

+ + - - 

 Denomina
tor 

+ - + - 

Outputs: Quotient + - - + 

 Remainde
r 

+ + - - 
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IDIV SRC0     
SRC1 + INT - INT 0 
+ INT +INT -INT 0 
- INT -INT +INT 0 

0 Q:0x7FFF FFFF Q: 0x8000 0000 Q:0x7FFF FFFF 

  R:0x7FFF FFFF R: 0x8000 0000 R:0x7FFF FFFF 

        
        
        

UDIV SRC0     
SRC1 <> 0 0   
<>0 UINT 0   

0 Q: 0xFFFF FFFF Q: 0xFFFF FFFF   
  R: 0xFFFF FFFF R: 0xFFFF FFFF   

 

§§ 
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7 Message Gateway 

The Message Gateway shared function provides a mechanism for active thread-to-
thread communication.  Such thread-to-thread communication is based on direct 
register access. One thread, a requester thread, is capable of writing into the GRF 
register space of another thread, a recipient thread. Such direct register access 
between two threads in a multi-processor environment some time is referred to as 
remote register access. Remote register access may include read or write. GEN4 
architecture supports remote register write, but not remote register read (natively). 
Message Gateway facilitates such remote register write via message passing. The 
requester thread sends a message to Message Gateway requesting a write to the 
recipient thread’s GRF register space. Message Gateway sends a writeback message to 
the recipient thread to complete the register write on behave of the requester. The 
requester thread and the recipient thread may be on the same EU or on different EUs. 

7.1 Messages 

Message Gateway supports such thread-to-thread communication with the following 
three messages: 

• OpenGateway:  opens a gateway for a requester thread. Once a thread 
successfully opens its gateway, it can be a recipient thread to receive remote 
register write. 

• CloseGateway:  closes the gateway for a requester thread. Once a thread 
successfully closes its gateway, Message Gateway will block any future remote 
register writes to this thread.  

• ForwardMsg:  forwards a formatted message (remote register write) from a 
requester thread to a recipient thread. 
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7.1.1 Message Descriptor 

The following message descriptor applies to all messages supported by Message 
Gateway. 

 

Bit Description 

19 This bit is not part of the shared function specific message descriptor) 

18:17 Ignored:  these bits are not part of the shared function specific message descriptor) 

16:15 Notify.  Send Notification Signal.  

When the low bit of this field is set, the recipient thread’s notification counter is 
incremented.  The high bit is not part of the shared function specific message descriptor. 

This field is only valid for a ForwardMsg message.  It is ignored for other messages. 

14 AckReq. Acknowledgment Required. When this bit is set, an acknowledgment return 
message is required. Message Gateway will send a writeback message containing the error 
code to the requester thread using the post destination register address. When this bit is 
not set, no writeback message is sent to the requesting thread by Message Gateway, even 
if an error occurs.  

This field is valid for OpenGateway, CloseGateway, and ForwardMsg messages. 

When this bit is set, post destination register must be valid and the response length must 
be 1.  

When this bit is not set, post destination register must be null and the response length must 
be 0.  

This bit cannot be set when EOT is set; otherwise, hardware behavior is undefined. 

0 = No Acknowledgement is required.  

1 = Acknowledgement is required. 

13:2 Reserved: MBZ 

1:0 SubFuncID. Identify the supported sub-functions by Message Gateway. Encodings are: 

00 = OpenGateway. Open the gateway for the requester thread.  

01 = CloseGateway. Close the gateway for the requester thread. 

10 = ForwardMsg. Forward the formatted message to the recipient thread with the given 
offset from the recipient’s register base. 

11 = Reserved. 

7.1.2 OpenGateway Message 

The OpenGateway message opens a communication channel between the requesting 
thread and other threads.  It specifies a key for other threads to access its gateway, 
as well as the GRF register range allowed to be written.  The message consists of a 
single 256-bit message payload. 
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If the AckReq bit is set, a single 256-bit payload writeback message is sent back to 
the requesting thread after completion of the OpenGateway function.  Only the least 
significant DWord in the post destination register is overwritten.   

If the EOT is set for this message, Message Gateway will ignore this message; instead, 
it will close the gateway for the requesting thread regardless of the previous state of 
the gateway.  

It is software’s policy to determine how to generate the key.   

7.1.2.1 Message Payload 
 

DWord Bit Description 

M0.7 31:0 Debug 

M0.6 31:0 Debug 

M0.5 31:29 Reserved: MBZ 

 28:21 RegBase: The register base address to be stored in the Message Gateway. It is used to 
compute the destination GRF register address from the offset field in ForwardMsg.  
RegBase contains 256-bit GRF aligned register address.   

Note 1: This field aligns with bits [28:21] of the Offset field of the message payload for 
ForwardMsg.  

Note 2:  the most significant bit of this field must be zero. 

Format = U8 

Range = [0,127] 

 20:11 Reserved: MBZ 

 10:8 Gateway Size: The range limit for messages through the Message Gateway. The 
maximal allowed Gateway Size is 32 GRF registers. 

000 = 1 GRF Register 

001 = 2 GRF Registers 

010 = 4 GRF Registers 

011 = 8 GRF Registers 

100 = 16 GRF Registers 

101 = 32 GRF Registers 

110 = Reserved 

111 = Reserved 

 7:0 Dispatch ID: This ID is assigned by the fixed function unit and is a unique identifier for 
the thread.  It is used to free up resources used by the thread upon thread completion. 

This field is ignored by Message Gateway 

This field is only required for a thread that is created by a fixed function (therefore, not 
a child thread) and EOT bit is set for the message.  

M0.4 31:16 Reserved: MBZ 

 15:0 Key: The key to be stored in the thread’s entry at the Message Gateway. 

M0.3:0  Ignored 
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7.1.2.2 Writeback Message 

The writeback message is only sent if the AckReq bit in the message descriptor is set. 

 

DWord Bit Description 

W0.7:1  Reserved (not overwritten) 

W0.0 31:20 Reserved 

 19:16 Shared Function ID: Contains the message gateway’s shared function ID. 

 15:3 Reserved 

 2:0 Error Code 

000 = Successful. No Error (Normal) 

001 = Gateway Size Exceeded. Attempt to open a gateway with a Gateway Size that is 
larger than 32 GRF registers  

101 = Opcode Error.  Attempt to send a message which is not either open/close/forward 

other codes: Reserved 

 

7.1.3 CloseGateway Message 

The CloseGateway message closes a communication channel for the requesting thread 
that was previously opened with OpenGateway.  Each thread is allowed to have only 
one open gateway at a time, thus no additional information in the message payload is 
required to close the gateway. The message consists of a single 256-bit message 
payload. 

If the AckReq bit is set, a single 256-bit payload writeback message is sent back to 
the requesting thread after completion of the CloseGateway function.  Only the least 
significant DWord in the post destination register is overwritten.   

7.1.3.1 Message Payload 

 

DWord Bit Description 

M0.7:6  Ignored 

M0.5 31:8 Ignored 

 7:0 Dispatch ID: This ID is assigned by the fixed function unit and is a unique identifier for 
the thread.  It is used to free up resources used by the thread upon thread completion. 

This field is ignored by Message Gateway 

This field is only required for a thread that is created by a fixed function (therefore, not a 
child thread) and EOT bit is set for the message. 
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DWord Bit Description 

M0.4:0  Ignored 

7.1.3.2 Writeback Message  

The writeback message is only sent if the AckReq bit in the message descriptor is set. 

 

DWord Bit Description 

W0.7:1  Reserved (not overwritten) 

W0.0 31:20 Reserved 

 19:16 Shared Function ID: Contains the message gateway’s shared function ID. 

 15:3 Reserved 

 2:0 Error Code 

000 = Successful. No Error (Normal) 

101 = Opcode Error.  Attempt to send a message which is not either open/close/forward 

other codes: Reserved 

7.1.4 ForwardMsg Message 

The ForwardMsg message gives the ability for a requester thread to write a data 
segment in the form of a byte, a dword, 2 dwords, or 4 dwords to a GRF register in a 
recipient thread. The message consists of a single 256-bit message payload, which 
contains the specially formatted data segment. 

The ForwardMsg message utilizes a communication channel previously opened by the 
recipient thread.  The recipient thread has communicated its EUID, TID, and key to 
the requester thread previously via some other mechanism.  Generally, this is done 
through the thread spawn message from parent to child thread, allowing each child 
(requester) to then communicate with its parent through a gateway opened by the 
parent (recipient).  The child could then use ForwardMsg message to communicate its 
own EUID, TID, and key back to the parent to enable bi-directional communication 
after opening its own gateway. 

If the AckReq bit is set, a single 256-bit payload writeback message is sent back to 
the requester thread after completion of the ForwardMsg function.  Only the least 
significant DWord in the post destination register is overwritten.   

If the Notify bit in the message descriptor is set, a ‘notification’ is sent to the recipient 
thread in order to increment the recipient thread’s notification counter.  This allows 
multiple messages to be sent to the recipient without waking up the recipient thread.  
The last message, having this bit set, will then wake up the recipient thread. 
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7.1.4.1 Message Payload 

 

DWord Bit Description 

M0.7 31:0 Debug 

M0.6 31:0 Debug 

M0.5 31:29 Reserved: MBZ 

 28:16 Offset: It provides the destination register position in the recipient thread GRF register 
space as the offset from the RegBase stored in the recipient thread’s gateway entry.  
The offset is in unit of byte, such that bits [28:21] is the 256-bit aligned register offset 
and bits [4:0] is the sub-register offset.  The sub-register offset must be aligned to the 
Length field in bits [10:8].  The subfields of Offset are further illustrated as the 
following. 

Offset[28:21]:  Register offset from the gateway base  (Range [0, 127]:  bit 12 MBZ) 

Offset[20:18]:  DW offset 

Offset[17:16]:  Byte offset (must be 00 for all DW length cases) 

 15:11 Reserved: MBZ 

 10:8 Length: The length of the data segment. 

000 = 1 byte 
001 = Reserved 
010 = 1 dword 
011 = 2 dwords 
100 =  4 dwords 
101-111:  Reserved 

 7:0 Dispatch ID: This ID is assigned by the fixed function unit and is a unique identifier for 
the thread.  It is used to free up resources used by the thread upon thread completion. 

This field is ignored by Message Gateway 

This field is only required for a thread that is created by a fixed function (therefore, not 
a child thread) and EOT bit is set for the message. 

M0.4 31:28 Ignored 

 27:24 EUID: The Execution Unit ID as part of the Recipient field is used to identify the 
recipient thread to whom the message is forwarded. 

 23:18 Ignored 

 17:16 TID: The Thread ID as part of the Recipient field is used to identify the recipient thread 
to whom the message is forwarded. 

 15:0 Key 

The key to match with the one stored in the recipient thread’s entry in Message 
Gateway. 

M0.3 31:0 Data Segment DWord 3: valid only for the 4-DWord data segment length 

M0.2 31:0 Data Segment DWord 2: valid only for the 4-DWord data segment length 

M0.1 31:0 Data Segment Dword 1: valid only for the 2- and 4-DWord data segment lengths 
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DWord Bit Description 

M0.0 31:24 Data Segment Byte 0: the same byte 
must be copied to all four positions within 
this DWord.  Valid only for the 1-Byte data 
segment length. 

 23:16 Data Segment Byte 0 

 15:8 Data Segment Byte 0 

 7:0 Data Segment Byte 0 

Data Segment Dword 0: valid only for 
the 1-, 2- and 4-Dword data segment 
lengths 

 

7.1.4.2 Writeback Message to Requester Thread 

The writeback message is only sent if the AckReq bit in the message descriptor is set. 

 

DWord Bit Description 

W0.7:1  Reserved (not overwritten) 

W0.0 31:20 Reserved 

 19:16 Shared Function ID: Contains the message gateway’s shared function ID. 

 15:3 Reserved 

 2:0 Error Code 

000 = Successful. No Error (Normal) 

001 = Reserved 

010 = Gateway Closed. Attempt to send a message through a closed gateway 

011 = Key Mismatched. Attempt to send a message with a mismatching key 

100 = Limit Exceeded. Attempt to send a message with offset beyond the gateway limit 

101 = Opcode Error.  Attempt to send a message which is not either open/close/forward 

110 = Invalid Message Size.  Attempt to forward a message with length greater than 4 
DW 

111 = Reserved 

7.1.4.3 Writeback Message to Recipient Thread 

This message contains the byte or dwords data segment indicated in the message 
written to the GRF register offset indicated.  Only the byte/dword(s) will be enabled, 
all other data in the GRF register is untouched. 
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7.1.5 GetTimeStamp Message 

The GetTimeStamp message gives the ability for a requester thread to read the 
timestamps back from the message gateway. The message consists of a single 256-bit 
message payload. 

AbsoluteTimeLap is based on an absolute wall clock in unit of nSec/uSec that is 
independent of context switch or GPU frequency adjustment. Message Gateway shares 
the same GPU timestamp. Details can be found in the TIMESTAMP register section in 
vol1 Memory Interface and Command Stream.  

RelativeTimeLap is based on a relative time count that is counting the GPU clocks for 
the context. The relative time count is saved/restored during context switch.  

7.1.5.1 Message Payload 
 

DWord Bit Description 

M0.7 31:0 Debug 

M0.6 31:0 Debug 

M0.5 31 Return to High GRF:  

0: the return 128-bit data goes to the first half of the destination GRF register 

1: the return 128-bit data goes to the second half of the destination GRF register 

 30:8 Reserved : MBZ 

 7:0 Dispatch ID: This ID is assigned by the fixed function unit and is a unique identifier for 
the thread.  It is used to free up resources used by the thread upon thread completion. 

This field is ignored by Message Gateway 

This field is only required for a thread that is created by a fixed function (therefore, not a 
child thread) and EOT bit is set for the message. 

M0.4 31:0 Ignored 

M0.3 31:0 Ignored 

M0.2 31:0 Ignored 

M0.1 31:0 Ignored 

M0.0 31:0 Ignored 
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7.1.5.2 Writeback Message to Requester Thread 

As the writeback message is only sent if the AckReq bit in the message descriptor is 
set, AckReq bit must be set for this message. 

Only half of the destination GRF register is updated (via write-enables). The other half 
of the register is not changed. This is determined by the Return to High GRF control 
field.  

Writeback Message if Return to High GRF is set to 0: 

DWord Bit Description 

W0.7:4  Reserved (not overwritten) 

W0.3 31:0 RelativeTimeLapHigh: This field returns the MSBs of time lap for the relative clock 
since the previous reset. This field represents 1.024 uSec increment of the time stamp. 
Hardware handles the wraparound (over 64 bit boundary) of the timestamp. 

Format: U12 

W0.2 31:20 RelativeTimeLapLow: This field returns the LSBs of time lap for the relative clock since 
the previous reset. This field represents 1/4 nSec increment of the time stamp. 
Hardware handles the wraparound (over 64 bit boundary) of the timestamp. 

Format: U12 

 19:0 Reserved : MBZ 

W0.1 31:0 AbsoluteTimeLapHigh: This field returns the MSBs of time lap for the absolute clock 
since the previous reset. This field represents 1.024 uSec increment of the time stamp. 
Hardware handles the wraparound (over 64 bit boundary) of the timestamp. 

Format: U12 

W0.0 31:20 AbsoluteTimeLapLow: This field returns the LSBs of time lap for the absolute clock 
since the previous reset. This field represents 1/4 nSec increment of the time stamp. 
Hardware handles the wraparound (over 64 bit boundary) of the timestamp. 

Format: U12 

 19:0 Reserved : MBZ 

 

Writeback Message if Return to High GRF is set to 1: 

DWord Bit Description 

W0.7 31:0 RelativeTimeLapHigh 

W0.6 31:20 RelativeTimeLapLow 

 19:0 Reserved : MBZ 

W0.5 31:0 AbsoluteTimeLapHigh 

W0.4 31:20 AbsoluteTimeLapLow 

 19:0 Reserved : MBZ 

W0.3:0  Reserved : MBZ 
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8 Unified Return Buffer (URB) 

The Unified Return Buffer (URB) is a general-purpose buffer used for sending data 
between different threads, and, in some cases, between threads and fixed-function 
units (or vice-versa).  A thread accesses the URB by sending messages. 

8.1 URB Size 

The URB provides 16KB of storage, arranged as 512 256-bit rows.  A row corresponds 
in size to an EU GRF register.  Read/write access to the URB is generally supported on 
a row-granular basis. 

A URB entry is a logical entity within the URB, referenced by an entry handle and 
comprised of some number of consecutive rows. 

8.2 URB Access 

The URB can be written by the following agents: 

• Command Stream (CS) can write constant data into Constant URB Entries 
(CURBEs) as a result of processing CONSTANT_BUFFER commands. 

• The Video Front End (VFE) fixed-function unit of the Media pipeline can write 
thread payload data in to its URB entries. 

• The Vertex Fetch (VF) fixed-function unit of the 3D pipeline can write vertex data 
into its URB entries 

• GEN4 threads can write data into URB entries via URB_WRITE messages sent to 
the URB shared function. 

The URB can be read by the following agents: 

• The Thread Dispatcher (TD) is the main source of URB reads.  As a part of 
spawning a thread, pipeline fixed-functions provide the TD with a number of URB 
handles, read offsets, and lengths.  The TD reads the specified data from the URB 
and provide that data in the thread payload pre-loaded into GRF registers. 

• The Geometry Shader (GS) and Clipper (CLIP) fixed-function units of the 3D 
pipeline can read selected parts of URB entries to extract vertex data required by 
the pipeline. 

• The Windower (WM) FF unit reads back depth coefficients from URB entries 
written by the Strip/Fan unit. 

Note that neither the CPU nor EU threads can read the URB directly. 
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8.3 State 

The URB function is stateless, with all information required to perform a function being 
passed in the write message. 

See URB Allocation (Graphics Processing Engine ) for a discussion of how the URB is 
divided amongst the various fixed functions. 

8.4 Messages 

There is only one type of message supported by the URB shared function: 
URB_WRITE.  It is primarily used by a thread to write data in to an entry in the URB, 
as referenced by the passed handle.   FF units of the 3D pipeline snoop these 
messages, and a side effect of the message may be some information being passed to 
the FF unit which spawned the thread. 

This section documents the global aspects of the URB write messages.  The actual 
data contained in the message differs for each fixed function – refer to 3D Pipeline and 
the fixed-function chapters or details on  3D URB data formats, Media for media-
specific URB data formats, and Graphics Processing Engine for details on Constant 
URB Entries (CURBEs). 

Programming Notes: 

• The End of Thread bit in the message descriptor may be set on URB messages 
only in threads dispatched by the vertex shader (VS), geometry shader (GS), 
clipper, and strips and fans (SF) units. 

8.4.1 Execution Mask 

The Execution Mask specified in the ‘send’ instruction determines which DWords within 
each message register are written to the URB. 
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8.4.2 Message Descriptor 

 

Bit Description 

19 This bit is not part of the shared function specific message descriptor) 

18:16 Ignored  

15 Complete 

If clear, this signals that the URB entry(s) referenced by the handle(s) are not yet completely 
specified.  This setting is used to perform partial writes to URB entries, as would be required when 
writing an entry larger than the maximum single message payload can accommodate.  Only the final 
write would be marked “complete”.  Partial writes may be unordered. 

If set, this signals that there will be no further writes (past this one) to the specific URB entry(s) by 
the thread.  A snooping FF unit uses this to identify when the corresponding URB entry(s) are 
completely specified, at which point the FF unit can initiate further operations the entry(s) (either a 
readback, passing the handle(s) down the pipeline, or immediate deallocation if the entry is 
“unused”). 

This bit is strictly control information passed to snooping FF units.  The URB shared function itself 
does not use this bit for any purpose. 

Programming Notes: 

The following message descriptor fields are only valid when Complete is set:  Used 

The following message header fields are only valid when Complete is set:  Handle 0 PrimType, 
Handle 0 PrimStart, Handle 0 PrimEnd. 

14 Used 

If set, this signals that the URB entry(s) referenced by the handle(s) are valid outputs of the thread.  
In all likelihood this means that that entry(s) contains complete & valid data to be subject to further 
processing by the pipeline.   

If clear, this signals that the URB entry(s) referenced by the handle(s) are not valid outputs of the 
thread.  Use of this setting will result in the handle(s) being immediately dereferenced by the owning 
FF unit.  This setting is to be used by GS or CLIP threads to dereference handles it obtained (either 
in the initial thread payload or subsequent allocation writebacks) but subsequently determined were 
not required (e.g., the object was completely clipped out). 

Programming Notes: 

• Only GS and CLIP threads are permitted to utilize Used==0.  All other threads are required (by 
design) to generate valid outputs in all cases. 

• This bit is strictly control information passed to snooping FF units.  The URB shared function 
itself does not use this bit for any purpose. 

• This bit is only valid when Complete is set, i.e., it is ignored on partial writes. 
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Bit Description 

13 Allocate 

If set, this requests that an additional destination URB entry be allocated to the thread by the 
spawning FF unit.  The FF unit will return the handle to this URB entry via a message writeback 
operation in response to this message (see writeback format below).  Therefore, threads must 
specify a writeback register in ‘send’ instructions issuing messages with this bit set.  

If clear, an additional allocation is not requested. 

Programming Notes: 

• This bit is strictly control information passed to snooping FF units.  The URB shared function 
itself does not use this bit for any purpose. 

• This bit is valid on all URB_WRITE messages, e.g., it could be used to allocate a new handle on a 
partial write (Complete not set). 

• Only one Allocate request (per thread) can be outstanding.   Upon requesting an allocation, the 
thread must wait for the handle to be returned (written back) before another allocation can be 
requested. 

12 Fast Composite Restriction Check Pass 

Ignored 

11:10 Swizzle Control. This field is used to specify which  “swizzle” operation is to be performed on the 
write data.  It indirectly specifies whether one or two handles are valid. 

00 =  URB_NOSWIZZLE 

 The message data is to be written directly to a single URB entry (Handle 0).   

01 =  URB_INTERLEAVED 

The message contains data to be written to two URB entries.  The message data provided is 
interleaved such that the upper DWords (7:4) of each 256-bit unit contain data to be written to 
Handle 1, and the lower DWords (3:0) contain data to be written to Handle 0.  The URB shared 
function will de-interleave this data and write the two separate data streams to the two entries 
using the single Offset value (see Offset below for more details).    

10 =  URB_TRANSPOSE 

This message contains data that is to be “transposed” before being written to the URB.  The 
transpose applied is tailored to the passing of data between the SF and WM stages – it is not a 
generic transpose.  (See description below).  Therefore, the assumption is that this mode will 
only be used by Setup threads, where the setup-result data is swizzled before being written to 
the URB in order to provide a more optimal format for use in a subsequent PS thread.  (See 
Strip/Fan, Windower chapters). 

 See Programming Restrictions in the URB_TRANSPOSE subsection below. 

11 =  Reserved 

9:4 Offset. This field specifies a destination offset (in 256-bit units) from the start of the URB entry(s), 
as referenced by URB Return Handle n, at which the data (if any) will be written.  

When URB_INTERLEAVED is used, this field provides a 256-bit granular offset applied to both URB  
entry destinations. 

When URB_TRANSPOSE is used, this field provides a 256-bit granular offset applied to the URB entry 
destination.  The least significant bit of Offset must be zero. 

3:0 URB Opcode 

0 =  URB_WRITE 

all other codes are Reserved 
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The following table lists the valid and invalid combinations of the Complete, Used, 
Allocate and EOT bits: 

 

Complete Used Allocate EOT Valid? Usage 

0 d/c 0 0 Valid. Normal partial-
write or non-write 
of URB. 

0 d/c 0 1 Valid only if any and all 
preceding URB entries 
have been marked as 
“complete” and there is 
no outstanding Allocate 
request.   

Thread terminate 
w/ non-write of 
URB 

0 d/c 1 0 Valid only if any and all 
preceding URB entries 
have been marked as 
“complete” and there is 
no outstanding Allocate 
request.   

Non-write of URB 
with request for an 
additional handle. 

0/1 d/c 1 1 Invalid.  Thread must 
never terminate with an 
outstanding writeback 
request. 

n/a 

1 0 0/1 0 Valid Dereference of 
URB entry 
without/with new 
allocation request. 

1 0 0 1 Valid Dereference of 
URB entry and 
thread termination. 

1 1 0/1 0 Valid Completion of URB 
entry output 
without/with new 
allocation request. 

1 1 0 1 Valid Completion of URB 
entry output and 
thread termination. 

 



 
 
 
 

    245 

8.4.3 URB_WRITE 

8.4.3.1 URB_WRITE Message Header 

 

DWord Bit Description 

M0.7 31:0 Debug  

M0.6 31:0 Debug 

M0.5 31:8 Ignored 

 7:0 FFTID. The Fixed Function Thread ID is assigned by the fixed function unit and is a 
unique identifier for the thread.  It is used to free up resources used by the thread upon 
thread completion. 

M0.4 31:0 Ignored 

M0.3 31:0 Ignored 

M0.2 31:26 Ignored 

 25:16 Ignored  (SO_NUM_PRIMS_WRITTEN is incremented via SVBWrite messages to the 
DataPort). 

 15:7 Ignored 

 6:2 Handle 0 PrimType. This field associates a primitive type with the vertex written at 
Handle 0.   

NOTE: This field is only defined when the GS or Clipper FF unit is the target FF unit.  
Otherwise it is Reserved:MBZ. 

 1 Handle 0 PrimStart. This field is used to indicate that the vertex written at Handle 0 is 
the first vertex of a primitive. 

NOTE: This field is only defined when the GS or Clipper FF unit is the target FF unit.  
Otherwise it is Reserved:MBZ. 

 0 Handle 0 PrimEnd. This field is used to indicate that the vertex written at Handle 0 is 
the last vertex of a primitive. 

NOTE: This field is only defined when the GS or Clipper FF unit is the target FF unit.  
Otherwise it is Reserved:MBZ. 

M0.1 31:16 Handle ID 1. This ID is assigned by the fixed function unit and links the work in channel 
1 to a specific entry within the fixed function unit.  This field is ignored unless Swizzle 
Control indicates Interleave mode. 

 15:0 URB Return Handle 1. This is the URB handle where channel 1’s results are to be 
placed.  This field is ignored unless Swizzle Control indicates interleave mode. 

M0.0 31:16 Handle ID 0. This ID is assigned by the fixed function unit and links the work in channel 
0 to a specific entry within the fixed function unit. 

 15:0 URB Return Handle 0. This is the URB handle where channel 0’s results are to be 
placed. 
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8.4.3.2 URB_WRITE Message Payload 

For the URB message, the message payload will be written to the URB entries 
indicated by the URB return handles in the message header.   

While GS and CLIP threads will write one vertex at a time to the URB, the VS will write 
two interleaved vertices.  The description of the URB write messages will refer to the 
per-vertex DWords described in the Vertex URB Entry Formats section of the 3D 
Overview chapter.  

 

Payload Usage 

URB_NOSWIZZLE The message payload contains data to be written to a single URB entry (e.g., 
one Vertex URB entry).  The Swizzle Control field of the message 
descriptor must be set to ‘NoSwizzle’. 

URB_INTERLEAVED The message payload contains data to be written to two separate URB 
entries.   The payload data is provided in a high/low interleaved fashion. The 
Swizzle Control field of the message descriptor must be set to ‘Interleave’. 

URB_TRANSPOSE The message payload contains data that is to be transposed before being 
written to the URB.   See the Strip & Fan (SF) Unit chapter for details on the 
source and destination data layouts and intended usage model. 
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8.4.3.2.1 URB_NOSWIZZLE 

URB_NOSWIZZLE is used to simply write data into consecutive URB locations (no data 
swizzling or transposition applied).  

Programming Notes: 

• The URB function will ignore the Channel Enables associated with this 
message and write all channels into the URB. 

When URB_NOSWIZZLE is used to write vertex data, the following table shows an 
example layout of a URB_NOSWIZZLE payload containing one (non-interleaved) 
vertex containing n pairs of 4-DWord vertex elements (where for the example, n is 
>2). 

 

DWord Bit Description 

M1.7 31:0 Vertex Data [7] 

M1.6 31:0 Vertex Data [6] 

M1.5 31:0 Vertex Data [5] 

M1.4 31:0 Vertex Data [4] 

M1.3 31:0 Vertex Data [3] 

M1.2 31:0 Vertex Data [2] 

M1.1 31:0 Vertex Data [1] 

M1.0 31:0 Vertex Data [0] 

M2.7 31:0 Vertex Data [15] 

M2.6 31:0 Vertex Data [14] 

M2.5 31:0 Vertex Data [13] 

M2.4 31:0 Vertex Data [12] 

M2.3 31:0 Vertex Data [11] 

M2.2 31:0 Vertex Data [10] 

M2.1 31:0 Vertex Data [9] 

M2.0 31:0 Vertex Data [8] 

…  … 

Mn.7 31:0 Vertex Data [8(n-2)+7] 

Mn.6 31:0 Vertex Data [8(n-2)+6] 

Mn.5 31:0 Vertex Data [8(n-2)+5] 

Mn.4 31:0 Vertex Data [8(n-2)+4] 

Mn.3 31:0 Vertex Data [8(n-2)+3] 

Mn.2 31:0 Vertex Data [8(n-2)+2] 

Mn.1 31:0 Vertex Data [8(n-2)+1] 

Mn.0 31:0 Vertex Data [8(n-2)+0] 
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8.4.3.2.2 URB_INTERLEAVED 

The following table shows an example layout of a URB_INTERLEAVED payload 
containing two interleaved vertices, each containing n 4-DWord vertex elements 
(n>1). 

Programming Restrictions: 

• At least 256 bits per vertex (512 bits total, M1 & M2) must be written.  Writing 
only 128 bits per vertex (256 bits total, M1 only) results in UNDEFINED operation. 

• The URB function will use (not ignore) the Channel Enables associated with this 
message. 

 

DWord Bit Description 

M1.7 31:0 Vertex 1 Data [3] 

M1.6 31:0 Vertex 1 Data [2] 

M1.5 31:0 Vertex 1 Data [1] 

M1.4 31:0 Vertex 1 Data [0] 

M1.3 31:0 Vertex 0 Data [3] 

M1.2 31:0 Vertex 0 Data [2] 

M1.1 31:0 Vertex 0 Data [1] 

M1.0 31:0 Vertex 0 Data [0] 

M2.7 31:0 Vertex 1 Data [7] 

M2.6 31:0 Vertex 1 Data [6] 

M2.5 31:0 Vertex 1 Data [5] 

M2.4 31:0 Vertex 1 Data [4] 

M2.3 31:0 Vertex 0 Data [7] 

M2.2 31:0 Vertex 0 Data [6] 

M2.1 31:0 Vertex 0 Data [5] 

M2.0 31:0 Vertex 0 Data [4] 

…  … 

Mn.7 31:0 Vertex 1 Data [4(n-2)+3] 

Mn.6 31:0 Vertex 1 Data [4(n-2)+2] 

Mn.5 31:0 Vertex 1 Data [4(n-2)+1] 

Mn.4 31:0 Vertex 1 Data [4(n-2)+0] 

Mn.3 31:0 Vertex 0 Data [4(n-2)+3] 

Mn.2 31:0 Vertex 0 Data [4(n-2)+2] 

Mn.1 31:0 Vertex 0 Data [4(n-2)+1] 

Mn.0 31:0 Vertex 0 Data [4(n-2)+0] 
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8.4.3.2.3 URB_TRANSPOSE 

The following table shows an example layout of a URB_TRANSPOSE payload and how 
the data is transposed and stored in the destination URB entry.  Note that Source Row 
0, Source Row 1, and implied row of all-zero, and Source Row 3 is transposed and 
stored in successive 4-DW locations in the destination.  This is then repeated for the 
next 3 rows of the source payload.   For the intended usage model in the Setup 
thread, Source Row 0 would contain “Cx” coefficients for the first 8 attributes, Source 
Row 1 would contain “Cy” coefficients for the first 8 attributes, and Source Row 2 
would contain “C0” coefficients for the first 8 attributes, then repeating for the next 8 
attributes.  Insertion of the implied all-zero row is required to align the Cx,Cy and C0 
attributes into half-rows within the URB.  This permits the used of the “LINE” 
instruction to initiate attribute interpolation in the subsequent PS thread. 

Programming Notes: 

• The message payload must contain a multiple of 3 Source Rows of data 
(excluding the message header). 

• The URB function will ignore the Channel Enables associated with this 
message and write all channels into the URB. 

 

Table  8-1. URB_TRANSPOSE Payload 

DWord Bit Description 

M1.0-7 31:0 Source Row 0 (e.g., Cx coeffs for the 1st set of 8 attributes) 

M2.0-7 31:0 Source Row 1 (e.g., Cy coeffs for the 1st set of 8 attributes) 

M3.0-7 31:0 Source Row 2 (e.g., C0 coeffs for the 1st set of 8 attributes) 

M4.0-7 31:0 Source Row 3 (e.g., Cx coeffs for the 2nd set of 8 attributes) 

M5.0-7 31:0 Source Row 4 (e.g., Cy coeffs for the 2nd set of 8 attributes) 

M6.0-7 31:0 Source Row 5 (e.g., C0 coeffs for the 2nd set of 8 attributes) 

... 31:0 ... 
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Table  8-2.URB_TRANSPOSE URB Destination Layout 

 URB DW  

URB 
Row 

7 6 5 4 3 2 1 0 

n+0 M3.1 0 M2.1 M1.1 M3.0 0 M2.0 M1.0 

n+1 M3.3 0 M2.3 M1.3 M3.2 0 M2.2 M1.2 

n+2 M3.5 0 M2.5 M1.5 M3.4 0 M2.4 M1.4 

n+3 M3.7 0 M2.7 M1.7 M3.6 0 M2.6 M1.6 

n+4 M6.1 0 M5.1 M4.1 M6.0 0 M5.0 M4.0 

n+5 M6.3 0 M5.3 M4.3 M6.2 0 M5.2 M4.2 

n+6 M6.5 0 M5.5 M4.5 M6.4 0 M5.4 M4.4 

n+7 M6.7 0 M5.7 M4.7 M6.6 0 M5.6 M4.6 

 ... ... ... ... ... ... ... ... 

8.4.3.3 Writeback Message for URB Entry Allocate 

A writeback only occurs if the Allocate bit is set in the message descriptor.  A single 
register is returned containing the URB Return Handle and Handle ID for the allocated 
handle in the low DWord is returned.  All high DWords contain zero. 

 

DWord Bit Description 

W0.7:1  Reserved : MBZ 

W0.0 31:16 Handle ID. This ID is assigned by the fixed function unit and links the thread to a 
specific entry within the fixed function unit. 

 

§§ 
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9 Execution Unit ISA 

9.1  Introduction 

9.1.1 Objective and Scope 

The core of GEN4 architecture consists of an array of multi-threaded processors, also 
referred to as Execution Units (EU). This Instruction Set Architecture (ISA) document 
specifies the instructions executable on the EUs of the GEN4 architecture. It defines 
the data types in the GEN4 architecture. It includes the binary format (machine code) 
and ASCII format (native syntax) of each instruction. It also provides example usages 
of instructions and modes of instructions, and certain data formats. The programming 
guideline in appendix provides information to help developers to understand the usage 
of GEN4 ISA. However, it is not intended to be a comprehensive tutorial. 

9.1.2 Terms and Acronyms 

AIP Application IP. This is part of the control registers for 
exception handling for a thread. Upon an exception, hardware 
moves the current IP into this register and then jumps to SIP.  

ARF Architecture Register File. It is a collection of architecturally 
visible registers for a thread such as address registers, 
accumulator, flags, notification registers, IP, null, etc. ARF 
should not be mistaken as just the address registers. 

B Byte. As a numerical data type of 8 bits, B represents a signed 
byte integer.  It is used to specify the type of an operand in an 
instruction. 

BNF Backus Naur Form, a formal notation to describe the syntax of 
a given language. The meta symbols of BNF include “::=”, “|”, 
and “< >”, where  “::=” means “is defined as”; “|” means 
“or”; and angle brackets “<” and “>” are used to surround 
category names. 

CR Control Register. These read-write registers are used for 
thread mode control and exception handling for a thread.  

D Double word (DWord). As a fundamental data type, D or DW 
represents 4 bytes. It may be used to specify the type of an 
operand in an instruction. 
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EOT End Of Thread. This is a message sideband signal on the 
Output message bus signifying that the message requester 
thread is terminated. A thread must have at least one SEND 
instruction with the EOT bit in the message descriptor field set 
in order to properly terminate. 

EU Execution Unit. An EU is a multi-threaded processor within the 
GEN4 multi-processor system. Each EU is a fully-capable 
processor containing instruction fetch and decode, register 
files, source operand swizzle and SIMD ALU, etc. An EU is also 
referred to as a GEN4 Core.  

EUID Execution Unit Identifier. The 4-bit field within a thread state 
register (SR0) that identifies the row and column location of 
the EU where a thread is located. A thread can be uniquely 
identified by the EUID and TID.  

ExecSize Execution Size. 

Execution Size Execution Size indicates the number of data elements 
processed by a GEN4 SIMD instruction. It is one GEN4 
instruction field and can be changed at a per instruction level. 

FLT_MAX The magnitude of the maximum represent-able single-
precision floating number according to IEEE-754 standard. 
FLT_MAX has an exponent of 0xFE and a mantissa of all one’s. 

fmax Same as FLT_MAX. 

GEN4 Core Alternative name for an EU in the GEN4 multi-processor 
system. 

GRF General Register File. This is the most commonly used read-
write register space organized as an array of 256-bit registers 
for a thread. 

ISA Instruction Set Architecture. The GEN4 ISA describes the 
instructions supported by a GEN4 EU. A sequence of GEN4 
instructions forms a thread executed on an EU. 

JIT Just-In-Time compiler 

LSB Least Significant Bit 

Message Messages are data packages transmitted from a thread to 
another thread, to another shared function or to another fixed 
function. Message passing is the primary communication 
mechanism of the GEN4 architecture. 

MRF Message Register File. This is the write-only register space, 
organized as an array of 256-bit registers, for a thread to 
communicate with shared functions or other threads.  

MSB Most Significant Bit 
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DQ Double Quad word (DQword). As a fundamental data type, DQ 
represents 16 bytes. 

POR Plan Of Record 

QW Quad Word (QWord). As a fundamental data type, QW 
represents 8 bytes. 

QQ Quad Quad word (QQword). As a fundamental data type, QQ 
represents 32 bytes. 

Sub-Register Subfield of a SIMD register. A SIMD register is an aligned fixed 
size register for a register file or a register type. For example, 
a GRF register, r2, is a 256-bit wide, 256-bit aligned register. 
A sub-register, r2.3:d, is the fourth dword of GRF register r2.  

SIMD Single Instruction Multiple Data. The term SIMD can be used 
to describe the kind of parallel processing architecture that 
exploits data parallelism at the instruction level. It can also be 
used to describe the instructions in such an architecture. 

SIP System IP. There is one global System IP register for all the 
threads. From a thread’s point of view, this is a virtual read-
only register. Upon an exception, hardware performs certain 
book-keeping functions and then jumps to SIP.  

SR State Register. The read-only registers containing the state 
information of the current thread, including the EUID/TID, 
Dispatcher Mask, and System IP.  

Thread A thread is an instance of a kernel program executed on an 
EU. The life cycle for a thread starts from the executing the 
first instruction after being dispatched from Thread Dispatcher 
to an EU to the execution of the last instruction – a send 
instruction with EOT that signals the thread termination. 
Threads in the GEN4 system may be independent from each 
other or communicate with each other through the Message 
Gateway share function. 

TID Thread Identifier. The 2-bit field within a thread state register 
(SR0) that identifies which out of the four possible thread slots 
on the EU is executing that thread. A thread can be uniquely 
identified by the EUID and TID.  

TS  Thread Spawner. TS is the second and the last fixed function 
stage of the media pipeline.  

V Immediate integer vector. As a numerical data type of 32 bits, 
an immediate integer vector of type V contains 8 signed 
integer elements with 4 bits each. The 4-bit integer element is 
in 2’s complement form. It may be used to specify the type of 
an immediate operand in an instruction. 
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VF Immediate floating point vector. As a numerical data type of 
32 bits, an immediate floating point vector of type VF contains 
4 floating point elements with 8-bit each. The 8-bit floating 
point element contains a sign field, a 3-bit exponent field and 
a 4-bit mantissa field. It may be used to specify the type of an 
immediate operand in an instruction. 

W Word. As a numerical data type of 16 bits, W represents a 
signed word integer.  It is used to specify the type of an 
operand in an instruction. 

URB Unified Return Buffer. The on-chip memory managed/shared 
by GEN4 Fixed Functions. Threads use the URB to return data 
that will be consumed either by a Fixed Function or other 
threads. 

UB Unsigned Byte integer.  A numerical data type of 8 bits. It may 
be used to specify the type of an operand in an instruction. 

UD Unsigned Double Word integer.  A numerical data type of 32 
bits. It may be used to specify the type of an operand in an 
instruction. 

UW Unsigned Word integer.  A numerical data type of 16 bits. It 
may be used to specify the type of an operand in an 
instruction. 

VFE Video Front End. VFE is the first fixed function stage of the 
media pipeline.  

 

9.1.3 Formats and Conventions 

In order to conveniently (and without ambiguity) describe the register files with 256-
bit wide registers that may contain various data types with different data element 
widths, it is important to use a consistent table format to represent the registers. 
Throughout this document, we will adopt the following table formats and conventions. 
When a register or a number is presented by a row, increasing order is always from 
right to left and then top down pictorially. In other words, for a bit field, the LSB to 
MSB is from right to left; for a byte sequence, the least significant byte to the most 
significant byte is also from right to left. This is consistent with the ‘Little Endian’ 
convention used by IA-32 machines. The following tables depict the layout formats for 
different data units. 
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7 6 5 4 3 2 1 0 Bits 

        A Byte 

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bits 

Byte 1 Byte 0 A Word 

  

31                    24 23                    16 15                     8 7                       0 Bits 

Byte 4 Byte 2 Byte 1 Byte 0 A DWord 

 

31 30 29 ..                         3 2 1 0 32 Bytes 

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 16 Words 

 

7 6 5 4 3 2 1 0 8 DWords 

 

7 6 5 4 3 2 1 0 16 DWords 

15 14 13 12 11 10 9 8  

With this convention, we note that the execution channels are logically viewed as from 
right to left too, which is a little bit unconventional. However, as shown in the GEN4 
Execution Environment Chapter, it matches with the bit order of the flag registers. 
This also impacts the view of a GRF register region, now the region origin is located at 
the upper-right corner and a region row is viewed from right to left.  
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10 EU Data Types 

10.1 Fundamental Data Types 

The fundamental data types in the GEN4 architecture are halfbyte, byte, word, 
doubleword (DW), quadword (QW), double quadword (DQ) and quad quadword (QQ). 
They are defined based on the number of bits of the data type, ranging from 4 bits to 
256 bits. As shown in Figure  10-1, a halfbyte contains 4 bits, a byte contains 8 bits, a 
word contains two bytes, and a doubleword (dword) contains two words, and so on. 
Halfbyte is a special data type such that it cannot be accessed directly as standalone 
data element. It is only allowed as a subfield of the numerical data type of “packed 
signed halfbyte integer vector” described in the next section.  

Figure  10-1. Fundamental data types 
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Low byte
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High byte
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Low wordHigh word
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Byte

Word

Doubleword
(DW)

3 0

Halfbyte*

Quadword
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0127
Double Quadword
(DQ)

0255
Quad Quadword
(QQ)

063

 

With the exception of halfbyte, the access of a data element to/from a GEN4 register 
or to/from memory must be aligned on the natural boundaries of the data type. The 
natural boundary for a word has an even-numbered address in unit of byte. The 
natural boundary for a doubleword has an address divisible by 4 bytes.  Similarly, the 
natural boundary for a quadword, double quadword and quad quadword has an 
address divisible by 8, 16, and 32 bytes, respectively. Quadword, double quadword 
and quad quadword do not have corresponding numerical data type. Instead, they are 
used to describe a group (a vector) of numerical data elements of smaller size align to 
larger natural boundaries.  
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10.2 Numerical Data Types 

The numerical data types defined in the GEN4 architecture include signed and 
unsigned integers and floating-point numbers (floats) of various numbers of bits. 
These numerical data types are pictorially illustrated in Figure  10-2 and Figure  10-3. 
Table  10-1 details the notation, size and numerical range of each data type. The 
largest numerical data type has 32 bits. 

Figure  10-2. Integer numerical data types 
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Figure  10-3. Floating point numerical data types 
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Table  10-1. Formats and ranges of numerical data types 

Notation Numerical Data Types Fundamental 
Data Type 

Range 

UB Unsigned Byte Integer Byte [0, 255] 

B Signed Byte Integer Byte [-128, 127] 

UW Unsigned Word Integer Word [0, 65535] 

W Signed Word Integer Word [-32768, 32767] 

UD Unsigned Doubleword Integer Doubleword [0, 232 – 1] 

D Signed Doubleword Integer Doubleword [–231, 231 – 1] 

F Single Precision Float Doubleword [–(2–2-23)127…–2-149, 0.0, 2-149… (2–2-

23)127] 

n/a Signed Halfbyte Integer Halfbyte [–8, 7] 

V Packed Signed Halfbyte Integer Vector Doubleword [–8, 7] 

n/a Restricted 8-bit Float Byte [–31…–0.125, 0, 0.125… 31] 

VF Packed Restricted Float Vector Doubleword [–31…–0.125, 0, 0.125… 31] 

 

10.2.1 Unsigned Integers 

Unsigned integers are unsigned binary numbers contained in a byte, a word or a 
doubleword. The range for an unsigned byte integer is from 0 to 255. The range for an 
unsigned word integer is from 0 to 65535. The range for an unsigned doubleword 
integer is from 0 to 232 – 1.  

The short hand notation for an unsigned byte integer, an unsigned word integer, and 
an unsigned doubleword integer is UB, UW, UD, respectively. 

10.2.2 Signed Integers 

Signed integers are signed binary number in 2’s complement form contained in a 
halfbyte, a byte, a word or a doubleword.  A signed halfbyte integer has a numerical 
range from –8 to 7 with the sign bit at bit 3.   A signed byte integer has a range from 
–128 to 127 with the sign at bit 7. A signed word integer is has a range from -32768 
to 32767 with the sign at bit 15. A signed doubleword integer has a range from –231 
to 231 – 1 with the sign at bit 31.  

The short hand notation for a signed byte integer, a signed word integer, and a signed 
doubleword integer is B, W, D, respectively.  
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10.2.3 Single Precision Floating-Point Numbers 

The single precision floating point numbers is contained in a doubleword. Floating 
point format is as defined in IEEE Standard 754 for Binary Floating-Point Arithmetic. 
Maximal representable number is (2–2-23)127 and the minimal number is – (2–2-23)127. 
The smallest fractional negative number –2-149 and the smallest fractional positive 
number is 2-149. Value 0.0 has no fractional parts.  

The short hand format notation for a single precision floating-point number is F.  

10.2.4 Packed Signed Half-Byte Integer Vector 

A packed signed halfbyte integer vector consists of 8 signed halfbyte integers 
contained in a doubleword. Each signed halfbyte integer element has a range from -8 
to 7 with the sign on bit 3. This numerical data type is only used by an immediate 
source operand of doubleword in a GEN4 instruction. It cannot be used for the 
destination operand or a non-immediate source operand. GEN4 hardware converts the 
32-bit vector into 8-element signed word vector by sign extension. This is illustrated 
in Figure  10-4. 

The short hand format notation for a packed signed half-byte vector is V. 

Figure  10-4. Converting a Packed Half-byte Vector to a 128-bit Signed Integer Vector 
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10.2.5 Packed 8-bit Restricted Float Vector 

A packed restricted float vector consists of 4 8-bit restricted floats contained in a 
doubleword. Each restricted float has the sign at bit 7, a 3-bit coded exponent in bits 
4 to 6, a 4-bit fraction in bits 0 to 3, and an implied integer 1. The exponent is in 
excess-3 format – having a bias of 3. Restricted float provides zero, positive/negative 
normalized numbers with a small range (3-bit exponent) and small precision (4-bit 
fraction). This numerical data type is only used by an immediate source operand of 
doubleword in a GEN4 instruction. It cannot be used for the destination operand, or a 
non-immediate source operand. 

Figure  10-5 shows how to convert an 8-bit restricted float into a single precision float. 
Converting a 3-bit exponent with a bias of 3 to an 8-bit exponent with a bias of 127 is 
by adding 4, or equivalently copying bit 2 to bit 7 and putting the inverted bit 2 to bits 
6:2. A special logic is also needed to take care of positive/negative zeros.   

Figure  10-5.  Conversion from a Restricted 8-bit Float to a Single-Precision Float 
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6 0sign
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Table  10-2 shows all possible numbers of the restricted 8-bit float. Only normalized 
float numbers can be represented, including positive and negative zero, and positive 
and negative finite numbers. Normalized infinites, NaN and denormalized float 
numbers cannot be represented by this type. It should be noted that this 8-bit floating 
point format does not follow IEEE-754 convention in describing numbers with small 
magnitudes. Specifically, when the exponent field is zero and the fraction field is not 
zero, an implied one is still present instead of taking a denormalized form (without an 
implied one). This results in a simple implementation but with a smaller dynamic 
range – the magnitude of the smallest non-zero number is 0.125.  
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Table  10-2. Example of restricted 8-bit float numbers 

Restricted 8-bit Float Extended 8-
bit Exponent  

Class 

Hex # Sign 
[7] 

Exponent 
[6:4] 

Fraction [3:0]  

Floating number 
in decimal 

0x70-
0x7F 

0 111 0000 … 
1111 

1000 
0011 

16 … 31 

0x60-
0x6F 

0 110 0000 … 
1111 

1000 
0010 

8 … 15.5 

0x50-
0x5F 

0 101 0000 … 
1111 

1000 
0001 

4 … 7.75 

0x40-
0x4F 

0 100 0000 … 
1111 

1000 
0000 

2 … 3.875 

0x30-
0x3F 

0 011 0000 … 
1111 

0111 
1111 

1 … 1.9375 

0x20-
0x2F 

0 010 0000 … 
1111 

0111 
1110 

0.5 … 0.96875 

0x10-
0x1F 

0 001 0000 … 
1111 

0111 
1101 

0.25 … 
0.484375 

0x01-
0x0F 

0 000 0001 … 
1111 

0111 
1100 

0.125 … 
0.2421875 

Positiv
e 
Norma
lized 
Float 

0x00 0 000 0000 0000 
0000 

0 (+zero) 

0xF0-
0xFF 

1 111 0000 … 
1111 

1000 
0011 

-16 … -31 

0xE0-
0xEF 

1 110 0000 … 
1111 

1000 
0010 

-8 … -15.5 

0xD0-
0xDF 

1 101 0000 … 
1111 

1000 
0001 

-4 … -7.75 

0xC0-
0xCF 

1 100 0000 … 
1111 

1000 
0000 

-2 … -3.875 

0xB0-
0xBF 

1 011 0000 … 
1111 

0111 
1111 

-1 … -1.9375 

0xA0-
0xAF 

1 010 0000 … 
1111 

0111 
1110 

-0.5 … -
0.96875 

0x90-
0x9F 

1 001 0000 … 
1111 

0111 
1101 

-0.25 … -
0.484375 

0x81-
0x8F 

1 000 0001 … 
1111 

0111 
1100 

-0.125 … -
0.2421875 

Negati
ve 
Norma
lized 
Float 

0x80 1 000 0000 0000 
0000 

-0 (-zero) 

Figure  10-6 shows the conversion of a packed exponent-only float to a 4-element 
vector of single precision floats. 

The short hand format notation for a packed signed half-byte vector is VF. 
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Figure  10-6.  Converting a Packed Restricted Float Vector to a 128-bit Float Vector 
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10.3 Floating Point Modes 

GEN4 architecture supports two floating point operation modes, namely IEEE floating 
point mode (IEEE mode) and alternative floating point mode (ALT mode). Both modes 
follow mostly the requirements in IEEE-754 but with different deviations. The 
deviations will be described in details in later sections. The primary difference between 
these modes is on the handling of Infs, NaNs and denorms. The IEEE floating point 
mode may be used to support newer versions of 3D graphics API Shaders and the 
alternative floating point mode may be used to support early Shader versions.  

These two modes are supported by all units that perform floating point computations, 
including GEN4 execution units, GEN4 shared functions like Extended Math, the 
Sampler and the Render Cache color calculator, and fixed functions like VF, Clipper, 
SF and WIZ. Host software sets floating point mode through the fixed function state 
descriptors for 3D pipeline and the interface descriptor for media pipeline. Therefore 
different modes may be associated with different threads running concurrently. 
Floating point mode control for EU and shared functions are based on the floating 
point mode field (bit 0) of cr0 register.  

10.3.1 IEEE Floating Point Mode  

10.3.1.1 Partial Listing of Honored IEEE-754 Rules 

Here is a summary of expected 32-bit floating point behaviors in GEN4 architecture. 
Refer to IEEE-754 for topics not mentioned. 

• INF – INF = NaN 

• 0 * (+/–)INF = NaN  

• 1 / (+INF) = +0 and  1 / (–INF) = –0 

• (+/–)INF / (+/–)INF = NaN as A/B = A * (1/B) 

• INV (+0) = RSQ (+0) = +INF, INV (–0) = RSQ (–0) = –INF, and SQRT (–0) = –0 

• RSQ (–finite) = SQRT (–finite) = NaN 

• LOG (+0) = LOG (–0) = –INF, LOG (–finite) = LOG (–INF) = NaN 

• NaN (any OP) any-value = NaN with one exception for min/max mentioned below. 
Resulting NaN may have different bit pattern than the source NaN. 
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• Normal comparison with conditional modifier of EQ, GT, GE, LT, LE, when either or 
both operands is NaN, returns FALSE. Normal comparison of NE, when either or 
both operands is NaN, returns TRUE. 
⎯ Note: Normal comparison is either a cmp instruction or an instruction with 

conditional modifier 

• Special comparison cmpn with conditional modifier of EQ, GT, GE, LT, LE, when 
the second source operand is NaN, returns TRUE, regardless of the first source 
operand, and when the second source operand is not NaN, but first one is, returns 
FALSE. Cmpn of NE, when the second source operand is NaN, returns FALSE, 
regardless of the first source operand, and when the second source operand is not 
NaN, but first one is, returns TRUE. 
⎯ This is used to support the proposed IEEE-754R rule on min or max 

operations. For which, if only one operand is NaN, min and max operations 
return the other operand as the result. 

• Both normal and special comparisons of any non-NaN value against +/– INF 
return exact result according to the conditional modifier. This is because that 
infinities are exact representation in the sense that +INF = +INF and –INF = –
INF.  
⎯ NaN is unordered in the sense that NaN != NaN.  

10.3.1.2 Complete Listing of Deviations or Additional Requirements vs. 
IEEE-754 

For a result that cannot be represented precisely by the floating point format, GEN4 
execution unit uses rounding toward zero (which is a bit-field truncation of the 
magnitude portion of a floating point data in sign-magnitude form) to produce a result 
to the closest representable value. This ends up with a result that is within 1 Unit-
Last-Place (1 ULP) of the infinitely precise result.  

• GEN4 execution unit can report floating point overflow and NaN into conditional 
flags. Hewever, there is no support for floating point exceptions, status bits or 
traps. 

• Denorms are flushed to sign-preserved zero on input and output of any floating 
point mathematical operation. 
⎯ The exception to the above point about flushing denorms is that any I/O or 

data movement operation that does not manipulate the data (such as point 
sampling float data, or executing any raw “mov” instruction, or any sort of 
conditional raw “mov” if present) must not alter data at all (so a denorm 
remains denorm). Note that doing something that amounts to just moving 
data, but isn’t explicitly, such as multiplying a number by 1.0f is not detected 
as just a raw “mov”, and in this case a denorm flush would happen. 

• NaN input to an operation obviously always produces NaN on output, however the 
exact bit pattern of the NaN is not required to stay the same (unless the operation 
is a raw “mov” instruction which does not alter data at all.) 

• x*1.0f must always result in x (except denorm flushed and possible bit pattern 
change for NaN). 

• x +/- 0.0f must always result in x (except denorm flushed and possible bit pattern 
change for NaN). But -0 + 0 = +0. 

• Fused operations (such as mac, dp4, dp3, etc.) may produce intermediate results 
out of 32-bit float range, but whose final results would be within 32-bit float range 
if intermediate results were kept at greater precision. In this case, 
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implementations are permitted to produce either the correct result, or else +/-INF. 
Thus, compatibility between a fused operation, such as “mac”, with the unfused 
equivalent, “mul” followed by “add” in this case, is not guaranteed. 
⎯ As the accumulator registers have more precision than 32-bit float, any 

instruction with accumulator as a source/destination operand may produce a 
different result than that using GRF/MRF registers. 

• API Shader divide operations are implemented as x*(1.0f/y). With the two-step 
method, x*(1.0f/y), the multiply and the divide each independently operate at the 
32-bit floating point precision level (accuracy to 1 ULP).  

• See the Type Conversion section below for rules on converting to/from float 
representations. 

10.3.1.3 Comparison of Floating Point Numbers 

The following tables (Table  10-3 through Table  10-8) detail the rules for floating point 
comparison. In the tables, “+/-Fin” stands for a positive or negative finite precision 
floating point number. Result is either a true (T) or false (FALSE or F). Each row 
corresponds to a fixed <src0> and each column corresponds to a fixed <src1>. When 
comparing two positive finite numbers (or two negative finite numbers), the result can 
be T or F depending on the values. Therefore, the corresponding fields in the following 
tables are marked as T/F. 

Table  10-3.  Results of “Greater-Than” Comparison – CMP.G 

src0     src1 -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN 

-inf FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 

-Fin T T/F FALSE FALSE FALSE FALSE FALSE FALSE FALSE 

-denorm T T FALSE FALSE FALSE FALSE FALSE FALSE FALSE 

-0 T T FALSE FALSE FALSE FALSE FALSE FALSE FALSE 

+0 T T FALSE FALSE FALSE FALSE FALSE FALSE FALSE 

+denorm T T FALSE FALSE FALSE FALSE FALSE FALSE FALSE 

+Fin T T T T T T T/F FALSE FALSE 

+inf T T T T T T T FALSE FALSE 

NaN FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 
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Table  10-4. Results of “Less-Than” Comparison – CMP.L 

src0     src1 -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN 

-inf FALSE T T T T T T T FALSE 

-Fin FALSE T/F T T T T T T FALSE 

-denorm FALSE FALSE FALSE FALSE FALSE FALSE T T FALSE 

-0 FALSE FALSE FALSE FALSE FALSE FALSE T T FALSE 

+0 FALSE FALSE FALSE FALSE FALSE FALSE T T FALSE 

+denorm FALSE FALSE FALSE FALSE FALSE FALSE T T FALSE 

+Fin FALSE FALSE FALSE FALSE FALSE FALSE T/F T FALSE 

+inf FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 

NaN FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 

Table  10-5. Results of “Equal-To” Comparison – CMP.E 

src0     src1 -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN 

-inf T FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 

-Fin FALSE T/F FALSE FALSE FALSE FALSE FALSE FALSE FALSE 

-denorm FALSE FALSE T T T T FALSE FALSE FALSE 

-0 FALSE FALSE T T T T FALSE FALSE FALSE 

+0 FALSE FALSE T T T T FALSE FALSE FALSE 

+denorm FALSE FALSE T T T T FALSE FALSE FALSE 

+Fin FALSE FALSE FALSE FALSE FALSE FALSE T/F FALSE FALSE 

+inf FALSE FALSE FALSE FALSE FALSE FALSE FALSE T FALSE 

NaN FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 

Table  10-6. Results of “Not-Equal-To” Comparison – CMP.NE 

src0     src1 -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN 

-inf FALSE T T T T T T T T 

-Fin T T/F T T T T T T T 

-denorm T T FALSE FALSE FALSE FALSE T T T 

-0 T T FALSE FALSE FALSE FALSE T T T 

+0 T T FALSE FALSE FALSE FALSE T T T 

+denorm T T FALSE FALSE FALSE FALSE T T T 

+Fin T T T T T T T/F T T 

+inf T T T T T T T FALSE T 

NaN T T T T T T T T T 
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Table  10-7. Results of “Less-Than Or Equal-To” Comparison – CMP.LE 

src0     src1 -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN 

-inf T T T T T T T T FALSE 

-Fin FALSE T/F T T T T T T FALSE 

-denorm FALSE FALSE T T T T T T FALSE 

-0 FALSE FALSE T T T T T T FALSE 

+0 FALSE FALSE T T T T T T FALSE 

+denorm FALSE FALSE T T T T T T FALSE 

+Fin FALSE FALSE FALSE FALSE FALSE FALSE T/F T FALSE 

+inf FALSE FALSE FALSE FALSE FALSE FALSE FALSE T FALSE 

NaN FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 

Table  10-8. Results of “Greater-Than or Equal-To” Comparison – CMP.GE 

src0     src1 -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN 

-inf T FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 

-Fin T T/F FALSE FALSE FALSE FALSE FALSE FALSE FALSE 

-denorm T T T T T T FALSE FALSE FALSE 

-0 T T T T T T FALSE FALSE FALSE 

+0 T T T T T T FALSE FALSE FALSE 

+denorm T T T T T T FALSE FALSE FALSE 

+Fin T T T T T T T/F FALSE FALSE 

+inf T T T T T T T T FALSE 

NaN FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 

10.3.1.4 Min/Max of Floating Point Numbers 

A special comparison called Compare-NaN is introduced in GEN4 architecture to 
handle the difference of above mentioned floating point comparison and the rules on 
supporting MIN/MAX. To compute the MIN or MAX of two floating point numbers, if 
one of the numbers is NaN and the other one is not, MIN or MAX of the two numbers 
returns the one that is not NaN. When two numbers are NaN, MIN or MAX of the two 
numbers returns a NaN, which may not have the same binary form as any of the two 
numbers. 
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When using CMPN for MIN/MAX, the flag polarity for CMPN and SEL instructions must 
be the same: 

 

Evaluations GEN4 Instructions 

MIN(src0, src1) = (src0 < src1) ? src0 : src1 cmpn.l.f0.0 null src0 src1 

(f0.0) sel dst src0 src1 

MAX(src0, src1) = (src0 >= src1) ? src0 : src1 cmpn.ge.f0.0 null src0 src1 

(f0.0) sel dst src0 src1 

The following tables (Table  10-9 through Table  10-14) detail the rules for this special 
compare-NaN operation for floating point numbers. Notice that excepting “Not-Equal-
To” comparison-NaN, last columns in all other tables have ‘T’.  

Table  10-9. Results of “Greater-Than” Comparison-NaN – CMPN.G 

src0     src1 -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN 

-inf FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE T 

-Fin T T/F FALSE FALSE FALSE FALSE FALSE FALSE T 

-denorm T T FALSE FALSE FALSE FALSE FALSE FALSE T 

-0 T T FALSE FALSE FALSE FALSE FALSE FALSE T 

+0 T T FALSE FALSE FALSE FALSE FALSE FALSE T 

+denorm T T FALSE FALSE FALSE FALSE FALSE FALSE T 

+Fin T T T T T T T/F FALSE T 

+inf T T T T T T T FALSE T 

NaN FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE T 
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Table  10-10. Results of “Less-Than” Comparison-NaN – CMPN.L 

src0     src1 -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN 

-inf FALSE T T T T T T T T 

-Fin FALSE T/F T T T T T T T 

-denorm FALSE FALSE FALSE FALSE FALSE FALSE T T T 

-0 FALSE FALSE FALSE FALSE FALSE FALSE T T T 

+0 FALSE FALSE FALSE FALSE FALSE FALSE T T T 

+denorm FALSE FALSE FALSE FALSE FALSE FALSE T T T 

+Fin FALSE FALSE FALSE FALSE FALSE FALSE T/F T T 

+inf FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE T 

NaN FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE T 

Table  10-11.  Results of “Equal-To” Comparison-NaN – CMPN.E 

src0     src1 -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN 

-inf T FALSE FALSE FALSE FALSE FALSE FALSE FALSE T 

-Fin FALSE T/F FALSE FALSE FALSE FALSE FALSE FALSE T 

-denorm FALSE FALSE T T T T FALSE FALSE T 

-0 FALSE FALSE T T T T FALSE FALSE T 

+0 FALSE FALSE T T T T FALSE FALSE T 

+denorm FALSE FALSE T T T T FALSE FALSE T 

+Fin FALSE FALSE FALSE FALSE FALSE FALSE T/F FALSE T 

+inf FALSE FALSE FALSE FALSE FALSE FALSE FALSE T T 

NaN FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE T 

Table  10-12.  Results of “Not-Equal-To” Comparison-NaN – CMPN.NE 

src0     src1 -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN 

-inf FALSE T T T T T T T FALSE 

-Fin T T/F T T T T T T FALSE 

-denorm T T FALSE FALSE FALSE FALSE T T FALSE 

-0 T T FALSE FALSE FALSE FALSE T T FALSE 

+0 T T FALSE FALSE FALSE FALSE T T FALSE 

+denorm T T FALSE FALSE FALSE FALSE T T FALSE 

+Fin T T T T T T T/F T FALSE 

+inf T T T T T T T FALSE FALSE 

NaN T T T T T T T T FALSE 
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Table  10-13.  Results of “Less-Than Or Equal-To” Comparison-NaN – CMPN.LE 

src0     src1 -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN 

-inf T T T T T T T T T 

-Fin FALSE T/F T T T T T T T 

-denorm FALSE FALSE T T T T T T T 

-0 FALSE FALSE T T T T T T T 

+0 FALSE FALSE T T T T T T T 

+denorm FALSE FALSE T T T T T T T 

+Fin FALSE FALSE FALSE FALSE FALSE FALSE T/F T T 

+inf FALSE FALSE FALSE FALSE FALSE FALSE FALSE T T 

NaN FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE T 

 

Table  10-14.  Results of “Greater-Than or Equal-To” Comparison-NaN – CMPN.GE 

src0     src1 -inf -Fin -denorm -0 +0 
+denor

m +Fin +inf NaN 

-inf T FALSE FALSE FALSE FALSE FALSE FALSE FALSE T 

-Fin T T/F FALSE FALSE FALSE FALSE FALSE FALSE T 

-denorm T T T T T T FALSE FALSE T 

-0 T T T T T T FALSE FALSE T 

+0 T T T T T T FALSE FALSE T 

+denorm T T T T T T FALSE FALSE T 

+Fin T T T T T T T/F FALSE T 

+inf T T T T T T T T T 

NaN FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE T 
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10.3.2 Alternative Floating Point Mode 

The key characteristics of the alternative floating point mode is that NaN, Inf and 
denorm are not expected for an application to pass into the graphics pipeline, and the 
graphics hardware must not generate NaN, Inf or denorm as computation result. For 
example, a result that is larger than the maximum representable floating point 
number is expected to be flushed to the largest representable floating point number, 
i.e., +FLT_MAX. The FLT_MAX has an exponent of 0xFE and a mantissa of all one’s, 
which is the same for IEEE floating point mode.  

Here is the complete list of the differences of legacy graphics mode from the relaxed 
IEEE-754 floating point mode. 

• Any +/- INF result must be flushed to +/- FLT_MAX, instead of being output as 
+/- INF. 

• Extended mathematics functions of log(), rsq() and sqrt() take the absolute value 
of the sources before computation to avoid generating INF and NaN results.  

Table  10-15 shows the support of these differences in various hardware units.  

Table  10-15. Supported Legacy Float Mode and Impacted Units 

IEEE-754 Deviations 
VF Clippe

r 
SF WIZ EU 

EM 
Sample

r 
RC 

Any +/- INF result flushed to  
+/- FLT_MAX 

Y Y Y Y Y Y Y Y 

Log, rsq, sqrt take abs() of 
sources 

N/A N/A N/A N/A N/A Y N/A N/A 

Table  10-16 shows some of the desired or recommended alternative floating point 
mode behaviors that do not have hardware design impact. The reasons of not needing 
special hardware support for these items are also provided.  
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Table  10-16. Dismissed legacy behaviors 

Suggested IEEE-754 Deviations Reason for Dismiss 

Mov forces (+/-)INF to (+/-)FLT_MAX (+/-)INF is never present as input 

(+/-)INF – (+/-)INF = +/- FLT_MAX 
instead of NaN 

(+/-)INF is never present as input 

Denorm must be flushed to zero in all 
cases (including trivial mov and point 
sampling) 

Denorm is never present as input 

Anything*0=0 (including NaN*0=0 and 
INF*0=0) 

NaN and INF are never present as input 

Except propagated NaN, NaN is never 
generated 

NaN is never present as input and GEN4 never 
generates NaN based on rules in the previous table 

An input NaN gets propagated excepting 
(a)-(d) 

NaN is never present as input 

(a) Rcp (and rsq) of 0 yields FLT_MAX N/A, as it is already covered by the general rule 
“Any +/- INF result flushed to +/- FLT_MAX” 

(b) Sampler honors 0/0 = 0 as if (1/0)*0 There is no divide in Sampler 

I Rcp (and rsq) of INF yields +/- 0 (+/-)INF is never present as input 

(d) Sampler honors INF/INF = 0 as if 
(1/INF)=0 followed by Anything*0 = 0 

There is no divide in Sampler 
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10.4 Type Conversion 

10.4.1 Float to Integer 

Converting from float to integer is based on rounding toward zero. If the floating point 
value is +0, -0, +Denorm, -Denorm, +NaN –r -NaN, the resulting integer value is 
always 0. If the floating point value is positive infinity (or negative infinity), the 
conversion result takes the largest (or the smallest) represent-able integer value. If 
the floating point value is larger (or smaller) than the largest (or the smallest) 
represent-able integer value, the conversion result takes the largest (or the smallest) 
represent-able integer value. The following table shows these special cases. The last 
two rows are just examples. They can be any number outside the represent-able 
range of the output integer type (UD, D, UW, W, UB and B). 

 

Input Format Output Format 

F UD D UW W UB B 

+/- Zero 00000000 00000000 00000000 00000000 00000000 00000000 
+/- Denorm 00000000 00000000 00000000 00000000 00000000 00000000 

NAN 00000000 00000000 00000000 00000000 00000000 00000000 
-NAN 00000000 00000000 00000000 00000000 00000000 00000000 
INF FFFFFFFF 7FFFFFFF 0000FFFF 00007FFF 000000FF 0000007F 
-INF 00000000 80000000 00000000 00008000 00000000 00000080 

+232 (*) FFFFFFFF 7FFFFFFF 0000FFFF 00007FFF 000000FF 0000007F 
-232-1 (*) 00000000 80000000 00000000 00008000 00000000 00000080 

10.4.2 Integer to Integer with Same or Higher Precision 

Converting an unsigned integer to a signed or an unsigned integer with higher 
precision is based on zero extension. 

Converting an unsigned integer to a signed integer with the same precision is based 
on modular wrap-around. Without saturation, a larger than represent-able number 
becomes a negative number. With saturation, a larger than represent-able number is 
saturated to the largest positive represent-able number.  

Converting a signed integer to a signed integer with higher precision is based on sign 
extension. 

Converting a signed integer to an unsigned integer with higher precision is based on 
zero extension. Without saturation, a negative number becomes a large positive 
number with the sign bit wrapped-up. With saturation, a negative number is saturated 
to zero.  
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10.4.3 Integer to Integer with Lower Precision 

Converting a signed or an unsigned integer to a signed or an unsigned integer with 
lower precision is based on bit truncation. Without saturation, only the lower bits are 
kept in the output regardless of the sign-ness of input and output. With saturation, a 
number that is outside the represent-able range is saturated to the closest represent-
able value. 

10.4.4 Integer to Float 

Converting a signed or an unsigned integer to a single precision float number is to 
round to the closest representable float number. For any integer number with 
magnitude less than or equal to 24 bits, resulting float number is a precise 
representation of the input. However, if it is more than 24 bits, LSBs are truncated.  
This truncation is performed in sign-magnitude domain, thus, is equivalent to floating 
point rounding toward zero operation. 
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11 Execution Environment 

11.1 Overview 

GEN4 instruction set is a general-purpose data-parallel instruction set optimized for 
graphics and media computations. Supports for 3D graphics API (application program 
interface) Shader instructions are mostly native, meaning that GEN4 provides efficient 
execution for Shader programs. Depending on the Shader program operation modes 
(for example, a Vertex Shader may be executed on a base of a vertex-pair, while a 
Pixel Shader may be executed on a base of a 16-pixel group), translation from 3D 
graphics API Shader instruction streams into GEN4 native instructions may be 
required. In addition, there are many specific capabilities to accelerate media 
applications. The following list provides a summary of the GEN4 instruction set. 

• GEN4 ISA support SIMD (single instruction multiple data) instructions. The 
number of data elements per instruction depends on the data type. 

• GEN4 ISA supports SIMD parallel arithmetic, vector arithmetic, logical, and SIMD 
control/branch instructions. 

• GEN4 ISA supports instruction level variable-width SIMD execution. 

• GEN4 ISA supports conditional SIMD execution via destination mask, predication, 
and execution mask. 

• GEN4 ISA supports in-place format conversion and mixed data type computations. 

• GEN4 ISA supports instruction compression. 

• A GEN4 instruction may be executed in multiple cycles over a SIMD execution 
pipeline. 

• Most GEN4 instructions have three operands. Some instructions have additional 
implied source and destination operands. Some instructions have explicit dual 
destinations. 

• GEN4 ISA supports region-based register addressing. 

• GEN4 ISA supports direct and indirect (indexed) register addressing. 

• GEN4 instructions may have a scalar and vector immediate source operand. 

• Higher precision accumulator registers are architecturally visible. 

• Self-modifying code is not allowed (instruction streams, including instruction 
caches, are read-only). 
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11.2 Primary Usage Models 

In describing the usage models of GEN instruction set, it is inevitable to forward 
reference terminology, syntax and instructions detailed later in this specification. For 
clarity reasons, not all forward references will be provided in this section as well as 
subsequent sections. For example, reference to binary instruction fields such as 
Align1, Align16, Compr, SecHalf, etc., can be found in the Instruction Summary 
chapter. And assembly instruction syntax can be found in the Instruction Summary 
chapter and Instruction Reference chapter. 

11.2.1 AOS and SOA Data Structures 

With the Align1 and Align16 access modes, GEN4 instruction set provides effective 
SIMD computation regardless whether data are arranged in array of structure (AOS) 
form or in structure of array (SOA) form. The AOS and SOA data structures are 
illustrated by the examples in Figure  11-1. The example shows two different ways of 
storing four vectors in four SIMD registers. For simplicity, data vector and SIMD 
register both have four data elements. The four data elements in a vector are denoted 
by X, Y, Z and W just as for a vertex in 3D geometry.  The AOS structure stores one 
vector in a register and the next vector in another register. The SOA structure stores 
one data element of each vector in a register and the next element of each vector in 
the next register and so on. It is obvious in this case the two structures can be related 
by a matrix transpose operation. 

Figure  11-1. AOS and SOA data structures 

AOS — Array of Structure
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Transpose

 

GEN4 3D and media applications take advantage of such broad architecture support 
and use both AOS and SOA data arrangements. 
• Vertices in 3D Geometry (Vertex Shader and Geometry Shader) are arranged in 

AOS structure and run on SIMD4x2 and SIMD4 modes, respectively, as detailed 
below. 

• Pixels in 3D Rasterization (Pixel Shader) are arranged in SOA structure and run on 
SIMD8 and SIMD16 modes as detailed below. 

• Pixels in media are primarily arranged in SOA structure, and occasionally in AOS 
structure with possible mixed mode of operations that use region-based 
addressing extensively. 
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These are preferred methods; alternative arrangements may also be possible. Shared 
function resources provide data transpose capability to support both modes of 
operations: The sampler has a transpose for sample reads, the data port has a 
transpose for render cache writes, and the URB unit has a transpose for URB writes. 

The following 3D graphics API Shader instruction will be used in the following sections 
to illustrate various modes of operations: 

add    <dst>.xyz    <src0>.yxzw    <src1>.zwxy  

This example is an SIMD instruction that takes two source operands <src0> and 
<src1>, performs addition operation (add), and store the additions to the destination 
operand <dst>.  Each operand contains four floating point data elements. The data 
type is determined by the instruction opcode. This instruction also uses source swizzle 
modifier (.yxzw for <src0> and .zwxy for <src1> and destination mask modifier 
(.xyz). Please refer to programming specifications of 3D graphics API Shader 
instructions for more details. 

A physical GRF register has 256 bits, which may be used to store 8 floating point data 
elements. For 3D graphics usage, the mode of operation is (loosely) termed after the 
data structure as SIMDmxn, where “m” is a numerical term describing the size of 
vector and “n” is the number of concurrent program flows executed in SIMD.  

• Execution with AOS data structures 
⎯ SIMD4 (short for SIMD4x1) stands for the mode of operation where a 

SIMD instruction operates on 4-element vectors stored packed in the 
registers. There is only one program flow.   

⎯ SIMD4x2 standards for the SIMD operation based on a pair of 4-element 
vectors stored in a register. There are effectively two programs running side 
by side with one vector per program.  

• Execution with SOA data structures – also referred to as “channel serial” execution 
⎯ SIMD8 (short for SIMD1x8) standards for the SIMD operation based on the 

SOA data structure where one register contains one data element (the same 
one) of 8 vectors. Effectively, there are 8 concurrent program flows.  

⎯ SIMD16 (short for SIMD1x16) is a special term indicating the use of 
instruction compression whereas each compressed SIMD instruction operates 
on a pair of registers that contains one data element (the same one) of 16 
vectors. SIMD16 has 16 concurrent program flows. 

11.2.2 SIMD4 Mode of Operation 

With a register mapping of <src0> to doublewords 0-3 of r2, <src1> to doublewords 
4-7 of r2 and <dst> to doublewords 0-3 of r3, the example 3D graphics API Shader 
instruction can be translated into the following GEN4 instruction: 

add (4)    r3<4>.xyz:f    r2<4>.yzwx:f    r2.4<4>.zwxy:f    {NoMask} 

Without diving too much into the syntax definition of a GEN4 instruction, it is clear 
that a GEN4 instruction also takes two source operands and one destination operands. 
The second term, (4), is the execution size that determines the number of data 
elements processed by the SIMD instruction. It is similar to the term SIMD Width used 
in the literature. Each operand is described by the register region parameters such as 
‘<4>’ and data type (e.g. “:f”). These will be detailed in Section  11.3. The instruction 
option field, {NoMask}, ensure that the execution occurs for the execution channels 
shown in the instruction, instead of, possibly, being masked out by the conditional 
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masks of the thread (See Instruction Summary chapter for definition of MaskCtrl 
instruction field). 

The operation of this GEN4 instruction is illustrated in Figure  11-2. In this example, 
both source operands share the same physical GRF register r2. The two are 
distinguished by the subregister number.  The source swizzles control the routing of 
source data elements to the parallel adders corresponding to the destination data 
elements.  The shaded areas in the destination register r3 are not modified.  In 
particular, doublewords 4-7 are unchanged as the execution size is 4; doubleword 3 is 
unchanged due to the destination mask setting. 

In this mode of operation, there is only one program flow – any branch decision will 
be based on a scalar condition and apply to the whole vector of four elements.  Option 
{NoMask} ensures that the instruction is not subject to the masks. In fact, most of 
the instructions in a thread should have {NoMask} set. 

Even though the execution only performs four parallel add operations, the GEN4 
instruction still executes in 2 cycles (with no useful computation in the second cycle).  

Figure  11-2. A SIMD4 Example 
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r3

ZW XY ZW XY

ZW XY

255 0

 

11.2.3 SIMD4x2 Mode of Operation 

In this mode, two corresponding vectors from the two program flows fill a GEN4 
physical register. With a register mapping of <src0> to r2, <src1> to r3 and <dst> to 
r4, the example 3D graphics API Shader instruction can be translated into the 
following GEN4 instruction: 

add (8)    r4<4>.xyz:f    r2<4>.yxzw:f    r3<4>.zwxy:f 

This instruction is subject to the execution mask, which initiated from the dispatch 
mask. If both program flows are available (e.g. Vertex Shader executed with two 
active vertices), the dispatch mask is set to 0x00FF. The operation of this GEN4 
instruction is illustrated in Figure  11-3 (a). The source swizzles control the routing of 
source data elements to the parallel adders corresponding to the destination data 
elements. The shaded areas in the destination register r3 (doublewords 3 and 7) are 
unchanged due to the destination mask setting. If only one program flow is available 
(e.g. the same SIMD4x2 Vertex Shader with only one active vertex), the dispatch 
mask is set to 0x000F. The operation of the same instruction is shown in Figure  11-3 
(b).  
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Figure  11-3. SIMD4x2 Examples with Different Emasks 
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(a) SIMD4x2 with Emask = 0x00FF (b) SIMD4x2 with Emask = 0x000F  

The two source operands only need to be 16-byte aligned, not have to be GRF register 
aligned. For example, the first source operand could be a 4-element vector (e.g. a 
constant) stored in doublewords 0-3 in r2, which is shared by the two program flows. 
The example 3D graphics API Shader instruction can then be translated into the 
following GEN4 instruction: 

add (8)    r4<4>.xyz:f    r2<0>.yzwx:f    r3<4>.zwxy:f 

The only difference here is that the vertical stride of the first source is 0. The 
operation of this GEN4 instruction is illustrated in Figure  11-4. 

Figure  11-4. A SIMD4x2 Example with a Constant Vector Shared by Two Program Flows 
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11.2.4 SIMD16 Mode of Operation 

With 16 concurrent program flows, one element of a vector would take two GRF 
registers. In this mode, two corresponding vectors from the two program flows fill a 
GEN4 physical register.  

With the following register mappings, 

 <src0>:  r2-r9 (with 16 X data elements in r2-r3, Y in r4-5, Z in r6-7 and W in r8-9), 
<src1>:   r10-r17,  
<dst>:  r18-r25,  

the example 3D graphics API Shader instruction can be translated into the following 
three GEN4 instructions: 

add (16)    r18<1>:f    r4<8;8,1>:f    r14<8;8,1>:f   {Compr}  // dst.x = src0.y + src1.z 
add (16)    r20<1>:f    r6<8;8,1>:f    r16<8;8,1>:f   {Compr}  // dst.y = src0.z + src1.w 
add (16)    r22<1>:f    r8<8;8,1>:f    r10<8;8,1>:f   {Compr}  // dst.z = src0.w + src1.x 

The three GEN4 instructions correspond to the three enabled destination masks. All 
instructions are compressed instructions with instruction option of {Compr} (See 
Instruction Summary chapter for definition of ComprCtrl field in GEN4 instruction 
word). All operands are even-aligned GRF registers. As there is no output for the W 
elements of <dst>, no instruction is needed for that element. The first instruction 
inputs the Y elements of <src0> and the Z elements of <src1> and outputs the X 
elements of <dst>. The operation of this instruction is shown in Figure  11-5.  

With the number of program flows more than one, the above instructions also subject 
to execution mask. The 16-bit dispatch mask is partitioned into four groups with four 
bits each. For Pixel Shader generated by the Windower, each 4-bit group corresponds 
to a 2x2 pixel subspan. If a subspan is not valid for a Pixel Shader instance, the 
corresponding 4-bit group in the dispatch mask is not set. Therefore, the same 
instructions can be used independent of the number of available subspans without 
creating bogus data in the subspans that are not valid. 

Figure  11-5. A SIMD16 Example 
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Similar to SIMD4x2 mode, a constant may also be shared for the 16 program flows. 
For example, the first source operand could be a 4-element vector (e.g. a constant) 
stored in doublewords 0-3 in r2 (AOS format). The example 3D graphics API Shader 
instruction can then be translated into the following GEN4 instruction: 

add (16)    r18<1>:f    r2.1<0;1,0>:f    r14<8;8,1>:f   {Compr} // dst.x = src0.y + src1.z 
add (16)    r20<1>:f    r2.2<0;1,0>:f    r16<8;8,1>:f   {Compr} // dst.y = src0.z + src1.w 
add (16)    r22<1>:f    r2.3<0;1,0>:f    r10<8;8,1>:f   {Compr} // dst.z = src0.w + src1.x 

The register region of the first source operand represents a replicated scalar. The 
operation of the first GEN4 instruction is illustrated in Figure  11-6. 

Figure  11-6. Another SIMD16 Example with an AOS Shared Constant 
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11.2.5 SIMD8 Mode of Operation 

Each compressed instruction has two correspond uncompressed instructions. Taking 
the example instruction shown in Figure  11-6, it is equivalent to the following two 
instructions. 

add (8)    r18<1>:f    r4<8;8,1>:f    r14<8;8,1>:f     // dst.x[7:0] = src0.y + src1.z 

add (8)    r19<1>:f    r5<8;8,1>:f    r15<8;8,1>:f    {SecHalf} // dst.x[15:8] = src0.y + src1.z 

Therefore, SIMD8 can be viewed as a special case for SIMD16. 

There are other reasons that SIMD8 instructions may be used. Within a program with 
16 concurrent program flows, some time SIMD8 instruction must be used due to 
architecture restrictions. For example, the address register a0 only have 8 elements, if 
an indirect GRF addressing is used, SIMD16 instructions are not allowed.  
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11.3 Registers and Register Regions 

11.3.1 Register Files 

GEN4 registers are grouped into different name spaces called register files. There are 
three different register files defined: General Register File, Message Register File, and 
Architecture Register File. In addition, immediate operands also have a unique 
encoding of the register file field, even though they come inline in the instruction word 
and do not have dedicated physical storages. 

• General Register File (GRF): GRF contains general-purpose read-write registers.  

• Message Register File (MRF): MRF contains special purpose registers used for 
message passing only. MRF registers are write-only. 

• Architecture Register File (ARF): ARF contains all other architectural registers, 
including the address registers (a#), accumulators (acc#), flags (f#), masks 
(mask#), mask stack (ms#), mask stack depth (msd#), notification count (n#), 
instruction pointer (ip), etc. Null register (null) is also encoded as an ARF register. 

• Immediate: Certain instructions take immediate terms as the source operands. 
These immediate terms have a distinct register file encoding. 

Each thread executed in an EU has its own thread context, i.e. dedicated register 
space, which is not shared between threads executing on a common EU or on a 
different EU. In the rest of the Chapters, register access are in respect to a given 
thread.  

11.3.2 GRF Registers 
Number of Registers:  Various 
Default Value:  None 
Normal Access:  RW 
Elements:  Various 
Element Size:  Various 
Element Type:  Various 
Access Granularity:  Byte 
Write Mask Granularity:  Byte 
Index-ability:  Yes 

Registers in the General Register File are the most commonly used read-write 
registers. During the execution of a thread, GRF registers are used to store the 
temporary data, and serve as the destination to receive data from shared function 
units (and some times from a fixed function unit). They are also used to store the 
input (initialization) data when a thread is created.  By allowing fixed function 
hardware to initialize some portion of GRF registers during thread dispatch time, GEN4 
architecture can achieve better parallelism. A thread’s execution efficiency can also be 
improved as some data are already in the register to be executed upon. Besides these 
registers containing thread’s payload, the rest of GRF registers of a thread are not 
initialized. 
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Table  11-1. Summary of GRF Registers 

Register File Register Name Description 

General Register File (GRF) r# General purpose read write registers 

Each execution unit has a fixed size physical GRF register RAM. The GRF register RAM 
is shared by all threads on the EU. GRF space for a thread is allocated at thread 
dispatch time, allowing the amount of GRF space to adapt to the need of a given 
thread.  

Mapping of a thread’s GRF registers to the physical GRF RAM is through a translation 
table. Therefore, a thread’s access to GRF is always through the 0-based logical view. 
For example, the GRF registers of a thread with 64 GRF register allocation are r0 
through r63. 

GRF registers can be accessed using region-based addressing at byte granularity (both 
read and write). A source operand must be contained within two adjacent physical 
registers. A destination operand must be contained within one physical register. GRF 
registers support direct addressing and register-indirect addressing. Register-indirect 
addressing uses the address registers (ARF registers a#) and an immediate address 
offset value.  

When accessing (read and/or write) outside the GRF register range allocated for a 
given thread either through direct or indirect addressing, the result is unpredictable.  

Table  11-2. GRF Registers Available in Device Hardware 

Device Physical 
Register Size 

Allocation 
Granularity 

Number per 
Thread 

Number per 
EU 

[DevBW] 256 bits 16 registers 128 registers 256 registers 

[DevCL] 256 bits 16 registers 128 registers 256 registers 

11.3.3 MRF Registers 
Number of Registers:  Fixed 
Default Value:  None 
Normal Access:  WO 
Elements:  Various 
Element Size:  Various 
Element Type:  Various 
Access Granularity:  Byte 
Write Mask Granularity:  Byte 
Index-ability:  See Table  11-4 
 

Registers in the Message Register File are used to store the header and payload for 
out-going messages from a thread to a shared function such as the Sampler and 
Extended Math unit. There are fixed number of MRF registers for each thread.  

MRF registers are write-only, and therefore, can only be the destination operand of an 
instruction.  
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MRF registers support write-enable at byte granularity. When an MRF register is used 
as the current destination operand of the send instruction, only 256-bit register 
aligned access is supported. 

When accessing (write) outside the MRF register range for a given thread, the result is 
unpredictable. 

Table  11-3. Summary of MRF Registers 

Register File Register Name Description 

Message Register File (MRF) m# Special purpose output write-only registers 

 

Table  11-4. MRF Registers Available in Device Hardware 

Device Physical Register Size Number per Thread Indirect 
Addressing? 

[DevBW] 256 bits 16 registers No 

[DevCL] 256 bits 16 registers No 

 

Note for Programmers: As a software usage policy, m0 register is reserved for debug. 
Normal thread should access MRF starting at m1. 
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11.3.4 ARF Registers 

11.3.4.1 Overview 

Besides GRF and MRF registers that are directly indicated by unique register file 
coding, all other registers belong to the general Architecture Register File (ARF). 
Encoding of architecture register types are based on the MSBs of the register number 
field, RegNum, in the instruction word. RegNum field has 8 bits. The 4 MSBs, 
RegNum[7:4], represent the architecture register type. This is summarized in Table 
 11-5. 

Table  11-5. Summary of Architecture Registers  

Register Type 
(RegNum [7:4]) 

Register Name Register 
Count 

Description 

0000 null 1 Null register 

0001 a0.# 1 Address register 

0010 acc# 2 Accumulator register 

0100 mask0.# 1 Mask register (active, branch, loop). Note that 
dispatch mask is RO and in sr# 

0101 ms0.# 1 Mask stack register 

0110 msd0.# 1 Mask stack depth register 

0111 sr0.# 1 State register 

1000 cr0.# 1 Control register 

1001 n# 1 Notification count register 

1010 ip 1 Instruction pointer register 

1011-1111 reserved   

 

The remaining register number field RegNum[3:0] is used to identify the register 
number of a given architecture register type. Therefore, maximum number of 
registers for a given architecture register type is limited to 16. The subregister 
number field, SubRegNum, in instruction word has 5 bits. It is used for addressing 
subregister region for an architecture register supporting register subdivision. 
SubRegNum field is in unit of byte. Therefore, maximum number of bytes of an 
architecture register is limited to 32. Depending on alignment restriction of a register 
type, only certain encodings of SubRegNum field is applicable for an architecture 
register. The detailed definitions are provided in the following sections. 
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11.3.4.2 Access Granularity 

ARF registers may be accessed with subregister granularity according to the 
descriptions below and following the same rule of region-based addressing for GRF 
and MRF. The machine code for register number and subregister number of ARF 
follows the same rule as for other register files with byte granularity. For an ARF as a 
source operand, the region-based address controls the source swizzle mux. The 
destination subregister number and destination horizontal stride can be used to 
control to generate the destination write mask at byte level. 

A special restriction on region-based addressing for ARF is that the register region 
cannot cross register boundary. This rule in fact only applies to the accumulator as it 
is the only ARF register containing multiple registers (two).  

Subregister fields of an ARF register may not all populated (indicated by the 
subregister indicated as reserved). Write to an unpopulated subregister will be 
dropped, there is no side effect. Read from an unpopulated subregister, if not 
specified, will return unpredictable data.  

Some of ARF registers are read-only. Write to a read-only ARF register is dropped and 
there is no side effect. 

11.3.4.3 Null Register  
ARF Register Type Encoding (RegNum[7:4]): 0000b  
Number of Registers:  1 
Default Value:  N/A 
Normal Access:  N/A 
Elements:  N/A 
Element Size:  N/A 
Element Type:  N/A 
Access Granularity:  N/A 
Write Mask Granularity:  N/A 
SecHalf Control:  N/A 
Index-ability:  No 
 

The null register is a special encoding for an operand that does not have physical map. 
It is primarily used in the instruction to indicate the non-existence of an operand.  
Write to the null register has no side effect. Read from the null register returns 
undefined result. 

The null register can be used in the place when a source operand is absent. For 
example, for a single source operand instruction such as MOV, NOT, the second source 
operand <src1> must be a null register. 

When the null register is used as the destination operand of an instruction, it indicates 
the computed results are not stored in any physical registers. However, implied writes 
to the accumulator register, if applicable, may still occur for the instruction. When the 
conditional modifier is present, update to the selected flag register also happens. In 
this case, the register region fields of the ‘null’ operand are valid. 

Another example use is to use the null register as the posted destination of a send 
instruction for data write to indicate that there is no write completion 
acknowledgement required. In this case, however, the register region fields are still 
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valid. The null register can also be the first source operand for a send instruction 
indicating the absent of the implied move. See send instruction for details. 

11.3.4.4 Address Register  
ARF Register Type Encoding (RegNum[7:4]): 0001b  
Number of Registers:  1 
Default Value:  None 
Normal Access:  RW 
Elements:  8 
Element Size:  16 bits 
Element Type:  UW or UD 
Access Granularity:  Word 
Write Mask Granularity:  Word 
SecHalf Control:  N/A 
Index-ability:  No 

There are eight address subregisters forming an 8-element vector. Each address 
subregister contains 16 bits. Address subregisters can be used as regular source and 
destination operands, as the indexing addresses for register-indirect-addressed access 
of GRF registers, and also as the source of the message descriptor for the send 
instruction.  

Table  11-6.  Register and Subregister Numbers for Address Register 

RegNum[3:0] SubRegNum[4:0] 

0000 = a0 

All other encodings are 
reserved. 

 

When register a0 or subregisters in a0 is used as the address register for register-
indirect addressing, the address subregisters must be accessed as unsigned word 
integers. Therefore, the subregister number field must also be word-aligned. 

00000 = a0.0:uw   

00010 = a0.1:uw 

00100 = a0.2:uw 

00110 = a0.3:uw 

01000 = a0.4:uw 

01010 = a0.5:uw 

01100 = a0.6:uw 

01110 = a0.7:uw 

All other encodings are reserved. 

However, when register a0 or subregisters in a0 is an explicit source and/or 
destination register, other data types are allowed as long as the register region 
falls in the 128-bit range. 
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Table  11-7. Address Register Fields 

Dword Bits Subfield Description 

3 31:16 Address subregister a0.7:uw. This field, with only the lower 12 bits populated, can be 
used as an unsigned integer for register-indirect register addressing. 

Format: U12 

 15:0 Address subregister a0.6:uw. This field, with only the lower 12 bits populated, can be 
used as an unsigned integer for register-indirect register addressing. 

Format: U12 

2 31:16 Address subregister a0.5:uw. This field, with only the lower 12 bits populated, can be 
used as an unsigned integer for register-indirect register addressing. 

Format: U12 

 15:0 Address subregister a0.4:uw. This field, with only the lower 12 bits populated, can be 
used as an unsigned integer for register-indirect register addressing. 

Format: U12 

1 31:16 Address subregister a0.3:uw. This field, with only the lower 12 bits populated, can be 
used as an unsigned integer for register-indirect register addressing. 

Format: U12 

 15:0 Address subregister a0.2:uw. This field, with only the lower 12 bits populated, can be 
used as an unsigned integer for register-indirect register addressing. 

Format: U12 

0 31:16 Address subregister a0.1:uw. This field can be used for register-indirect register 
addressing or serve as message descriptor for send instruction. When used for register-
indirect register addressing, it is a 12-bit unsigned integer.  For send instruction, it 
provides the higher 16 bits of <desc>. 

Format: U12 or U16. 

 15:0 Address subregister a0.0:uw. This field can be used for register-indirect register 
addressing or serve as message descriptor for send instruction. When used for register-
indirect register addressing, it is a 12-bit unsigned integer.  For send instruction, it 
provides the lower 16 bits of <desc>. 

Format: U12 or U16. 

When used as a source or destination operand, the address subregisters can be 
accessed individually or as a group. In the following example, the first instruction 
moves all 8 address subregisters to the first half of GRF register r1, the second 
instruction replicates a0.4:uw as an unsigned word to the second half of r1, the third 
instruction moves the first 4 words in r1 into the first 4 address subregisters, and the 
fourth instruction replicates r1.4 as a unsigned word to the last 4 address 
subregisters. 

mov (8) r1.0<1>:uw a0.0<8;8,1>:uw  // r1.n = a0.n for n = 0 to 7 in words 

mov (8) r1.8<1>:uw a0.4<0;1,0>:uw // r1.m = a0.4 for m = 8 to 15 in words 

mov (4) a0.0<1>:uw r1.0<4;4,1>:uw  // a0.n = r1.n for n = 0 to 3 in words 

mov (4) a0.4<1>:uw r1.4<0;1,0>:uw // a0.m = r1.4 for m = 4 to 7 in words 
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When used as the register-indirect addressing for GRF registers, the address 
subregisters can be accessed also individually or in group. When accessed in group, 
the address subregisters must be group-aligned. For example, when two address 
subregisters are used for register indirect addressing, they must be aligned to even 
address subregisters. In the following example, the first instruction is legal. However, 
the second one is not. As ExecSize = 8 and the width of <src0> is 4, two address 
subregisters will be used as row indices, each pointing to 4 data elements spaced by 
HorzStride = 1 dword. For the first instruction, the two address subregisters are 
a0.2:uw and a0.3:uw. The two align to a dword group in the address register. 
However, the two address subregisters for the second instruction are a0.3:uw and 
a0.4:uw. They are not dword aligned in the address register and therefore violate the 
above mentioned alignment rule. 

mov (8) r1.0<1>:d r[a0.2]<4,1>:d  // a0.2 and a0.3 is used for src1 

mov (8) r1.0<1>:d r[a0.3]<4,1>:d  // ILLEGAL use of register indirect 

Implementation restriction: GEN4 ISA supports per channel indexing for a source 
operand. As there are only 8 sub-fields in the address register (to save hardware 
cost), the execution size of an instruction using per-channel indexing is limited to 8. 
Software may reload the address register and use compression control SecHalf to 
complete a 16-channel computation.  

Implementation restriction: When used as the source operand <desc> for the send 
instruction, only the first dword subregister of a0 register is allowed (i.e. a0.0:ud, 
which can be viewed as the combination of a0.0:uw and a0.1:uw). In addition, it must 
be of UD type and in the following form <desc> = a0.0<0;1,0>:ud.  

Implementation restriction: Elements a0.0 and a0.1 have 16 bits each, but the rest 
of elements (a0.2:uw through a0.7:uw) only have 12 bits populated each. 12-bit 
precision supports full indirect-addressing capability for the largest GRF register range. 
Software must observe the asymmetry of the implementation. When a0.0:uw and 
a0.1:uw are the source or destination, full 16-bit precision is preserved. However, 
when a0.2:uw to a0.7:uw are the destination, the higher 4 bits for each element will 
be dropped; when they are the source, hardware inserts zero to the higher 4 bits for 
each element. 

Performance Note: There is only one scoreboard for the whole address register. 
When a write to some subregisters is in flight, hardware will stall any instruction 
writing to other subregisters. Software may use the destination dependency control 
{NoDDChk, NoDDClr} to improve performance in this case.  Similarly, when a write to 
some subregisters is in flight, hardware will stall any instruction sourcing other 
subregisters until the write retires. 
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11.3.4.5 Accumulator Registers  
ARF Register Type Encoding (RegNum[7:4]): 0010b  
Number of Registers:  2 
Default Value:  None 
Normal Access:  RW 
Elements:  8 or 16 
Element Size:  Various 
Element Type:  Various 
Access Granularity:  Word 
Write Mask Granularity:  N/A 
SecHalf Control:  Yes 
Index-ability:  No 
 

There are two accumulator registers, acc0 and acc1. They can be accessed either as 
explicit source and/or destination registers or as implied source and/or destination 
registers. To a programmer, each accumulator register may contain either 8 
doublewords or 16 words of data elements. However, as shown in  

Table  11-9, each data element may have higher precision with additional guard bits 
than that indicated by the numerical data type.   

Table  11-8.  Register and Subregister Numbers for Accumulate Register 

RegNum[3:0] SubRegNum[4:0] 

0000 = acc0 

0001 = acc1 

All other encodings are reserved. 

Reserved: MBZ 

The accumulator subfields are individually addressable at word 
granularity. When an accumulator register is an explicit destination, it 
follows the rules for a destination register. If an accumulator is an explicit 
source operand, its register region must match with that of the 
destination register. 

 

The accumulators are implied destination for arithmetic instructions, including parallel 
and vector instructions. For all other instructions, if accumulator is not specified as the 
destination operand, the content in the accumulator registers are unaltered. Details 
can be found in Instruction Reference chapter. There is a control field called 
Accumulator Disable in control register cr0.0 allowing software to turn on (which is the 
default) and off the implicit update of accumulators.  

When an accumulator register is used as an implicit source or destination operand, it 
is acc0 by default. For a compressed instruction, both acc0 and acc1 are used. If 
ComprCtrl is set to SecHalf, the implicit accumulator is then acc1. When an 
accumulator register is used as an explicit source or destination operand, the SecHalf 
compression control is ignored. In other words, the implied accumulator (source or 
destination), if present, is the same as the explicit one. 

It is illegal to specify different accumulator registers for source and destination 
operands in an instruction (e.g. “add (8) acc1:f acc0:f”). Result of such instruction is 
unpredictable.  
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For a compressed instruction, if an accumulator register is used as an explicit source 
or destination operand, it must be acc0. 

When an accumulator register is used as an explicit source operand, it must be the 
first source operand <src0>. Meanwhile, source operand modifiers (absolute, negate) 
are not allowed, as there are ignored by hardware. 

When an accumulator register is explicitly or implicitly specified as the destination, 
destination channel enables do not apply to the accumulator register. In other words, 
accumulator registers cannot be masked out and the content of the ‘disabled’ channels 
of the accumulator register is unpredictable. 

When an accumulator register is used as an explicit destination operand, saturation 
(.sat) is not allowed. 

Whether the accumulator register is updated for a given instruction depends on 
several conditions: it can be an explicit destination operand, it can be an implicit 
destination for arithmetic and logic instructions and the implicit update is also subject 
to the control register bit mentioned above. For an instruction in the form like, opcode 
<dst> <src0> [<src1>], the accumulator register is updated if the any of the 
following conditions is true 

• <dst> is an accumulator register 

• cr0.0[1] is cleared and opcode indicates that the instruction implicitly update accumulator register 

Bit field cr0.0[1] is the Accumulator Disable that controls the implied update.  

Implementation Restriction due to Floating Point Precision: When a floating 
point value is stored in the accumulator, it is stored in a non-normalized form with 
extra precision in mantissa. For an instruction involving addition operation sourcing 
accumulators, the addition is performed in non-normalized space. Therefore, the 
results may vary depending on the order of the operations. This is commonly referred 
to as ‘fused’ operations. For example, instructions like mac and dp# are fused 
operation. A group of back-to-back add instructions sourcing accumulators is also a 
fused operation. Though accumulator may be used as a temporary register with 
reduced pipeline compute latency, caution must be taken when using accumulator for 
floating point computation. In general, floating point computation explicitly and/or 
implicitly involving accumulator should be only used for fused operations where result 
deviation due to operation order is acceptable. Otherwise, accumulator should not be 
used as a temporary register.   

Errata: When acc1 is used as explicit operands of two back-to-back instructions, the 
results may be nondeterministic. This can be worked around using acc1 together with 
SecHalf compression control. This provides almost equivalent behavior except that 
the second half of the flag register may be used (including when ExecSize = 16). If for 
certain reason that first half of the flag (or the whole 16-bit of the flag) needs to be 
used together with acc1, an alternative workaround is to use ‘switch’ instruction 
control on the first instruction.  

Performance Note: GEN4 hardware cannot support write followed by read on the 
same accumulator register back to back. A thread stall (equivalent of having a ‘switch’ 
instruction control) may occur before an instruction that uses an accumulator register 
as an (implicit or explicit) source and the previous instruction has the same 
accumulator register as the (implicit or explicit) destination. This commonly occurs in 
signal processing algorithms. For example, a multi-tap FIR filter can be implemented 
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by a sequence of mac instructions; a matrix computation in DCT transform also 
consists of a sequence of mac instructions. A program with a non-compressed 
instruction stream may choose to interleave the use of acc0 and acc1 to achieve 
better performance, if accumulators are used explicitly. This is not true if the 
accumulator is addressed implicitly based on the SecHalf compression control field as 
flags and masks are also affected by SecHalf. 

Implementation Precision Restriction: As there are only 64 bits per channel in 
dword mode (D and UD), it is sufficient to store multiplication result of two dword 
operands as long as the post source modified sources are still within 32 bits. If any 
one source is type UD and is negated, the negated result becomes 33 bits. The dword 
multiplication results will be 65 bits, bigger than the storage capacity of accumulators. 
Consequently, the results are unpredictable. 

Implementation Precision Restriction: As there are only 33 bits per channel in 
word mode (W and UW), it is sufficient to store multiplication result of two word 
operands with and without source modifier as the result is up to 33 bits. Integer is 
stored in accumulator in 2’s complement form with bit 32 as the sign bit. As there is 
no guard bit left, the accumulator can only be sourced once before running into risk of 
overflowing. When overflow occurs, only modular addition can generate correct result. 
But in this case, conditional flags may be incorrect. When saturation is used, the 
output is unpredictable. This is also true for other operations that may result in more 
than 33 bits of data. For example, adding UDW (FFFFFFFF) with DW (00000001) 
results in (1FFFFFFFE). The sign bit is now at bit 34 and is lost when stored in the 
accumulator. When it is read out later from the accumulator, it becomes a negative 
number as bit 32 now becomes the sign bit. 

Table  11-9. Accumulator Channel Precision 

Data 
Type 

# 
Channel 

Bits / 
Channel 

Description 

F 8 54+8 When the internal execution data type is float, each accumulator register 
contains 8 channels of (extended) single precision floating point numbers.  
The data is in non-normalized format with an 8-bit exponent and a 54-bit 
mantissa in 2’s complement form. The 54-bit mantissa provides 5 extra 
guide bits over the precision required to store the multiplication result of 
two 32-bit single precision floats. 

    

D 
(UD) 

8 64 When the internal execution data type is doubleword integer, each 
accumulator register contains 8 channels of (extended) doubleword integer 
values.  The data are always stored in accumulator in 2’s complement form 
with 64 bits total regardless of the source data type.  This is sufficient to 
construct the 64-bit D or UD multiplication results using an instruction 
macro sequence consisting mul, mach and shr (or mov). [Open: may 
mention negating a UD may result in unpredictable numbers.] 

W 
(UW) 

16 33 When the internal execution data type is doubleword integer, each 
accumulator register contains 16 channels of (extended) word integer 
values.  The data are always stored in accumulator in 2’s complement form 
with 33 bits total.  This supports single instruction multiplication of two 
word source in W and/or UW format.  

B 
(UB) 

N/A N/A Not supported data type. 
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Implementation Restriction about Denorm: In general, for a floating point 
arithmetic instruction, hardware converts a denormalized number to sign-preserved 
zero before performing the computation. However, there is no such a conversion for 
an accumulator source operand. When accumulator is used as a temporary register for 
floating point computation, it is software’s responsibility to ensure that such 
conversion is performed when storing floating point data in the accumulator. This is 
illustrated in the example for the following  three-source non-Gen4 ‘mad’ instruction: 

 mad dst src0 src1 src2  // dst = src0 + src1 * src2 

One might intuitively consider translating this into two Gen4 instructions: a mov to 
accumulator followed by a mac: 

 mov acc0.0:f src0:f // acc0.0 = src0 (this is a ‘raw’ move) 

 mac dst src1 src2  // dst = acc0.0 + src1 * src2 

This may generate incorrect floating results as the first move instruction doesn’t flush 
denorms in src0 into zeros in acc0.0. Consequently, these denorm numbers in 
accumulator may create undefined results for the mac instruction. A correct 
translation should use an instruction that forces the denorm-to-zero flush, such as a 
multiplication of 1 or an addition of negative zero as show below. Yes, it must be a 
negative zero to preserve the sign of the source. 

 add acc0.0:f src0:f -0.0:f // acc0.0 = src0 (with denorm-to-zero flush) 

 mac dst src1 src2  // dst = acc0.0 + src1 * src2 

 

11.3.4.6 Flag Register  
ARF Register Type Encoding (RegNum[7:4]): 0011b  
Number of Registers:  1 
Default Value:  None 
Normal Access:  RW 
Elements:  2 
Element Size:  16 bits 
Element Type:  UW 
Access Granularity:  Word 
Write Mask Granularity:  Word 
SecHalf Control:  Yes 
Index-ability:  No 

There is one flag register that consists of two 16-bit subregisters. Each flag 
subregister can be individually addressed. Each bit of a flag subregister corresponds to 
a data channel. (See Table  11-10 for details). Furthermore, each 16-bit subregister 
may be split to half when ComprCtrl field is set to SecHalf in the instruction. 

The two flag subregisters (f0.0:uw and f0.1:uw) can be used as the destination of the 
conditional modifier and can also be the source of the predication. As both predication 
flag source and conditional flag destination share the same instruction field, when 
both are enabled, they use the same flag subregister.  

The values held in the individual bits of a flag subregister are the result of the most 
recent instruction which performed a condition-code evaluation with that flag register 
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specified as the destination of the evaluation result. For example “add.nz.f0.0  ...” 
updates flag f0.0 with the per-channel results of the not-zero condition. The flag 
subregister has per-bit write enables. When being updated as the secondary 
destination associated with conditional modifier, only the bits corresponding to the 
enabled channels in EMask are updated. The other bits in the flag subregister are 
unchanged. 

The flag register as a whole or as two subregisters can also be an explicit source 
and/or destination operand. 
 

Table  11-10. Register and Subregister Numbers for Flag Register 

RegNum[3:0] SubRegNum[4:0] 

0000 = f0 

All other encodings are reserved. 

00000 = f0.0:uw   

00010 = f0.1:uw 

All other encodings are reserved. 

 

Table  11-11. Flag Register Fields 

Dword Bits Subfield Description 

0 31:16 Flag subregister f0.1:uw. This field contains 16 bits of conditional flags. It can be used 
for predication and branch instructions. This field can be updated as the regular 
destination operand of an instruction or as the secondary destination operands associated 
with conditional modifier. This field can serve as regular source operand of an instruction 
or serve as the source for predication used for regular instructions or branch instructions. 

Format: U16 

 15:0 Flag subregister f0.0:uw 

Same as f0.1:uw. 

Format: U16 

 

11.3.4.7 Mask Registers  
ARF Register Type Encoding (RegNum[7:4]): 0100b  
Number of Registers:  1 
Default Value:  DMask 
Normal Access:  RW  
Elements:  4 
Element Size:  16 bits 
Element Type:  UW 
Access Granularity:  Word 
Write Mask Granularity:  Word 
SecHalf Control:  Yes 
Index-ability:  No 
 



 
 

 
 

296     

There is one mask register that contains four subfields with 16-bit each. Each 16-bit 
mask subfield can be split into two halfs (8 bits each). The four mask subregisters, 
namely, amask, imask, lmask and cmask, are used to form the emask to control the 
channel enables for SIMD instructions. They can be updated using the branch 
instructions such as if, else, endif, do, while, break, etc. A value one at a bit location 
of a mask subfield indicates that the channel is active with respect to the mask 
subfield. A value zero at a bit location indicates that the channel is inactive with 
respect to the mask subfield. For example, an if instruction may change some bits in 
imask from one to zero, effectively turning these channels off for the if-endif-block. In 
the mean time, the previous value in imask is pushed in the mask stack register. The 
corresponding endif instruction pops the mask stack register and restores the imask 
value, effectively re-enabled the channels turned off by the if instruction. 

The four mask subfields can be accessed individually or as a group using region based 
register addressing.  Explicit access of the second half of the mask subfield is through 
the compression control of SecHalf. 

Table  11-12. Register and Subregister Numbers for Mask Register 

RegNum[3:0] SubRegNum[4:0] 

0000 = mask0 

All other encodings are reserved. 

 

00000 = mask0.0:uw (amask).  It contains the active mask register 

00010 = mask0.1:uw (imask).  It contains the if-mask register 

00100 = mask0.2:uw (lmask).  It contains the loop-mask register 

00110 = mask0.3:uw (cmask).  It contains the continue-mask register 

All other encodings are reserved. 

Table  11-13. Mask Register Fields 

Dword Bits Subfield Description 

1 31:16 Continue-Mask (mask0.3:uw or cmask:uw). This field contains the 
16-bit continue mask. 

Format: U16 

 15:0 Loop-Mask (mask0.2:uw or lmask:uw). This field contains the 16-bit 
loop mask. 

Format: U16 

0 31:16 If-Mask (mask0.1:uw or imask:uw). This field contains the 16-bit if-
mask. 

Format: U16 

 15:0 Active-Mask (mask0.0:uw or amask:uw). This field contains the 16-
bit active mask. 

Format: U16 

Implementation Restriction on Register Access: When a mask register is used as 
an explicit source and/or destination, hardware doesn’t ensure execution pipeline 
coherency. Software must set the thread control field to ‘switch’ for an instruction 
that uses mask registers as an explicit operand.  
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Relaxed Restriction on Register Access: Software must ensure that there is a 
delay of at least four clock cycles between an instruction, A, that explicitly read the 
mask register and another instruction, B, that implicitly writes the mask register. This 
may be achieved, for example, by setting the thread control field to ‘switch’ for 
instruction A or by inserting two nop instructions between instructions A and B. Note 
that one GEN4 instruction, at minimal, takes two clock cycles. 

11.3.4.8 Mask Stack Register  
ARF Register Type Encoding (RegNum[7:4]): 0101b  
Number of Registers:  1 
Default Value:  0 (See Erratum below) 
Normal Access:  RW 
Elements:  32 
Element Size:  8 bits 
Element Type:  UB 
Access Granularity:  DQ 
Write Mask Granularity:  DQ 
SecHalf Control:  No 
Index-ability:  No 
 
 

127 120 119 112     15 8 7 0 

isc15      isc1 isc0 

255 148 147 140     143 136 135 128 

lsc15      Lsc1 lsc0 

The Mask Stack register consists of two stacks: istack and lstack, 128-bit each. The If-
Stack, istack, is for ‘if’ conditional code blocks. The Loop Stack, lstack, is for looping 
code blocks. Unlike traditional hardware stacks, the Mask Stack is implemented by 
counters, with one counter per execution channel. There are 16 bytes in each stack, 
corresponding to the 16 counters. The lower 4 bits within each byte is the counter 
value. The upper 4 bits is forced to zero when the Mask Stack register is the source 
and are ignored when the Mask Stack register is the destination.  

The counters in the mask stack register are initialized to zero at thread dispatch. 
When a mask is pushed to a mask stack (e.g. an if instruction pushes imask to istack), 
the counters in the mask stack subfield are updated based on the following rules: 

• If a bit of the mask is one, the corresponding mask stack counter is not changed 

• If a bit of the mask is zero, the corresponding mask stack counter is incremented 
by one 

When a mask is restored from popping a mask stack (e.g. an endif instruction pops 
istack and restores imask), the counters in the mask stack subfield are updated based 
on the following rules: 

• If a mask stack counter is zero, it remains zero; and a one is written to the 
corresponding bit location of the mask 

• If a mask stack counter is not zero, it is decremented by one; and a zero is 
written to the corresponding bit location of the mask 



 
 

 
 

298     

The hardware mask stack is provided to support nested loops/branches. The premise 
of a counter based mask stack is that once an execution channel is disabled (the mask 
bit is set to zero, for example, by a do instruction), it will remain disabled for 
subsequent nested branches. It can only be re-enabled after all nested loops/branches 
within a loop/branch block are completed (the mask bit is restored to one, for 
example, by the matching while instruction to the above mentioned do instruction). 
Therefore, only the number of nesting for a disabled channel needed to be stored in 
the mask stack. The counter in the mask stack register counts this number.  

The bit layout of the Mask Stack register is shown in Figure  11-7. IStack takes the 
lower 128 bits and LStack is in the upper 128 bits.  Each 128-bit subfield should not 
be further subdivided. 

When SPF bit in cr0 register is set, this register becomes read-only – contents cannot 
be modified implicitly or explicitly. 

Table  11-14. Register and Subregister Numbers for Mask Stack Register 

RegNum[3:0] SubRegNum[4:0] 

0000 = ms0 

All other encodings are reserved. 

 

00000 = ms0.0:ub (istack).  It contains the if-stack register 

10000 = ms0.16:ub (lstack).  It contains the loop-stack register 

All other encodings are reserved. 

Table  11-15. Mask Stack Register Fields 

Subregi
ster 

Bits Subfield Description 

7:4 Reserved: MBZ. isc#  

(# = 0 to 
15) 

3:0 If-Stack Count #: This is the 4-bit If-stack count value for execution channel #, 
counting the number of 1’s has pushed into the If-stack. The 4-bit count per channel 
provides maximum nesting depth of 15. For nesting beyond 15 levels deep, software 
must manually save/restore the Mask Stack register. 

Format: U4 

7:4 Reserved: MBZ. lsc#  

(# = 0 to 
15) 

3:0 Loop Stack Count #: This is the 4-bit loop stack count value for execution channel #, 
counting the number of 1’s has pushed into the loop stack. The 4-bit count per channel 
provides maximum nesting depth of 7 as one loop-instruction pushes both cmask and 
bmask in the same mask stack. For nesting beyond 7 levels deep, software must 
manually save/restore the MaskStack register. 

Format: U4 

The IStack, LStack, or the Mask Stack register, as a whole, can be an explicit source 
or destination operand. Smaller grain accesses to the register are not allowed. For 
example, the stacks can be saved/restored using ‘mov’ instruction via GRF and/or MRF 
registers as shown in the next instruction. 

 mov (16) r5.0<1>:w ms:w  // save mask stack to r5 
…     // other instructions 
mov (16) ms:w r5.0<1>:w // restore mask stack from r5 



 
 
 
 

   299 

Figure  11-7. Format of the Mask Stack Register 

LStack
0255

IStack
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0127

0 0 0 Cnt0
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4 3

 

Implementation Restriction on Register Access: When a mask stack register is 
used as an explicit source and/or destination, hardware doesn’t ensure execution 
pipeline coherency. Software must set the thread control field to ‘switch’ for an 
instruction that uses mask registers as an explicit operand.  

This register access restriction is not applicable, hardware does ensure execution 
pipeline coherency, when a mask stack register is used as an explicit source and/or 
destination. 

[DevBW, DevCL] Erratum: The subfields in mask stack register are reset to zero 
during graphics reset, however, they are not initialized at thread dispatch. These 
subfields will retain the values from the previous thread. Software should make sure 
the mask stack is empty (reset to zero) before terminating the thread. In case that 
this is not practical, software may have to reset the mask stack at the beginning of 
each kernel, which will impact the performance.  

11.3.4.9 Mask Stack Depth Register 
ARF Register Type Encoding (RegNum[7:4]): 0110b 
Number of Registers:  1 
Default Value:  0 (See erratum below) 
Normal Access:  R/W 
Elements:  2 
Element Size:  16 bits 
Element Type:  UW 
Access Granularity:  Word 
Write Mask Granularity:  Word 
SecHalf Control:  No 
Index-ability:  No 

The Mask Stack Depth register, msd0, allows a software view of the current depth of 
the Mask Stack. Depths for both the IStack and the LStack are maintained in a single 
32-bit register, with individual depths accessible using region-based register 
addressing.  Each depth value occupies a word. Read and write access is provided to 
allow for extending the Mask Stack Depth beyond 7 or 15 through manual stack 
management. 

Both depths are initialized to 0 at thread-load time. When SPF bit in cr0 register is set, 
this register becomes read-only – contents cannot be modified implicitly or explicitly. 

The depth value is incremented by hardware each time a value is pushed to the 
associated Mask Stack. The value is decremented each time a value is popped from 
the Mask Stack. The addition/subtraction operates in modular math on the 4-bit 
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unsigned integer fields. Whenever, the Mask Stack Depth value exceeds the 
overflow/underflow trigger values, a mask stack overflow or underflow exception will 
be generated. Upon a mask stack underflow/overflow exception, software may 
manually update the mask stack and mask stack depth registers based on the amount 
of underflow/overflow.  

Table  11-16. Overflow/Underflow Exception Trigger Value 

Device Underflow Overflow 

[DevBW] 0 15 

[DevCL] 0 7 

For example, if the current depth value is 15 and the overflow trigger value is 15, an 
instruction that pushes two masks into a mask stack will cause mask stack overflow 
exception and the resulting depth value is 1. Upon an overflow exception, software 
may compute the amount of overflow by adding 1 to the depth value in the register. 
In this case, the amount of overflow is 2. 

Another example, if the current depth value is 5 (0101b) and the underflow trigger 
value is 0, an instruction that pops a mask stack register by 9 (1001b) will cause 
mask stack underflow exception with a resulting depth value of 12 (1100b). By 
subtracting the depth value from 16, software can determine the amount of 
underflow. In this case, it is 4.  

Implementation Restrictions: When the Overflow trigger value equals to the 
maximum mask stack value, the overflow exception mechanism is not sufficient to 
support extended stack managed by software. This is because that software must 
reset the Mask Stack Depth value for the overflowed mask stack to 0 and reset the 
mask stack values to 0 or 1. If the original value of a channel is 0, it remains 0; if the 
original value of a channel is non-zero, it is reset to 1. Continuing pushing into the 
stack will eventually cause the mask stack counter to wrap before the Mask Stack 
Depth value to exceed the overflow trigger value. This will cause functional error. 
Software may choose to use different workarounds for the device that has the 
overflow trigger value equals to the maximum mask stack value. Here are a few 
workaround examples: 

- For loops/branch within the hardware limit, software can use the hardware 
stack 

- For loops/branch beyond the limit, there are several solutions 
o Use single program flow - processing a pixel at a time. May not be a 

benchmark or real performance issue 
o Use software jitted stack management (without using the overflow 

exception mechanism) 
- For example, software may manually manage the overflow cases, ensuring 

that overflow exception will never be reached. This solution may use the 
underflow exception though. 
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Table  11-17. Register and Subregister Numbers for Mask Stack Depth Register 

RegNum[3:0] SubRegNum[4:0] 

0000 = msd0 

All other encodings are reserved. 

 

00000 = msd0.0:w (imsd).  It contains the if-stack depth register 

00010 = msd0.1:w (lmsd).  It contains the loop-stack depth register 

All other encodings are reserved. 

 

Table  11-18. Mask Stack Depth Register Fields 

DWord Bits Subfield Description 

31:20 Reserved: MBZ. 0 

(lmsd) 19:16 Loop-Stack Depth: Current depth of the LStack.  The maximum allowed nesting of 
loop-instructions is half of the overflow trigger value before a stack overflow or 
underflow. This is because that loop-instructions such as do (or while/break/cont) push 
(or pop) both lmask and cmask to (or from) the LStack.  

When overflow/underflow occurs, this field contains the modular residue of the amount 
of overflow/underflow.  

Initialized to 0 at thread load time. 

Format: U4 

15:4 Reserved: MBZ. 1 

(imsd) 3:0 If-Stack Depth: Current depth of the IStack. The maximum allowed nesting of if-
instructions equals to the overflow trigger value before a stack overflow or underflows. 

When overflow/underflow occurs, this field contains the modular residue of the amount 
of overflow/underflow.  

Initialized to 0 at thread load time. 

Format: U4 

Figure  11-8. Format of the Mask Stack Depth Register 
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Implementation Restriction on Register Access: When a mask stack depth 
register is used as an explicit source and/or destination, hardware doesn’t ensure 
execution pipeline coherency. Software must set the thread control field to ‘switch’ 
for an instruction that uses mask registers as an explicit operand.  
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This register access restriction is not applicable, hardware does ensure execution 
pipeline coherency, when a mask stack depth register is used as an explicit source 
and/or destination. 

Erratum: The subfields in mask stack depth register are reset to zero during graphics 
reset, however, they are not initialized at thread dispatch. These subfields will retain 
the values from the previous thread. Software should make sure the mask stack depth 
values are zero before terminating the thread. In case that this is not practical, 
software may have to reset the mask stack depth at the beginning of each kernel, 
which will impact the performance.  

HW stack overflow and underflow exception are not supported for both IStack and 
LStack. Software has to maintain stack depth to ensure stack will not be overflowed 
and underflowed. Both stack overflow in HW when they reach 16 for BWR and 7 for 
CLN, and underflow when they pass 0. 

11.3.4.10 State Registers  
ARF Register Type Encoding (RegNum[7:4]): 0111b 
Number of Registers:  1 
Default Value:  Provided by the Dispatcher 
Normal Access:  RO 
Elements:  2 
Element Size:  32 bits 
Element Type:  UD 
Access Granularity:  Byte 
Write Mask Granularity:  N/A 
SecHalf Control:  No 
Index-ability:  No 

Thread state registers are read-only registers. They can be accessed as a whole or 
individually using region-based addressing with byte granularity. 

Table  11-19. Register and Subregister Numbers for State Register 

RegNum[3:0] SubRegNum[4:0] 

0000 = sr0 

All other encodings are reserved. 

 

Valid encoding range: 

00000 – 00111 (in unit of byte) 

For example, 

00000 = sr0.0:ud.  It contains general thread states such as EUID/TID 

00100 = sr0.1:ud.  It contains the dispatch mask 

All other encodings are reserved. 
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Table  11-20. State Register Fields  

DWord Bits Subfield Description 

31:28 Reserved: MBZ 

27:24 FFID (Fixed Function Identifier). Specifies which fixed function unit generates the 
current thread. This field is set at thread dispatch and is forwarded on the message bus 
for all out-going messages from this thread. 

23:19 Reserved: MBZ 

18 Priority Class. This field, when set, indicates the thread belongs to the high priority 
class, which has higher scheduling priority over any thread with this field cleared. The 
priority field below determines the relative priority within the same priority class. This 
field is initialized by the thread dispatcher at thread dispatch time and stays unchanged 
throughout the life span of the thread.  

This field is forwarded on the message bus to the message bus arbiter for all out-going 
messages. It serves as a priority hint for the target shared function. See shared 
function chapters whether and how a shared function uses this priority hint. 

0 = Low priority class 

1 = High priority class  

17:16 Priority. This field is the relative aging priority of the thread. This field indicates the 
‘age’ of this thread relative to other thread within the EU. No two threads within the 
same EU can have the same priority number (independent of the priority class value). 
Within the same priority class, an older thread (with a larger priority number) has 
higher schedule priority over a younger thread.  

This field is set to zero at a thread’s dispatch.  

During a thread’s run time, this field may or may not be incremented when a new 
thread is dispatched to the same EU. It is only incremented when another thread’s 
priority number is incremented and reaches the same value. For example, if currently 
there is a thread with priority 0 on an EU, dispatching a new thread to this EU will cause 
the old thread’s priority number being incremented to 1. However, if the active thread 
(assuming for simplicity there is only one) on an EU has a priority number 1 (or 2 or 3), 
dispatching a new thread to this EU will not change the old thread’s priority number. As 
threads on an EU may terminate in arbitrary orders, the exact number for a thread 
depends on the dynamic execution of threads.  

15:12 Reserved: MBZ 

11:8 EUID (Execution Unit Identifier). Specifies which execution unit the current thread is at. 

7:3 Reserved: MBZ 

0 

(sr0.0:ud) 

2:0 TID (The thread identifier). Specifies which thread slot the current thread is assigned 
to. This field is set at thread dispatch. 

31:24 Reserved: MBZ 

23:20 GRF Register Blocks. This field contains a number of GRF register count in unit of 16 
registers. The valid range is from 16 to 128 GRF registers. 

0000: Reserved 

0001 – 1000: 16 GRF registers to 128 GRF registers 

1001 – 1111: Reserved 

1 

(sr0.1:ud) 

19:16 Reserved : MBZ 
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DWord Bits Subfield Description 

15:0 Dispatch Mask (DMask). The 16-bit field specifies which channels are active at 
Dispatch time. This field is used by hardware to initialize the mask register. 

Format: U16 

 

11.3.4.11 Control Register  
ARF Register Type Encoding (RegNum[7:4]): 1000b 
Number of Registers:  1 
Default Value:  Provided by the Dispatcher 
Normal Access:  RW 
Elements:  4 
Element Size:  32 bits 
Element Type:  UD 
Access Granularity:  Dword 
Write Mask Granularity:  Dword 
SecHalf Control:  No 
Index-ability:  No 

The Control register is a read-write register. It contains four 32-bit subregisters that 
can be accessed individually.  

Subregister cr0.0:ud contains normal operation control fields such as the floating 
point mode and the accumulator disable. It also contains the master exception 
status/control field that allows software to switch back to the application thread from 
the system routine. Debug control field Breakpoint Suppress is also in cr0.0:ud.  

Subregister cr0.1:ud contains the mask and status/control fields for all exceptions. 
The exception fields are arranged in significance-decreasing order from MSB to LSB. 
This allows the system routine to use lzd instruction to find the high priority 
exceptions and handles them first. As each exception is mapped to a single bit, other 
exception priority order may be implemented by software. System routine may choose 
to handle one exception at a time, by handle the exception detected by a lzd 
instruction and return to application thread. Or it may choose to handle all the 
concurrent exceptions, by looping through the exception fields until all outstanding 
exceptions are handled before returning back to the application thread. 

Exception enable bits (bits 15:0 in cr0.1:ud) control whether an exception will cause 
hardware to jump to system routine or not. Exception status and control bits (bits 
31:16 in cr0.1:ud) indicate which exceptions have occurred and are used for system 
routine to clear the exception. Even if a given exception is disabled, the corresponding 
exception status and control bit still reflects the status whether an exception event 
has occurred or not. 

cr0.2:ud contains the Application IP (AIP) indicating the current thread IP when an 
exception occurs. 

cr0.3:ud is reserved. Writing to this subregister is dropped; result of reading from this 
subregister is unpredictable. 

Fields in Control registers also refer to a virtual register called System IP (SIP). SIP 
is the virtual register holding the global System IP, which is the initial instruction 
pointer for the system routine. There is only one SIP for the whole system. It is virtual 
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only from a thread’s point of view, as it is not visible (i.e. not readable and not 
writeable) to the thread software executed on a GEN4 EU. It can only be accessed 
indirectly by the hardware to response to exception events. Upon an exception, 
hardware performs some book keepings (e.g. saving the current IP into AIP) and then 
jumps to SIP. Upon finishing exception handling, the system routine may return back 
to the application by clearing the Master Exception Status and Control field in cr0, 
which will cause the hardware to load AIP to IP register. See STATE_SIP command for 
how to set SIP. 

Details about exception handling and debug can be found in the debugging and 
exceptions chapters. 

Table  11-21. Register and Subregister Numbers for Control Register 

RegNum[3:0] SubRegNum[4:0] 

0000 = cr0 

All other encodings are reserved. 

 

00000 = cr0.0:ud.  It contains general thread control fields 

00100 = cr0.1:ud.  It contains exception status and control 

01000 = cr0.2:ud.  It contains AIP.10100 (reserved) 

All other encodings are reserved. 

Table  11-22. Control Register Fields 

DWord Bits Subfield Description 

31 Master Exception State and Control. This field is the master state and control for all 
exceptions. Reading a 0 indicates that the thread is in normal operation state and a 1 
means the thread is in exception handle state. Upon an exception event, hardware sets 
this field to 1 and switch to SIP.  

Writing a 1 to this field has no effect. Writing a 0 to this field also has no effect if the 
previous value is 0. In both cases, the field keeps the previous value.  

If the previous value of this field is 1, software writing a 0 causes the thread to return 
to AIP. This transition is automatic – software does not have to move AIP to IP. The 
value of this field then stays as 0. 

This field is initialized to 0. 

0 = Indicate that the thread is in normal state 

1 = Indicate that the thread is in exception state 

0 

(cr0.0:ud) 

30:16 Reserved: MBZ 
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DWord Bits Subfield Description 

15 Breakpoint Suppress. This field specifies whether breakpoint exception is suppressed 
or not. This field is normally set by software and cleared by hardware. If Master 
Exception Status and Control field is 1, this field is ignored by hardware. 

If Master Exception Status and Control field is 0 (i.e. not in system routine) and 
Breakpoint is enabled: If this field is set, breakpoint is temporally ignored (suppressed); 
Upon a breakpoint condition, the instruction is executed and this bit is automatically 
reset by hardware.  

This field is provided to prevent infinite loop of jumping to the system routine on a 
breakpoint condition. The system routine must set this bit (and also clear the 
corresponding status and control field) before returning to the application thread.  

This field has no effect when Breakpoint Enable bits is cleared. 

This field is initialized to 0. 

0 = Breakpoint exception is not suppressed 

1 = Breakpoint exception is suppressed 

14:9 Reserved : MBZ 

8 Host Notification Data. This field is forwarded to the debug MMIO registers (EU 
Debug Register 4 and 5 – Attention Data registers) when a host notification signal is 
sent by the EU upon executing instruction “WAIT n1”. Combining host notification 
signaling mechanism, this data field provides a one-way communication interface from 
the thread to the host. Even though it may be slow, this thread/host interface is 
independent of the message bus structure and any shared function. Note that this 
communication interface does not allow the host to return data to the thread. More 
details can be found in Debugging chapter.  

This field is initialized to 0. 

7:3 Reserved : MBZ 

2 Single Program Flow (SPF). Specifies whether the thread has a single program flow 
(SIMDnxm with m = 1) or multiple program flows (SIMDnxm with m > 1). This field 
affects the operation of all branch instructions.  

If SPF is not set, branch instructions such as if, do, while, push the current branch 
masks into the corresponding mask stack registers or pop the mask stack and updates 
the corresponding masks. Use of the mask stack supports concurrent execution of 
multiple program flows in a single thread using SIMD instructions.  

If SPF is set, the mask stack push or pop actions are inhibited for these branch 
instructions. Therefore, the top of stack will not be modified by any branch instruction. 
In Single Program Flow mode, all execution channels branch and/or loop identically. By 
hold the mask stack unchanged for all branch instructions, infinite level of nesting of 
branch instructions can be supported. 

This field is initialized by the Thread Dispatch. 

0 = Multiple Program Flows 

1 = Single Program Flow 
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DWord Bits Subfield Description 

1 Accumulator Disable. This field controls the implicit update of the accumulator. If this 
field is cleared, the accumulator is updated for all instructions in which it is designated 
implicitly. If set, the accumulator is disabled for all implicit update operations, 
maintaining its value prior to being disabled. Setting this field has no effect if the 
accumulator is the explicit destination operand for an instruction. 

This field is initialized to 0. 

0 = Enable accumulator update 

1 = Disable accumulator update  

Usage Notes: 

This control bit is primarily designed for the System Routine.  That routine is not 
expected to use the accumulator, though it may need to use instructions which include 
implicit update of the accumulator.  In order to use those instructions within the System 
Routine, but still preserving the accumulator contents upon return to the application 
kernel, the System Routine would either (a) save and restore the accumulator, or (b) 
prevent the accumulator from being unintentionally modified.  This control bit has been 
added for the latter method. 

Software has the option to limit the setting of this control bit strictly within the System 
Routine.  If, by convention, this bit is clear within application kernels, the System 
Routine can simply set the bit upon entry and clear it prior to returning control to the 
application kernel.  This usage model would not necessarily require cr0.0 to be 
saved/restored in the System Routine.  However, if by convention application kernels 
are permitted to set this bit, then the System Routine would be required to preserve the 
content of this bit. 

0 Floating Point Mode (FPMode). This field specifies whether the current floating point 
operation mode is in IEEE standard mode or the alternative mode. It is used to control 
the floating operation of the Execution Unit. It is also forwarded on the message 
sideband for all out-going messages, for example, to control the floating point mode of 
the Extended Math unit or the Sampler unit. Software may modify this field to 
dynamically switch between the two floating point modes. 

This field is initialized by the Thread Dispatch.   

0 = IEEE floating point mode 

1 = Alternative floating point mode 
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DWord Bits Subfield Description 

31 Breakpoint Exception Status and Control. This field, when set, indicates breakpoint 
exception. Under breakpoint condition, hardware sets this bit upon entering the system 
routine. This field is used for kernel debug in both breakpoint and single stepping 
modes. 

For normal breakpoint handle, the system (debug) routine should reset this field and 
also set the Breakpoint Suppress field before returning back to the application thread. If 
this bit is not reset in the system routine, upon returning to application routine, 
hardware executes one instruction (if Breakpoint Suppress field was set in the system 
routine), and then jumps to system routine again. Therefore, by not clearing this field, 
single stepping can be emulated.  

This bit may be set and cleared by software. 

This field is initialized to 0. 

There is a restriction associated with this field when emulating single stepping debug on 
– it does not work on compressed instructions. When system routine sets this field as 
well as the Breadkpoint Suppress field for a compressed instruction before returning to 
application routine, the instruction pointer is not automatically advanced by hardware. 
This prohibits the intended single-stepping mechanism supplied by hardware. Two 
software workarounds are available, which emulate the single stepping debugging 
capability with certain drawbacks.  

1. The host debugger software may expose to the debug user interface with 
breakpoint and single stepping methods but set the breakpoint for all 
instructions in kernel binary. For breakpoint events that don’t match with any 
user exposed breakpoint/single-stepping instructions, the host debugger 
software may silently skip the false breakpoint and simply let the system 
routine to return back to application routine. This approach has low 
performance. 

2. Alternatively, the host debugger software may set/clean the breakpoint field 
on an instruction by instruction basis to emulate single stepping. After 
servicing a breakpoint and before letting the system routine to return to the 
application routine, the host debugger may perform the following steps: flush 
the instruction cache, restore the breakpoint field for the current instruction, 
store the breakpoint field for the next instruction, and then set the breakpoint 
field for the next instruction. This process is repeated each step of source code 
stepping. A side effect is that the kernel instructions in memory are 
dynamically modified, resulting other threads under debug (with breakpoint 
enabled) to cause breakpoint exception on an unintended instruction. Host 
debugger software must detect and skip these false exceptions (e.g. based on 
identifier of the thread). 

1  

(cr0.1:ud) 

[31:16] 
StatCtlr 

[15:0] 
Masking 

30 External Halt Exception Status and Control. This field indicates the External Halt 
exception. It is set by EU hardware upon receiving the broadcast External Halt signal. 
System routine should reset this field before returning to application routine in order to 
avoid infinite loop.  

This bit may be set or cleared by software.  

This field is initialized to 0. 
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DWord Bits Subfield Description 

29 Software Exception Control. This is the control field of software exception. Setting 
this field to 1 in application routine will cause an exception. Clearing this field in 
application routine has no effect. Upon entering system routine, the hardware maintains 
this field as one to signify software exception. System routine should reset this field 
before returning to application routine.  

This field may be set or cleared by software. 

This field is initialized to 0. 

28 Illegal Opcode Exception Status. This field, when set, indicates illegal opcode 
exception. The exception handle routine normally does not return back to the 
application thread upon an illegal opcode exception. Leaving this bit set, has no effect 
on hardware – if system software adversely returns to application routine leaving this 
field set, it doesn’t cause any exception. This field should not be set by software or left 
set by system routine to avoid confusion. 

This field is initialized to 0. 

  

27 LStack Overflow Exception Status. This field, when set, indicates the LStack 
overflow exception. System routine should clear this field before returning back to the 
application thread. Leaving this bit set, has no effect on hardware – if system software 
adversely returns to application routine leaving this field set, it doesn’t cause any 
exception. This field should not be set by software or left set by system routine to avoid 
confusion. 

This field is initialized to 0. 

26 LStack Underflow Exception Status and Control. This field, when set, indicates the 
LStack Underflow exception. The exception handle routine should clear this field before 
returning back to the application thread. Leaving this bit set, has no effect on hardware 
– if system software adversely returns to application routine leaving this field set, it 
doesn’t cause any exception. This field should not be set by software or left set by 
system routine to avoid confusion. 

This field is initialized to 0. 

25 IStack Overflow Exception Status and Control. This field, when set, indicates the 
IStack Underflow exception. The exception handle routine should clear this field before 
returning back to the application thread.Leaving this bit set, has no effect on hardware 
– if system software adversely returns to application routine leaving this field set, it 
doesn’t cause any exception. This field should not be set by software or left set by 
system routine to avoid confusion. 

This field is initialized to 0. 

24 IStack Underflow Exception Status and Control. This field, when set, indicates the 
IStack Underflow exception. The exception handle routine should clear this field before 
returning back to the application thread. Leaving this bit set, has no effect on hardware 
– if system software adversely returns to application routine leaving this field set, it 
doesn’t cause any exception. This field should not be set by software or left set by 
system routine to avoid confusion. 

This field is initialized to 0. 

23 Reserved: MBZ.  

22:16 Reserved: MBZ 



 
 

 
 

310     

DWord Bits Subfield Description 

15 Breakpoint Enable. Specifies whether breakpoint exception is enabled or not.  

This field is initialized by the Thread Dispatcher.  

Format = ENABLED  

0 = Disabled 

1 = Enabled 

14 External Halt Exception Enable. This field specifies whether the External Halt 
Exception is enabled or not. When this bit is set, the thread allows to be interrupted by 
an external halt signal. The usage of this exception is for a host debug software to halt 
the execution of threads in GEN4 EUs at any selected time. With proper debug handling 
in SIP, execution may resume normally after thread being halted.  

This field is initialized by the Thread Dispatcher. 

Format = ENABLED 

13 Software Exception Enable. This field enables or disables the software exception. 
Enabling or disabling this field may allow host software to turn on/off certain features 
(such as profiling) without changing the kernel program. 

This field is initialized by the Thread Dispatcher. 

Format = ENABLED 

12 Illegal Opcode Exception Enable. This field specifies whether illegal opcode 
exception is enabled or not.  Illegal opcode exception includes illegal opcode and 
undefined opcode, caused by bad program or run time data corruption. 

This field is initialized by the Thread Dispatcher.   

Software should normally set it in the interface descriptor. Even though the mechanism 
is provided to disable illegal opcode exception, it should be used with extreme caution. 

Format = ENABLED 

11 MaskStack Exception Enable. This field specifies whether MaskStack Exceptions are 
enabled or not. It is used to control all four MaskStack Exceptions (LStack Overflow and 
Underflow, IStack Overflow and Underflow). 

This field is initialized by the MaskStack Exception Enable bit from the Thread 
Dispatcher. 

Software should normally set it in the interface descriptor. Even though the mechanism 
is provided to disable stack overflow/underflow exception, it should be used with 
extreme caution. For the kernel that is known to not overflow/underflow mask stacks, 
enable this exception has no adverse effect. 

Format = ENABLED 

Erratum: This field is reserved: MBZ. 

10 Reserved: MBZ 

9:0 Reserved : MBZ 
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DWord Bits Subfield Description 

31:4 Application IP (AIP). This is the register storing the instruction pointer before an 
exception is handled. Upon an exception, hardware automatically saves the current IP 
into the AIP register, and then sets the Master Exception State and Control field to 
1, which forces a switch to the System IP (SIP).  AIP register may contain either the 
pointer to the instruction that causes the exception (such as breakpoint for debug), or 
the one after (such as mask stack overflow/underflow exceptions). This is shown in the 
following table, where IP is the instruction which generated the exception. 
 

Exception Type AIP Value 

Breakpoint IP 

External Halt n/a (1) 

Software Exception IP + 1 

Illegal Opcode IP 

Mask Stack Overflow / Underflow IP + 1 

(1) External Halt exception is asynchronous and not associated with an instruction. 

When the system routine changes the Master Exception State and Control field from 1 
to 0. Hardware restores IP from this register. This field is writable allowing returning IP 
to be altered after an exception handle. 

2 

(cr0.2:ud) 

3:0 Reserved : MBZ 

 

Implementation Restriction on Register Access: When the control register is 
used as an explicit source and/or destination, hardware doesn’t ensure execution 
pipeline coherency. Software must set the thread control field to ‘switch’ for an 
instruction that uses control register as an explicit operand. This is important as the 
control register is an implicit source for most instructions. For example, fields like 
FPMode and Accumulator Disable control the arithmetic and/or logic instructions. 
Therefore, if the instruction updating the control register doesn’t set ‘switch’, 
subsequent instructions may have indeterministic results. 



 
 

 
 

312     

11.3.4.12 Notification Registers  
ARF Register Type Encoding (RegNum[7:4]): 1001b 
Number of Registers:  3 
Default Value:  No 
Normal Access:  RO 
Elements:  3 
Element Size:  32 bits 
Element Type:  UD 
Access Granularity:  Dword 
Write Mask Granularity:  Dword 
SecHalf Control:  No 
Index-ability:  No 

There are two notification registers (n0:ud and n1:ud) used by the wait instruction. 
These registers are read-only and can be accessed in 32-bit granularity.  

It should be noted that in the extreme case, it is possible to have more notifications to 
a thread than the maximal allowable of concurrent threads in the system. Therefore, 
the range of the thread-to-thread notification count in n0, is larger than the maximum 
number of threads computed by EUID * TID. 

There is only one bit for the host-to-thread notification count in n1. That means if 
there are multiple host write to EU Debug Register 6 or 7 (Attention Clear registers) 
may be collapsed into a single notification event to the target thread, if only one wait 
instruction is executed during that time period. 

When directly accessed, this register is read-only. If the value is none zero, the only 
way to alter the value is to use the wait instruction to decrement the value until zero 
is reach. A wait instruction on a zero notification subregister will cause the thread to 
stall, waiting for a notification signal from outside targeting to the same subregister. 
See wait instruction for details. 

Implementation Restrictions: The notification registers are initialized to 0 after 
hardware/software reset. However, it is not reset at thread dispatch time.  

Table  11-23. Register and Subregister Numbers for Notification Register  

RegNum[3:0] SubRegNum[4:0] 

0000 = n0 

0001 = n1All other encodings are 
reserved. 

 

Reserved. 
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Table  11-24. Fields of Notification Register n0 

DWord Bits Subfield Description 

31:7 Reserved: MBZ 0 

 6:0 Thread to Thread Notification Count. This register is used by the WAIT instruction 
for thread-to-thread synchronization. The value read from this register specifies the 
outstanding notifications received from other threads. It can be changed indirectly by 
using the WAIT instruction. See WAIT instruction for details. 

Format: U7 

Table  11-25. Fields of Notification Register n1 

DWord Bits Subfield Description 

31:1 Reserved : MBZ 

0 Host to Thread Notification. This register is used by the WAIT instruction for host-to-
thread synchronization via MMIO registers EU Debug Register 6 and 7 (Attention Clear 
registers). See Debugging chapter for details. 

Format: U1 

0 

 

15:0 Thread to Thread Notification Count. This register is used by the WAIT instruction 
for thread-to-thread synchronization. The value read from this register specifies the 
outstanding notifications received from other threads. It can be changed indirectly by 
using the WAIT instruction. See WAIT instruction for details. 

Format: U16 

Table  11-26. Format of the Notification Register 
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11.3.4.13 IP Register  
ARF Register Type Encoding (RegNum[7:4]): 1010b 
Number of Registers:  1 
Default Value:  Provided by the Dispatcher 
Normal Access:  RW 
Elements:  1 
Element Size:  32 bits 
Element Type:  UD 
Access Granularity:  Dword 
Write Mask Granularity:  Dword 
SecHalf Control:  No 
Index-ability:  No 

The ip register can be accessed as a 32-bit quantity. It is a read-write register, 
containing the current instruction pointer, which is relative to the Generate State 
Base Address. Reading this register returns the instruction pointer of the current 
instruction. The 3 LSBs are always read as zero. Writing this register forces the 
program flow to jump to the new address. When it is written, the 3 LSBs are dropped 
by hardware. 

Table  11-27. Register and Subregister Numbers for IP Register 

RegNum[3:0] SubRegNum[4:0] 

0000 = ip 

All other encodings are reserved. 

00000 = ip:ud 

All other encodings are reserved. 

 

Table  11-28. IP Register Fields 

DWord Bits Subfield Description 

31:4 Ip. Specifies the current instruction pointer. This pointer is relative to the General 
State Base Address. 

3:0 Reserved : MBZ 

0 

 

2:0 Reserved : MBZ 
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11.3.5 Immediate 

Two forms of immediate are provided as a source operand: scalar and vector.  

For a scalar immediate, it can be of any of the specified numerical data types from a 
word to a dword. Byte and unsigned byte are not supported as the smallest internal 
type of the execution pipeline is word. These two numerical types are reserved for 
future extensions.  

The immediate field in a GEN4 instruction has 32 bits as shown below. For a word or 
an unsigned word immediate data, software must replicate the same 16-bit immediate 
value to both the lower word and the high word of the 32-bit immediate field in a 
GEN4 instruction. 

31 0 

imm32 

 

31 0 

must be the same as 
[15:0] 

imm16 

 

The immediate form of vector allows a constant vector to be in-lined in the instruction 
stream. Both integer and float immediate vectors are supported. 

An immediate integer vector is denoted by type v as imm32:v, where the 32-bit 
immediate field is partitioned into 8 4-bit subfields. Each 4-bit subfield contains a 
signed integer value in 2’s complement form (halfbyte). Therefore each 4-bit subfield 
has a range of [-8, +7]. This is depicted in the following table. 

31        
28 

27        
24 

23        
20 

19        
16 

15        
12 

11          
8 

7           
4 

3           
0 

immV7 immV6 immV5 immV4 immV3 ummV2 immV1 immV0 

 

An immediate float vector is denoted by type vf as imm32:vf, where the 32-bit 
immediate field is partitioned into 4 8-bit subfields. Each 8-bit subfield contains a 
signed float with 3-bit exponent and 4-bit fraction. Each 8-bit subfield provides signed 
floating point values with restricted range and precision. This is depicted in the 
following table. 

31                         
24 

23                          
16 

15                           
8 

7                             
0 

immVF3 immVF1 immVF1  immVF0 
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Restriction: When an immediate vector is used in an instruction, the destination must 
be 128-bit aligned with destination horizontal stride equivalent to a word for an 
immediate integer vector (v) and equivalent to a dword for an immediate float vector 
(vf). 

11.3.6 Region Parameters 

Unlike conventional SIMD architectures where an N-bit wide SIMD instruction can only 
operate on N-bit aligned SIMD data registers, a region-based register addressing 
scheme is employed in GEN4 architecture. The region-based register addressing 
capability significantly improves the SIMD computation efficiency by providing per-
instruction-based multiple data gathering from register file. This avoids instruction 
overhead to perform data pack, unpack, and shuffling, which has been observed on 
other SIMD architectures. One benefit of such capability is allowing various kinds of 
3D Graphics API Shader compute models to run efficiently on GEN4. Another benefit is 
allowing high throughput of media applications, which tend to operate on byte or word 
data elements. 

This can be illustrated by the example shown in Figure  11-9 and Figure  11-10.  As 
shown in Figure  11-9, a sequence of SIMD instruction is executed on a conventional 
load/store based superscalar machine with SIMD instruction extension. The data 
parallelism can be achieved by first level of loop unrolling. As shown, there is a second 
level of loop for the task. Before a given SIMD compute instruction, Process (i), can 
proceed, there might be a load, a data rearrange and a data unpack (and conversion) 
instruction to load and prepare the input data. After the compute instruction is 
complete, it might also require pack, re-arrange and store instructions, to format and 
save the same to memory. At the loop, other scalar computations such as loop count 
and address generation may be needed. For the same program, when the data can fit 
in the large GEN4 GRF register file, the outer loop may be unrolled for GEN4. Here one 
or a few block loads (using send instruction) may be sufficient to move the working 
set into GRF.  Then the data shuffle can be combined with the processing operation 
with region-based addressing capability. Per operand float type and mixed data type 
operation may also allow GEN4 to combine data conditioning operations with 
computing operations. These techniques in GEN4 architecture help to achieve high 
compute efficiency and throughput for graphics and media applications. 
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Figure  11-9. Conventional SIMD Instruction Sequence 
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Figure  11-10. GEN4 SIMD Instruction Sequence for the Same Program 

Block Load (1...N)

...

Block Store (1...N)

Process (1) w/ pack/unpack

Process (N) w/ pack/unpack

Gen4 SIMD 
Instruction Sequence

 

In a GEN4 instruction, each operand defines a region in the register file. A region may 
contain multiple data elements. Each data element is assigned to an execution 
channel in the EU. The total number of data elements of a region is called the size of 
the region, or the size of the operand. The number of execution channels is called the 
execution size (ExecSize), which is specified in the instruction word. ExecSize 
determines the size of region for source and destination operands in an instruction.  

• For an instruction with two source operands, the sizes of the two source operands 
must be the same.  

• The size of a destination operand generally matches the execution size, therefore 
equals to the number of source operand(s) in the same instruction.  
⎯ Exception of this rule is present for the integer reduction instructions (such as 

sad2 and sada2) where the destination area is smaller than the source area.  

Regions are generalized 2-dimensional (2D) arrays in row-major order. The first 
dimension is named the horizontal dimension (data elements within a row) and the 
second dimension is termed the vertical dimension (data elements in a column). 
Here, horizontal/vertical and row/column are just symbolic notations. When the GRF 
or MRF registers are viewed as a row-major 2D array of memory, such a notation 
normally matches well with the geometric locations of the data elements of an 
operand. However, as the register region is fully described by the parameters 
discussed below, the data elements of a register region may not form a regular 
rectangular shape. For example, Vertical Stride parameter is allowed to be smaller 
than Horizontal Stride, making the rows of a register region interleave with each 
other. It should also note that the meanings of horizontal/vertical here is different 
than that used for the flag control in Section  11.3.4.6. 
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Specifically, a region-based description of a source operand can take the following 
format 

RegFile RegNum.SubRegNum<VertStride;Width,HorzStride>:type  

Parameters are as the follows. 

• Register Region Origin (RegFile, RegNum and SubRegNum): This set of 
parameters, including the register file, RegFile, the register number, RegNum, and 
the subregister number, SubRegNum, describes the register region origin, which is 
the location of the first data element of the operand.  RegNum is in unit of 256-bit 
and SubRegNum is in unit of the data element size.  

• Width (Width): Width specifies the number of data elements along the horizontal 
dimension, or the number of data elements of a row.  

• Horizontal Stride (HorzStride): HorzStride specifies the step size between two 
adjacent data elements within a row. It is in unit of data element size, which is 
determined by the data element Type. 

• Vertical Stride (VertStride): VertStride specifies the step size between two 
adjacent data elements along the vertical dimension (or the step size between two 
rows). It is again in unit of data element size, which is determined by the data 
element Type. 

• Data Element Type (Type): Type specifies numerical data type (float, word, byte, 
etc.) of the data elements. All data elements within a region must have the same 
type. 

In GEN4, both GRF and MRF register files consist of a sequence of 256-bit physical 
registers. When viewing the register file (GRF for example) as a sequence of 256-bit 
aligned physical registers, RegNum field provides the physical register number, thus 
for the name. SubRegNum provides the sub-field addressing within a physical register. 
However, when viewing the register file as a byte addressable memory array, 
(RegNum and SubRegNum) is just a byte address within the register file with 
SubRegNum providing the lower 5 bits and RegNum providing the higher bits. 

The execution size is specified for each instruction by the parameter ExecSize. The 
size of the vertical dimension is ExecSize/Width, based on the rule that the size of 
regions must equal to the execution size. 

Figure  11-11 depicts the register region description. The example shows a register 
region of r4.1<16;8,2>:w, where the shaded fields denote the data elements in the 
region and the numbers in these fields are the execution channel assignments. The 
register region assumes that an ExecSize of 16 is set for the instruction. Each data 
element is a word (as noted by the type field “:w”). The origin of the region is at the 
second word of r4, denoted by r4.1. Each row of the region has 8 data elements 
(words) that are 2 data elements (words) apart. The distance between two rows is 16 
words. Note that the region shown is for illustration purpose only. It does not 
represent a typical usage model nor a performance optimized mode. 
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Figure  11-11. An example of a register region (r4.1<16;8,2>:w) with 16 elements 

256 bits

RefFile RegNum.SubRegNum<VertStride;Width,HorzStride>:type = r4.1<16;8,2>:w

r0
r1
r2
r3
r4
r5
r6
r7
r8

3 2 017 6 45
11 10 8915 14 1213VertStride=16

Width=8
Type=Word

HorzStride=2

Origin: r4.1
RegNum=r4

SubRegNum=1

0 bytes131

 

Figure  11-12 shows another example where the rows are interleaved. The region, 
having word data elements, starts at location r5.0:w. HorzStride, the distance within a 
row, is 2 words. So the second element (channel number 1) is at location 5.2:w.  And 
there are 8 elements per row. VertStride, the distance between two rows, is only 1 
word, which is less than HorzStride. Therefore, the first element of the second row 
(channel number 8) is at r5.1:w, just next to channel number 0.  It is clear from the 
picture that the two rows are interleaved.   

By varying the region parameters, reader may construct other configurations. The 
next section provides more details on the region-based register addressing. However, 
there are restrictions imposed by hardware implementation, which can be found in the 
later sections of this chapter.  

Figure  11-12. A 16-element register region with interleaved rows (r5.0<1;8,2>:w) 

256 bits

RefFile RegNum.SubRegNum<VertStride;Width,HorzStride>:type = r5.0<1;8,2>:w

r0
r1
r2
r3
r4
r5
r6
r7
r8

3 2 017 6 45 11 10 8915 14 1213

0 bytes131

 

 

Without considering the source channel swizzle and destination register region 
description, the above row-major-order region description provides the data 
assignment to each execution channel. The following pseudo code computes the 
addresses of data elements assigned to execution channels for a special case when 
the destination register is aligned to 256-bit register boundary. 
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// Input:   Type: ub | b | uw | w | ud | d | f | v 
//  RegNum: In unit of 256-bit register 
//  SubRegNum: In unit of data element size 
//  ExecSize, Width, VertStride, HorzStride: In unit of data elements 
// Output:  Address[0:ExecSize-1] for execution channels 
 
int ElementSize = (Type==“b”||Type==“ub”) ? 1 : (Type==“w”|Type==“uw”) ? 2 : 4; 
int Height = ExecSize / Width; 
int Channel = 0; 
int RowBase = RegNum<<5 + SubRegNum * ElementSize; 
for (int y=0; y<Height; y++) { 
 int Offset = RowBase; 
 for (int x=0; x<Width; x++) { 
  Address [Channel++] = Offset; 
  Offset += HorzStride*ElementSize; 
 } 
 RowBase += VertStride * ElementSize; 

} 

As HorzStride and VertStride are specified independently (note that VertStride might 
be smaller than or equal to HorzStride), the region may take various shapes from a 
replicated scalar, a replicated vector, a vector of replicated scalars, a sliding window, 
to a non-overlapped 2D array.  

A region-based description of a destination operand can take the following simplified 
format 

RegFile RegNum.SubRegNum<HorzStride>:type  

The destination operand is only allowed to have a 1 dimensional region. The Register 
Region Origin and Type are the same as for a source operand. The total number of 
elements is given by ExecSize. However, only HorzStride is required to describe the 
1D region, not VertStride and Width. 

As a source register region may across multiple physical GRF register, an instruction 
with such source operands may take more than two execution cycles to gather source 
data elements for execution. The destination register region is restricted to be within a 
physical GRF register. In other words, destination scatter writes over multiple physical 
registers are not supported. 

11.3.7 Region Addressing Modes 

There are two different register addressing modes: Direct register addressing and 
register-indirect register addressing. Depending on the register region description, the 
register-indirect register addressing mode can be further divided into three usages: 
1x1 index region where only the origin of register region is provided by the address 
register, Vx1 index region where the offset of each row of the register region is 
provided by an address register, VxH index region where the offset of each data 
element is provided by an address register.  
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11.3.7.1 Direct Register Addressing 

In this mode, all register region parameters are specified for an operand using fields in 
the instruction word. 

Figure  11-13 and Figure  11-14 are two examples of direct register addressing.  

For the example in Figure  11-13, all operands are 2D rectangular regions having the 
same size of 16 data elements. The two source operands, Src0 and Src1, have 16 
bytes. The destination operand, Dst, has 16 words. There are 8 elements in a row for 
Src0 and Src1. The vertical stride of 16 bytes for Src0 and Src1 indicates that the first 
element and the 9’th element are 16 bytes apart in the register file. Note that Src0 
falls into the 256-bit physical GRF register starting at r1.0, but Src1 crosses the 256-
bit physical GRF register boundary between r2 and r3. The numbers in the shaded 
regions are the values of the data elements. Observing the upper right corners of the 
source/destination regions (first data element), we have C = 3+9.  

Figure  11-13. A region description example in direct register addressing 

Dst

Src1

Src0

256 bits

add (16) r6.0<1>:w   r1.7<16;8,1>:b  r2.1<16;8,1>:b

r0

r1

r2

r3

r4

r5

r6

r7

r8

4 8 2 2 7 3 9
1 4 2 1 3 4 1

6
3

2
4

5 8 3 1 2 6 7
2 5 1 2 7 8 9

5 6 7 2 5 B 9 C
6 D A 5 8 5 F D

015

 

For the example in Figure  11-14, the sizes of areas of Src0 and Src1 are the same, 
but Src0 contains a vector of replicated scalars. With HorzStride = 0 and Width = 8, 
the first row of 8 elements in Src0 is a replication of the byte at r1.14.  Comparing 
ExecSize of 16 to Width of 8 indicates that there is a second row of 8 elements in 
Src0. With VertStride = 16, the second row in Src0 is a replication of the byte at r1.20 
(20 = 14+16).  Effectively, the 16 data elements of Src0 are {1,1,1,1,1,1,1,1, 
4,4,4,4,4,4,4,4}. 

 



 
 
 
 

    323 

Figure  11-14. A region description example in direct register addressing with <src0> 
as a vector of replicated scalars  

256 bits

add (16) r6.0<1>:w  r1.14<16;8,0>:b  r2.17<16;8,1>:b

4
1

4 2 5 1 2 7 8 9
2 5 8 3 1 2

Src0

Src1

Dst

5 3 6 2 3 8 9 A
6 9 C 7 5 6

r0

r1

r2

r3

r4

r5

r6

r7

r8

015

2 5

6 9

 

11.3.7.2 Register-indirect Register Addressing with a 1x1 Index Region 

In the register-indirect register addressing mode with 1x1 index region, the region 
origin is provided by the content of the address register, the rest of region parameters 
are provided by the fields in the instruction word.  

Figure  11-15 depicts an example for this addressing mode. For example, the present 
of full region description <16;8,1> for Src0 indicates that only the origin of the region 
is provided by the address register a0.0. 
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Figure  11-15. An example illustrating register-indirect register addressing mode with a 
1x1 index region  

7,0 2,2128 bits

add (16) r[a0.1]<1>:w  r[a0.0]<16;8,1>:b  r4.8<16;4,1>:b

Src1

Dst

Src0

256 bits r0

r1

r2

r3

r4

r5

r6

r7

r8

015

a0

 

11.3.7.3 Register-indirect Register Addressing with a Vx1 Index Region 

In the register-indirect register addressing mode with Vx1 index region, horizontal 
dimension is described by the fields in the instruction word and the vertical dimension 
is described by an address register region. Specifically, the origin of each row of the 
data region is provided by the contents of an address register region. The rows are 
described by the width and the horizontal stride. The first address register is provided, 
the following contiguous address registers are for the following rows.  The total 
number of address registers used is inferred by parameters ExecSize and Width. 

An example is provided in Figure  11-16. The assembly syntax notion of a register 
region without vertical stride, <4,1>, corresponding to the special encoding of vertical 
stride of 0xF in the instruction word, indicates the VxH or Vx1 mode of indirect 
register addressing. In this case, the origin for each row of Src0 is provided by the 
address register. As ExecSize/Width = 2, there are two address registers a0.0 and 
a0.1, each pointing to a row of 4 data elements. 
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Figure  11-16. An example illustrating register-indirect-register addressing mode with a 
Vx1 index region (Src0) 

 

2,8 4,0

add (8) r8.0<1>:f  r[a0.0]<4,1>:w  r6.0<4;4,1>:f

Src0 Src0 Src0Src0

Src0 Src0 Src0 Src0

Src1

Dst

128 bits

r0

r1

r2

r3

r4

r5

r6

r7

r8

015

a0

 

11.3.7.4 Register-indirect Register Addressing with a VxH Index Region 

In the register-indirect register addressing mode with VxH index region, the position 
of each data element is provided by the contexts in an address register region. This 
mode has the identical syntax as the Vx1 index region mode, and in fact, can be 
viewed as a special case of the Vx1 mode. When Width of the region is 1, the number 
of address registers used equals ExecSize.  

An example is provided in Figure  11-17. The absent of vertical stride in the region 
description <1,0> with width = 1 indicates that the origin for each row of 1 data 
element of Src0 is provided by the address register. As ExecSize/Width = 8, there are 
8 address registers from a0.0 to a0.7, each pointing to a single data elements. 
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Figure  11-17. An example illustrating register-indirect register addressing mode with a 
VxH index region (Src0).  

2,12 6,12 1,8 5,8 4,4 1,4 5,0 3,0

add (8) r9.0<1>:f  r[a0.0]<1,0>:f  r8.0<4;4,1>:f

Src1

Dst

Src0

Src0

Src0 Src0

Src0

Src0

Src0

Src0

256 bits

128 bits

r0

r1

r2

r3

r4

r5

r6

r7

r8

015

a0

r9

r10

 

11.3.8 Access Modes 

There are two basic GEN4 register access modes controlled by a single bit instruction 
subfield called Access Mode. 

• 16-byte Aligned Access Mode (align16): In this mode, the origins of all operands 
(sources and destination), whether it is by direct addressing or register-indirect 
addressing, are 16-byte aligned. For example a row in the region description 
starts at 16-bype aligned and the width the row must be 4 and the 4 data 
elements within a row must span 16-bytes. In this access mode (and with other 
restrictions put forward later), full-channel swizzle for both source operands and 
per-channel mask for destination operand are supported on a 4-component basis. 
In other words, the control and setting of full source swizzle and destination mask 
are repeated for every 4 components up to total of ExecSize channels.  
⎯ The align16 access mode can be used for AOS operations. See examples 

provided in the Primary Usage Model section for SIMD4x2 and SIMD4x1 
modes of operation to support 3D API Vertex Shader and Geometric Shader 
execution.  

• 1-byte Aligned Access Mode (align1): In this mode, the origins of all operands 
may be aligned to their data type and could be 1-byte if the operand is of byte 
type. In this access mode, full region register descriptions are supported, 
however, source swizzle or destination mask are not supported.  
⎯ The align1 access mode can be used for SOA operations. See examples 

provided in the Primary Usage Model section for SIMD8 and SIMD16 modes of 
operation to support 3D API Pixel Shader. Many media applications also 
operate well in align1 access mode. 
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11.3.9 Execution Data Type 

GEN4 architecture supports instructions with mixed data types. The internal hardware 
computation is performed using the execution data type. When an instruction has only 
one source operand or has two source operands of the same data type, the execution 
data type is the same as that of the source. When an instruction has two source 
operands of different types, an execution data type is determined and one of the 
source operands will be converted to the execution type before the computation is 
performed. The execution type is independent of the destination data type. When the 
destination data type is different from the execution data type, a type conversion is 
performed on the intermediate compute results before the results are written into the 
destination register. Such a destination type conversion doesn't apply to accumulator 
registers, implicitly or explicitly. Therefore, accumulator type cannot differ from the 
execution data type.  

Determination of the execution data type for two sources of different data types obeys 
the following rules 

• If  any source is a float, the execution data type is float (F) 

• Else if any source is a dword, the execution data type is signed dword integer (D) 

• Else execution data type is signed word integer (W) 

Note that when the execution data type is an integer, it is always a signed integer. 
This doesn't affect the functional correctness of the instruction as extra precisions are 
carried within the hardware, including the accumulator. See Instruction Reference 
Chapter for detailed description for each instruction.  

 

11.3.10 Register Region Restrictions 

The following register region rules apply to the GEN4 implementation. Rules and 
restrictions for compressed instructions can be found in the Instruction Compression 
section. 

1. ExecSize must be equal to or less than the maximum execution size supported for 
the operand type. As shown in Table  11-29, the maximum execution size is 
determined by the largest operand type of the sources and destination of the 
instruction.  

2. The mapping of data elements within the region of a source operand is in row-
major order and is determined by the region description of the source operand, 
plus ExecSize and destination region description. 

3. ExecSize must be equal to or greater than Width. 

4. If ExecSize = Width and HorzStride ≠ 0, VertStride must be set to Width * 
HorzStride. 

5. If ExecSize = Width but HorzStride = 0, there is no restriction on VertStride. 

6. If Width = 1, HorzStride must be 0 regardless of the values of ExecSize and 
VertStride. 

7. If ExecSize = Width = 1, both VertStride and HorzStride must be set to zero. 

8. If VertStride = HorzStride = 0, Width must be 1 regardless of the value of 
ExecSize. 
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9. Destination region cannot cross the 256-bit register boundary. 

9.1. Exception to this rule is for a compressed instruction where the destination 
region covers exactly two adjacent 256-bit physical registers.  

10. Destination region alignment rule. 

10.1. With the exception on ‘raw move’ described in rule #10.3 and the 
exception on byte destination in rule #10.5, all destination data elements 
must be aligned to the size for the execution data type of the instruction. For 
example, if one of the source operands is in dword mode (a float, a signed or 
unsigned dword integer), the execution data type will be either float or signed 
dword integer. Therefore, the destination data elements must be dword 
aligned. This rule has the following two implications: 

10.1.1. The destination sub-register must be aligned to the size of the 
execution data type. 

10.1.2. If ExecSize is greater than 1, dst.HorzStride*sizeof(dst.Type) must be 
equal to or greater than the size of the execution data type.  

10.2. If ExecSize is 1, dst.HorzStride must not be 0. Note that this is relaxed 
from rule 10.1.2. Also note that this rule for destination horizontal stride is 
different from that for source as stated in rule #7. 

10.3. When destination type is byte (UB or B), only a ‘raw move’ using mov 
instruction supports packed byte destination register region: dst.HorzStride = 
1 and dst.type = (UB or B). This packed byte destination region is not 
allowed for any other instructions, including a ‘raw move’ using sel 
instruction. This is because sel instruction is based on word or dword wide 
execution channels. 

10.4. When an instruction has a source region that spans two physical registers, 
one of the followings must be true: 

10.4.1. Destination region is entirely contained in the lower oword of a 
physical register, 

10.4.2. Destination region is entirely contained in the upper oword of a 
physical register, or  

10.4.3. Destination elements are evenly split between the two owords of a 
physical register. 

10.5. Relaxed alignment rule for byte destination. When destination type is byte 
(UB or B), destination data elements can be either aligned to the lowest byte 
or the second lowest byte of the execution channel. For example, if one of the 
source operands is in word mode (a signed or unsigned word integer), the 
execution data type will be signed word integer. In this case, the destination 
data bytes can be either all in the even byte locations or all in the odd byte 
locations. This rule has the following two implications: 

10.5.1. The destination sub-register must be either aligned to the size of the 
execution data type or one byte higher off the execution data type. 

10.5.2. If ExecSize is greater than 1, dst.HorzStride*sizeof(dst.Type) must be 
equal to or greater than the size of the execution data type. This is the 
same as that in #10.1.2. 

11. In Align1 access mode, a source region must be within two adjacent 256-bit 
physical registers.  

11.1. It is further restricted that a single row cannot cross physical register 
boundary. 

11.2. It is further restricted that for source 1 only, when crossing physical 
register boundary, the vertical stride must be equivalent to 32-byte.   
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12. In Align16 access mode, a source region must be within one 256-bit physical 
registers. 

13. Rules on register-indirect register access: 

13.1. Source 0, source 1 and destination can be indexed. Support for indirect 
register access for source operands is device dependent. See Table  11-30 for 
details. 

13.2. If supported, an indexed source 1 can only have a 1x1 indexed register 
region – only single index mode is allowed for a source 1. 

13.3. An indexed destination can only have a 1x1 indexed register region – only 
single index mode is allowed for a destination operand. 

13.4. Data elements referenced by a single index within a source region cannot 
cross 256-bit physical register boundary. This applies to register region with a 
single index or with multiple indices. 

13.4.1. A register region with multiple indices may access multiple physical 
registers as long as data elements associated with each index follow the 
above-mentioned rule. For example instruction “mov (16) r0.0:uw 
r[a0.0]<2,2>:uw” is allowed. This is a source gathering instruction 
whereas the source operand may potentially tough 8 different physical 
GRF registers. 

13.5. VxH index regioning using 2 index registers cannot start from a0.6. a0.6 
can still be used as part of the VxH index regioning as long as the start index 
register is not itself, a0.6 can also be used in Vx1 index regioning by itself. 

13.6. [DevCL] When indirect addressing is used on a source or destination of 
an instruction, the following combination for the particular source or 
destination is not allowed. 

13.6.1. using indirect addressing 

13.6.2. the index register used is a0.7 

13.6.3. the index immediate is negative 

13.6.4. the datatype is byte 

14. Implementation Restriction: Any non-compressed instruction with 2row 
regioning source(s) cannot be a jump/branch target or follows directly after a 
conditional branch instruction or a predicated jmpi instruction, unless the 2 rows 
are previously written from FPU, not from outside of EU. The workaround would be 
either break the instruction into 2 1row instruction, or insert a NOP. 

Implementation Restriction: The relaxed alignment rule for byte destination 
(#10.5) is not supported. 
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Table  11-29. Execution size in device hardware 

Device Native GEN4 Instructions Compressed GEN4 Instructions 

Max Operand Size DWORD WORD BYTE DWORD WORD BYTE 

[DevBW] 8 16 16 16 32 32 

[DevCL] 8 16 16 16 32 32 

 

Table  11-30. Indirect source addressing support available in device hardware 

Device Indirect Source 0 Indirect Source 1 

[DevBW] Yes No 

[DevCL] Yes Yes 

 

Note: It is expected that some of the restrictions may be relaxed in future 
implementations of the GEN4 architecture. 

11.3.10.1 Examples 

Some examples are provided here to illustrate the cases when the register region 
restrictions are violated. It is provided as informative material to help understanding 
these restrictions.  

Example 1: The following instructions are illegal as they violate rule # 10.1, as the 
destination is not aligned to the execution data type. 

mov (1) r0.1<1>:b r2.0:w  // dst.SubReg must be even 
mov (2) r0.0<1>:b r2.0:w  // dst.HorzStride must be >= 2 
mov (2) r0.0<2>:b r2.0:d  // dst.HorzStride must be >= 4 
mov (2) r0.0<2>:b r2.0:f  // dst.HorzStride must be >= 4 
mov (1) r0.2<1>:b r2.0:d  // dst.SubReg must be dword aligned  

Example 2: This instruction is illegal as it violates rule # 10.1.2, as when ExecSize = 1, 
dst.HorzStride cannot be zero. 

mov(1) r0.0<0>:b r0.0:d 

 

Example 3: This instruction is illegal as it violates rule # 11.1, as the source contains 
one row of 2 elements that spans physical register r2 and r3. 

mov (2)  r1.0:d r2.7<2;2;1>:d 
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Example 4: This instruction is illegal as it violates rule #14, as the jump target of the 
jmpi instruction is using 2-row regioning. 

send r4 null m1 0x0122005b <- write into both r4 and r5 
... 
(f0.0)jmpi L0 
... 
L0: mov (8) r10 r4<8;4,1> <- source0 uses both r4 and r5 
 

Example 5: This instruction is illegal as it violates rule #14, as the instruction 
immediately after the predicated jmpi instruction is using 2-row regioning. 

send r4 null m1 0x0122005b <- write into both r4 and r5 
... 
(f0.0)jmpi L0 
mov (8) r10 r4<8;4,1> <- source0 uses both r4 and r5 

 

Example 6: This instruction is illegal as it violates rule #14, as the jump target of the 
iff instruction is using 2-row regioning. 

send r4 null m1 0x0122005b <- write into both r4 and r5 
... 
(f0.0)iff L0 
... 
endif 
L0: mov (8) r10 r4<8;4,1> <- source0 uses both r4 and r5 

Example 7: This instruction is illegal as it violates rule #14, as the instruction 
immediately follows the if instruction is using 2-row regioning. 

send r4 null m1 0x0122005b <- write into both r4 and r5 
... 
(f0.0)if L0 
mov (8) r10 r4<8;4,1> <- source0 uses both r4 and r5 
... 
L0: else 
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11.3.10.2 Different Raw Moves 

Definition of Raw Move: Raw move is an operation that moves data elements from 
source to destination without altering the bit fields of the data elements. It must use 
one of the move instructions such as mov, sel, movi. Arithmetic instruction that 
results in unaltered bit fields of the data elements are not treated as raw move. A raw 
move may subject to the execution channel enables by using prediction or being 
present in multi-channel branch code segment. Type conversion by definition cannot 
be used in a raw move. Therefore, source and destination operands must be of the 
identical data type. For example, if both source and destination are float, for an 
arithmetic instruction, denorm will be flushed to zero. However, for a raw move, 
denorm will be preserved. 

Definition of Byte Raw Move: As the minimal execution channel type is word, when 
the destination stride is greater than one byte, each data element of the source can be 
mapped to one execution channel. This is referred to as Byte Raw Move. Byte Raw 
Move allows the destination to be byte aligned, in other words, allowing the 
destination to not align to execution channels. Byte Raw move subjects to execution 
channel enables. 

Definition of Packed-Byte Raw Move: As the minimal execution channel type is 
word, when the destination stride is equal to one byte, two data elements of the 
source are mapped to one execution channel. This is referred to as Packed-Byte Raw 
Move. Packed-Byte Raw Move allows the destination to be byte aligned, in other 
words, allowing the destination to not align to execution channels. However, as the 
data elements are not mapped to execution channels, undefined results may occur if 
Packed-Byte Raw Move is mixed with execution channel enables. So for Packed-Byte 
Raw Move, NoMask should be used when there are un-enabled channels within the 
execution size of the instruction. 

11.3.11 Destination Operand Description 

11.3.11.1 Destination Region Parameters 

Based on the above restrictions, a subset of register region parameters are sufficient 
to describe the destination operand: 

• Destination Register Origin 
⎯ Destination Register Number and Destination Subregister Number for direct 

register addressing mode 
⎯ A Scalar Destination Register Index for register-indirect-register addressing 

mode 

• Destination Register ‘Region’ – Note that destination register region does not have 
full region description parameters 
⎯ Destination Horizontal Stride 
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11.4 SIMD Execution Control 

11.4.1 Predication 

Predication is the conditional SIMD channel selection for execution on a per instruction 
basis. It is an efficient way of dynamic SIMD channel enabling without paying branch 
instruction overhead. When predication is enabled for an instruction, a Predicate Mask 
(PMask), which contains 16-bit channel enables, is generated internally in EU. Note 
that PMask is not a software visible register. It is provided here to explain how SIMD 
execution control works. PMask generation is based on the Predication Control 
(PredCtrl) field, Predication Inversion (PredInv) field and the flag source register in the 
instruction word. See Instruction Summary chapter for definition of these fields. 

Figure  11-18 shows the block diagram of the hardware logic to generate PMask. 
PMask is generated based on combinatory logic operation of the bits in the flag 
register. Instruction field PredCtrl controls the horizontal evaluation unit and vertical 
evaluation unit. MUX A in the figure selects whether horizontally-evaluated results or 
vertically-evaluated results are sent to the Predication Invertion unit. The PredInv field 
controls the Prediction Inversion unit. Either one 16-bit flag subregister or the whole 
flag register may be selected to generate the PMask depending on the predication 
control modes. MUX B indicates that predication can be enabled and disabled. 
Predication can be grouped into the following three categories. Predication 
functionality also depends on the Access Mode of the instruction. 

• No predication: Of course, predication can be disabled. This is the most commonly 
used case.  

• Predication with horizontal combination: the predicate mask is generated based on 
combinatory logic operation of bits within a selected flag subregister. 

• Predication with vertical combination: the predicate mask is generated based on 
combinatory logic operation of bits across flag multiple subregisters. 
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Figure  11-18. Generation of predication mask 
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11.4.2 No Predication 

When PredCtrl field of a given instruction is set to 0 (“no predication”), it indicates 
that no predication is applied to this instruction. Effectively, the resulting PMask is all 
1’s. This is shown by the 2:1 multiplexer B controlled by the Pred Enable signal in 
Figure  11-18. Where predication is not enabled for an instruction, multiplex B is 
selected to output 0xFF to PMask.  
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11.4.3 Predication with Horizontal Combination 

Predication with horizontal combination inputs the 16 bits of a single flag subregister 
(f0.0:uw or f0.1:uw) and passes them through combinatory logic of the Horizontal 
Evaluation unit to create PMask.  

The simplest combination is ‘no combination’ – the same 16 bits from selected flag 
subregister are output to MUX A. In this case, a bit in the selected flag subregister 
controls the conditional execution of the corresponding execution channel. Let the 
selected flag subregister be denoted as f0.#, the following pseudo code describes the 
predicate mask generation for predication with sequential flag channel mapping.  

 If (PredCtrl == “Sequential flag channel mapping”) { 
  For (ch=0; ch<16; ch++) 
   PMask[ch] = (PredInv == TRUE) ? ~f0.#[ch] : f0.#[ch]; 
 } 

More complex horizontal evaluation is based on channel grouping. A group of adjacent 
channels (bits from flag subregister) are evaluated together and a single bit is 
replicated to the group. The size of groups is in power of 2. The supported 
combination depends on the Access Mode of an instruction. 

In Align16 access mode, horizontal combination is based on 4-channel groups.  

• Channel replication: PredCtrl of ‘.x’, ‘.y’, ‘.z’ and ‘.w’ select a single channel 
from each 4-channel group and replicate it as the output for the group. For 
example, PredCtrl = ‘.x’ means that channel 0 in each group is replicated. 

• OR combination: PredCtrl of ‘.any4h’ means that if any of the channel in a 
group is enabled, outputs for the 4 channels in the group are all enabled. 

• AND combination: PredCtrl of ‘.all4h’ means that only when all of the channels 
in a group are enabled, the output for the group is enabled. 

These combinations in Align16 mode can be described by the following pseudo-code. 

 If (Access Mode == Align16) { 
  For (ch = 0; ch < 16; ch += 4) 
   Switch (PredCtrl) { 
   Case ‘.x’:   bTmp = f0.#[ch]; break; 
   Case ‘.y’:  bTmp = f0.#[ch+1]; break; 
   Case ‘.z’:   bTmp = f0.#[ch+2]; break; 
   Case ‘.w’:   bTmp = f0.#[ch+3]; break; 
   Case ‘.any4h’:   bTmp = f0.#[ch] | f0.#[ch+1] | f0.#[ch+2] | f0.#[ch+3]; break; 
   Case ‘.all4h’:   bTmp = f0.#[ch] & f0.#[ch+1] & f0.#[ch+2] & f0.#[ch+3]; break; 

} 
bTmp = (PredInv == TRUE) ? ~bTmp : bTmp; 
PMask[ch] = PMask[ch+1] = PMask[ch+2] = PMask[ch+3] = bTmp; 

} 
 } 

In Align1 access mode, horizontal combination is based on AND combination ‘.any#h’ 
and OR combination ‘.all#h’ on channel groups with various sizes, where # is the 
number of channels in a group ranging from 2 to 16. This is described by the following 
pseudo-code. 
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 If (Access Mode == Align1) { 
  Switch (PredCtrl) { 
   Case ‘.any2h’:   groupSize = 2; <op> = ‘|’; break; 
   Case ‘.all2h’:   groupSize = 2; <op> = ‘&’; break; 
   Case ‘.any4h’:   groupSize = 4; <op> = ‘|’; break; 
   Case ‘.all4h’:   groupSize = 4; <op> = ‘&’; break; 
   Case ‘.any8h’:   groupSize = 8; <op> = ‘|’; break; 
   Case ‘.all8h’:   groupSize = 8; <op> = ‘&’; break; 
   Case ‘.any16h’:  groupSize = 16; <op> = ‘|’; break; 
   Case ‘.all16h’:   groupSize = 16; <op> = ‘&’; break; 
  } 
  For (ch = 0; ch < 16; ch += groupSize) { 
   For (inc = 0, bTmp = FALSE; inc < groupSize; inc ++)  

bTmp = bTmp <op> f0.#[ch+inc]; 
For (inc = 0; inc < groupSize; inc ++)  

    PMask[ch+inc] = bTmp; 
} 

 } 

11.4.4 Predication with Vertical Combination 

Predication with vertical combination uses both flag subregister as inputs. The AND or 
OR combination is across the subregisters on a channel by channel basis. This is 
shown by the following pseudo-code. 

 If (Access Mode == Align1) { 
  For (ch = 0; ch < 16; ch ++) { 
   If (PredCtrl == ‘any2v’) 
    PMask[ch] = f0.0[ch] | f0.1[ch] 
   Else If (PredCtrl == ‘any2h’) 
    PMask[ch] = f0.0[ch] & f0.1[ch] 
  } 
 } 
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11.5 Instruction Compression 

11.5.1 Motivation and Expected Usage 

When pixel processing is performed in the channel serial mode, each 3D graphics API 
Pixel Shader instruction (SIMD with 4 components) is normally translated into 4 GEN4 
instructions with one for each component. It may result in fewer GEN4 instructions, 
when some components are not output. To process 16 pixels in parallel using the 
SIMD8 basic GEN4 instruction set adds another factor of 2. So a 32-line Pixel Shader 
program may become 256-line long. In order to reduce the burden to the instruction 
cache, GEN4 architecture employs a simple instruction compression technique 
available on a subset of instructions. For the Pixel Shader case, one GEN4 instruction 
in the instruction stream is assigned to process 16 pixels in parallel. When such kind 
of instruction is encountered, the execution unit automatically creates two instructions 
before issuing them into the instruction decoder. 

For example, a compressed instruction may be in the following form: 

add (16) r4.0<8;8,1>:d  r2.0<8;8,1>:d  r0.0<8;8,1>:d    {Compr} 

It will be split by hardware internally into two native GEN4 instructions as: 

 add (8) r4.0<8;8,1>:d  r2.0<8;8,1>:d  r0.0<8;8,1>:d 

add (8) r5.0<8;8,1>:d  r3.0<8;8,1>:d  r1.0<8;8,1>:d    {SecHalf} 

The instruction compress technique is expected to be used for Pixel Shader program 
that runs in channel serial mode for 16 pixels in parallel. It is not clear whether 3D 
graphics API Vertex and Geometry Shader programs can take advantage of this 
hardware capability. 

The instruction compress technique is also expected to be used for media kernels, 
where it is quite common to have an operation on a block of data. Instruction 
compression significantly reduces the burden to the instruction caches. It also allows 
media kernels to utilize both accumulator registers as implied operands. 
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11.5.2 Hardware Behavior 

Upon encounter an instruction with the Compression Control field set to 10b (Compr), 
EU hardware treats it as a compressed instruction and converts it into two instructions 
before sending them down for instruction decode and dispatch. The two decompressed 
instructions share majority of instruction subfields with the original compressed 
instruction. The differences are fully described here. 

When destination register is an MRF register, a special instruction compression 
control, Compr4, can be used. Compr4 is the combined condition when instruction 
compression field is set to Compr and the destination register is a MRF register with 
RegNum[7] set to 1. With Compr4, the second decompressed instruction will have 
MRF register incremented by 4 registers.   

• The first generated instruction 

o Compression Control field is reset to 00b (normal) 

o ExecSize is reduced by half 

o RegNum[7] of the destination MRF register is reset to 0 if the 
compressed instruction is Compr4. 

o The rests of the instruction word are unchanged 

• The second generated instruction 

o Compression Control field is set to 01b (SecHalf) 

 If ExecSize of the compressed instruction less than 32, the 
SecHalf flag determines that the generated instruction (e.g. 
with ExecSize of 8) uses the 8 MSB of the mask and flag 
registers. And if a flag register is a conditional destination 
operand, only the higher 8 bits of a flag register are updated.  

 If ExecSize of the compressed instruction is 32, the whole 16 
bits of the mask and flag registers apply to the generated 
instruction (with ExecSize of 16). And if a flag register is a 
conditional destination operand, the whole 16 bits of a flag 
register may be updated. Effective, SecHalf doesn’t affect the 
generation of execution mask in this case.  

o Execution size is reduced by half  

o The breakpoint field is reset (regardless of the value in the original 
instruction)  

o For a source operand  

 Subject to the following exceptions, for a direct source 
register, the LSB of the operand’s RegNum is set to 1. This 
effectively moves the register origin by a whole GRF physical 
register.  

• This rule applies to an accumulator register as an 
explicit source operand (and it must be acc0 in the 
compressed instruction). The LSB of the operand’s 
RegNum is set to 1, effectively changing it to acc1. 
This rule is also consistent with that for an implicit 
accumulator source.  
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 Subject to the following exceptions, for an indirect source 
register, bit 1 of the address register is set to 1. This 
effectively moves the address register by one sub-field for the 
second instruction.  

• The subregister field of the address register must be 
even aligned, and must be in 1x1 mode.  

 For an implicit accumulator source operand, the SecHalf flag 
determines that it is acc1.  

• This rule applies to a compressed instruction 
regardless of its ExecSize.  

 If a source operand is a scalar (signified by a region with 
HStride = VStride = 0, also including an immediate operand 
regardless of it being a scalar or a vector), there is no change.  

• This rule only applies to a direct source but not a 
register-indirect source. If the intension is to used a 
single indexed scalar value for a compressed 
instruction, software must program two-adjacent 
address subregisters with the same value. 

 If ExecSize of the compressed instruction is 16, the destination 
has a size of dword and stride of 1 (effectively with a 4-byte 
stride), and the source operand type is of word size with a 
horizontal stride of 1, the MSB of the operand’s SubRegNum is 
set to 1. This effectively moves the register origin by half of a 
GRF physical register.  

• This rule is specifically for mixed data type operation 
(e.g. Pixel Shader usage). 

o For destination operand  

 For a direct destination GRF register, the LSB of the 
destination operand’s RegNum is set to 1.  

• This rule applies to an accumulator register as an 
explicit destination (and it must be acc0 in the 
compressed instruction). The LSB of the operand’s 
RegNum is set to 1, effectively changing it to acc1. 
This rule is consistent with that for an implicit 
accumulator destination.  

 For a destination MRF register (directly addressed only), the 
destination RegNum is incremented by 1, if the compressed 
instruction has Compr.  

 For a destination MRF register (directly addressed only), the 
destination RegNum[7] is reset to 0 and then RegNum is 
incremented by 4, if the compressed instruction has 
Compr4.  

 For an indirect destination GRF register, bit 1 of the address 
register is set to 1. This effectively moves the address register 
by a sub-field for the second instruction.  

• The subregister field of the address register must be 
even aligned, and must be in 1x1 mode.  

 For an implicit accumulator destination operand, the SecHalf 
flag determines that it is acc1.  
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As all 16 entries of the mask stack are pushed or popped together each time a mask 
stack is updated and the mask stack is implemented by counters, it is essential to not 
mix the execution channel select with the use of SecHalf when nesting branch/loop 
instruction blocks. In other words, mask values that are pushed onto a stack must all 
have been generated from instructions using the same Compression Control value 
(such as normal, SecHalf and Compr). 

The Thread Control field is unchanged for both generated (decompressed) 
instructions. If this field is set to Switch in the compressed instruction, both 
decompressed instructions will cause forced thread switch. 

Compr4 is not supported. 

[DevBW, DevCL] Errata: If ExecSize is 16, the implicit accumulator is forced to 
acc0, even if SecHalf compression control is set. Normally, SecHalf determines that 
acc1 is the implicit accumulator. However, this is overruled by ExecSize of 16. This 
restriction implies that instructions with implicit accumulator as a source (such as 
mac, mach) cannot be used for a compressed instruction with ExecSize of 32. 

[DevBW, DevCL] Errata: When SecHalf compression control is used, even with 
ExecSize of 16, only the second half of the flag register may be used (for example as 
conditional destination or as prediction source).  

11.5.3 Rules and Restrictions 

In order to reduce the hardware complexity, the following rules and restrictions apply 
to the compressed instruction: 

• Instruction compression is on a per instruction basis. Compressed instruction and 
normal instruction can be intermixed in any program. 

• A compressed instruction must be in Align1 access mode. Align16 mode 
instructions cannot be compressed. 

• A compressed instruction with indirect addressed operands for any operand 
(source, destination) is allowed.  
⎯ Rational: Commonly used in media kernels.  

• Operand Alignment Rule: With the exceptions listed below, a source/destination 
operand in general should be aligned to even 256-bit physical register with a 
region size equal to two 256-bit physical registers.  
⎯ Rational: This allows an insertion of 1 to the LSB of the RegNum to create the 

second instruction. 

• Exception A to the Operand Alignment Rule: for compressed instructions operating 
on packed words (destination is not dword size with stride of one), an operand 
with a non-zero subregister field is also allowed, as long as its register number is 
an even number. 
⎯ Rational: This allows an insertion of 1 to the LSB of the RegNum field to create 

the second instruction.  And hardware does not modify the subregister field.  

• Exception B to the Operand Alignment Rule: a source operand with scalar 
replication (with both HStride = 0 and VStride = 0) is allowed to have address 
unaligned to 256-bit. 
⎯ Rational: There is no change to this source operand to create the second 

instruction. 
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• Exception C to the Operand Alignment Rule: For a compressed instruction with 
dword destination with stride of one, for a source operand with packed word data 
elements (type = W or UW, and HStride = 1), the register origin must be aligned 
to 256-bit physical register (i.e. SubRegNum = 0).  
⎯ If a source type is B or UB, HStride must be either 0 (scalar) or 2 (packed 

word).  

• Exception D to the Operand Alignment Rule: a destination operand to MRF must 
be aligned to 256-bit physical register (either even or odd). 
⎯ Rational: This allows more efficient use of the rare MRF resource, considering 

the fact that many messages have a single register message header field. 

• ExecSize must be 16 or 32 
⎯ Rational:  Allows hardware to decrement by 1 to the encoded ExecSize field. 
⎯ Note: Most commonly used mode for Pixel Shader is that ExecSize = 16. Most 

commonly used mode for media kernels is that ExecSize = 32 with packed 
word operations. There are also some media usage of compressed instruction 
with ExecSize = 16. 

• Instruction compression does not apply to branch instructions such as jmpi, send, 
do, while, wait, etc.  

• A compression instruction in general cannot address (read and/or write) ARF 
registers.  
⎯ Exception to this rule is the explicit or implicit access to the accumulator 

registers and implicit access to flag registers and mask registers, as well as 
indirect addressed GRF registers.  

11.5.4 Usage Examples 

Some examples are provided in this section to help visualizing the effect of 
compressed instruction on source/destination operands. It is for illustration purpose 
only; it is not intended as comprehensive usage coverage. 

Figure  11-19 shows examples of directly-addressed vector operands in a compressed 
instruction. In these cases, hardware inserts one to the LSB of the RegNum field of a 
GRF operand (or increment one to RegNum of a MRF operand) for the second 
decompressed instruction.  

• In Figure  11-19(a), the operand occupies two adjacent rows of register space with 
the first decompressed instruction operating on the first eight elements and the 
second decompressed instruction on the second eight elements.  It may be a 
dword source or destination operand of a SIMD16 compressed instruction. The 
operand register address must be even aligned to a GRF register or register 
aligned to a MRF register.   

• Figure  11-19(b) shows a result when the register address of the dword (source) 
operand of a SIMD16 compressed instruction is aligned to odd GRF register. As 
inserting one to RegNum field doesn’t change a thing, the same eight elements 
are repeated for the two decompressed instructions.   

• Figure  11-19(c) shows a word/byte source/destination operand in a SIMD16 
compressed instruction. RegNum field is an even number; however, SubRegNum 
here is not zero. So the elements of a decompressed instruction only occupy a 
portion of a GRF register. 

Figure  11-19. Direct addressed vector operands in a compressed instruction 
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Figure  11-20 shows a case of a packed-word vector operand in a dword SIMD16 
compressed instruction. When the destination stride is 4-byte, instead of inserting one 
to the LSB of RegNum field of src0, hardware will insert one to the MSB of 
SubRegNum field, as src0 is a packed-word vector (horizontal stride equals to 2-byte). 
This is specifically designed for Pixel Shader application.  

Figure  11-20. A packed-word operand in a dword SIMD16 compressed instruction 

w7 w0w15 w8

dw0dw7

dw0dw7

+ src0

src1

dest
 

Figure  11-21 shows cases of scalar sources in a compressed instruction. There is no 
alignment restriction for a scalar source in a compressed instruction, 
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Figure  11-21. Dword and word (or byte) scalar source in a compressed instruction 

 

Figure  11-22 shows cases of indirectly-addressed operands in a compressed 
instruction. Hardware inserts one to bit 1 of SubRegNum field of the address register 
for the second decompressed instruction. This capability may be used for register 
regions that are not supported by the previously-mentioned cases. For example, 
source0 of the following eight instructions may be compressed with indirect-
addressed.   

Direct-addressed instructions: 

add.sat (8) r26.0<2>:ub  r2.0<8;8,1>:w    r26.0<16;8,2>:ub {Align1 } 
add.sat (8) r27.0<2>:ub  r2.8<8;8,1>:w    r27.0<16;8,2>:ub { Align1 } 
add.sat (8) r28.0<2>:ub  r3.0<8;8,1>:w    r28.0<16;8,2>:ub { Align1 } 
add.sat (8) r29.0<2>:ub  r3.8<8;8,1>:w    r29.0<16;8,2>:ub { Align1 } 
add.sat (8) r30.0<2>:ub  r4.0<8;8,1>:w    r30.0<16;8,2>:ub { Align1 } 
add.sat (8) r31.0<2>:ub  r4.8<8;8,1>:w    r31.0<16;8,2>:ub { Align1 } 
add.sat (8) r32.0<2>:ub  r5.0<8;8,1>:w    r32.0<16;8,2>:ub { Align1 } 
add.sat (8) r33.0<2>:ub  r5.8<8;8,1>:w    r33.0<16;8,2>:ub { Align1 } 

 Compressed instructions with indirectly-addressing mode: 

mov (1) a0.1<1>:d   0x00500040:d 
add.sat (16) r26.0<2>:ub  r[a0.2,0]<8;8,1>:w    r26.0<16;8,2>:ub { Align1, Compr } 
add.sat (16) r28.0<2>:ub  r[a0.2,32]<8;8,1>:w    r28.0<16;8,2>:ub { Align1, Compr } 
add.sat (16) r30.0<2>:ub  r[a0.2,64]<8;8,1>:w    r30.0<16;8,2>:ub { Align1, Compr } 
add.sat (16) r32.0<2>:ub  r[a0.2,96]<8;8,1>:w    r32.0<16;8,2>:ub { Align1, Compr } 

 

Figure  11-22. Indirect-addressed source/destination operand in a compressed 
instruction 
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11.6 End of Thread 

There is no special instruction opcode (such as an END instruction) to cause the 
thread to terminate execution. Instead, the end of thread is signified by a send 
instruction with the end-of-thread (EOT) sideband bit set. Upon executing a send 
instruction with EOT set, the EU stops on the thread. Upon observing an EOT signal on 
the output message bus, the Thread Dispatcher makes the thread’s resource 
available. If a thread uses pre-allocated resource managed by a fixed function, such 
as URB handles and scratch memory, some fixed function protocol also requires the 
thread to terminate with the message header phase to carry the information in order 
for the fixed function to release the pre-allocated resource. 

EU hardware guarantees that if a terminated thread has in-flight read messages or 
loads at the time of ‘end’ that their writebacks will not interfere with either other 
threads in the system or new threads loaded in the system in the future.  

More details can be found in the send instruction description in Instruction Reference 
chapter. 
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11.7 Creating Conditional Flags 

FPU will output 2 sets of conditional signals, 1 set will be generated from before the 
adder outputs clamping/re-normalizing/format conversion logic, we call this the pre 
conditional signals. 1 set will be generated from the final results after clamping and 
re-normalizing/format conversion logic, and we will call this the post conditional 
signals. The post conditional signals are used for fusing the compare instruction. The 
flags generated from the post conditional signals should be equivalent to the flags 
generated by a separate CMP instruction after the current arithmetic instruction. 

The pre conditional signals will be used to generated flags for CMP/CMPN instructions 
only, this logically does the compare of the 2 input sources. The post conditional 
signals will be used to generated flags for all the other arithmetic instructions, this 
logically does the compare of the result with zero. 

CMPN with both sources are NaN is a don’t care case since this doesn’t impact the 
MIN/MAX operations. 

The pre conditional signals include the following: 

• pre_sign bit: this bit reflects the sign of the computed result directly from the 
adders, without going through any kind clamping, normalizing, or format 
conversion logic. 

• pre_zero bit: this bit reflects whether the value of the adder results are zero, 
again this should be obtained before any kind clamping, normalizing, or format 
conversion logic. 

The post conditional signals include the following: 

• post_sign bit: this bit reflects the sign of the final result after all the clamping, 
normalizing, or format conversion logic.  

• post_zero bit: this bit reflects whether the value of the adder results are zero 
after all the clamping, normalizing, or format conversion logic. 

• OF bit: this bit reflects whether an overflow occured in any of the compution of 
the current instruction, including clamping, re-normalizing, and format conversion. 

• INC bit: The increment bit is only used for RNDU, RNDE, and RNDZ instructions to 
convey the information whether an additional increment is needed for the 
execution channel for the given round instruction. It always returns 0 for RNDD 
and is undefined for other instructions.  

• NC bit: The NaN computed bit indicates whether the computed result is not a 
number. It carries valid information for instructions operating on floating point 
values. For an operation on integer operands, this bit is always set to 0. 

• NS0 bit: The NaN bit indicates whether source 0 of an execution channel is not a 
number. It carries valid information for instructions operating on floating point 
values. For an operation on integer operands, this bit is always set to 0. 

• NS1 bit: The NaN bit indicates whether source 1 of an execution channel is not a 
number. It carries valid information for instructions operating on floating point 
values. For an operation on integer operands, this bit is always set to 0. For an 
operation with one source operand, this bit is also set to 0.  This bit is only used 
for the comparison instruction CMPN, which is specifically provided to emulate 
MIN/MAX operations. For any other instructions, this bit is undefined. 
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Flag Generation for CMP instructions (The supported Conditional Modifiers are .e, 
.ne, .g, .ge, .l, and .le.) 

Conditional 
Modifier 

Meaning Resulting Flag Value (for an execution channel) 

 ‘.e’ Equal-to (pre_zero & !(NS0 | NS1)). This conditional modifier tests whether the 2 
sources are equal. 

If either source is NaN (i.e. NC is true), the flag is force to false. 

 ‘.ne’ Not-
Equal-to 

!(pre_zero & !(NS0 | NS1)). This conditional modifier test whether the 2 
sources are equal. It takes exactly the reverse polarity as modifier ‘.e’. 

‘.g’ Greater-
than 

(!pre_sign & !pre_zero & !(NS0 | NS1)). This conditional modifier tests 
whether source0 is greater than source1. 

If either source is a NaN (i.e. NC is true), the flag is forced to false. 

‘.ge’ Greater-
than-or-
equal-to 

((!pre_sign | pre_zero) & !(NS0 | NS1)). This conditional modifier tests 
whether source0 is greater than or equal to source1. 

If either source is a NaN (i.e. NC is true), the flag is forced to false. 

‘.l’ Less-than (pre_sign & !pre_zero & !(NS0 | NS1)). This conditional modifier tests 
whether source0 is less than source1. 

If either source is a NaN (i.e. NC is true), the flag is forced to false. 

‘.le’ Less-
than-or-
equal-to 

((pre_sign | pre_zero) & !(NS0 | NS1)). This conditional modifier tests 
whether source0 is less than or equal to source1. 

If either source is a NaN (i.e. NC is true), the flag is forced to false. 

 

Flag Generation for CMPN instructions (The supported Conditional Modifiers are 
ge, and .l) 

Conditional 
Modifier 

Meaning Resulting Flag Value (for an execution channel) 

‘.ge’ Greater-
than-or-
equal-to 

(!pre_sign | pre_zero | (NS1 & (Opcode==CMPN | 
OPcode==SELwCMod))) & !(NS0 & (Opcode==CMPN)).  This conditional 
modifier tests whether source0 is greater than or equal to source1. 

If source-1 is a NaN (i.e. NS is true), the flag is forced to true. 

‘.l’ Less-than ((pre_sign & !pre_zero) | (NS1 & (Opcode==CMPN | 
Opcode==SELwCMod))) & !(NS0 & (Opcode==CMPN)). This conditional 
modifier tests whether source0 is less than source1. 

If source-1 is a NaN (i.e. NS is true), the flag is forced to true. 
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Flag Generation for All Arithmetic Instructions other than CMP/CMPN 
instructions (The supported Conditional Modifiers are .e, .ne, .g, .ge, .l, .le, .r, .o, 
and .u.) 
 

Conditional 
Modifier 

Meaning Resulting Flag Value (for an execution channel) 

 ‘.e’ Equal-to (post_zero & !NC). This conditional modifier tests whether the 2 sources are 
equal. 

If either source is NaN (i.e. NC is true), the flag is force to false. 

 ‘.ne’ Not-Equal-
to 

!(post_zero & !NC). This conditional modifier test whether the 2 sources are 
equal. It takes exactly the reverse polarity as modifier ‘.e’. 

‘.g’ Greater-
than 

(!post_sign & !post_zero & !NC). This conditional modifier tests whether 
source0 is greater than source1. 

If either source is a NaN (i.e. NC is true), the flag is forced to false. 

‘.ge’ Greater-
than-or-
equal-to 

((!post_sign | post_zero) & !NC). This conditional modifier tests whether 
source0 is greater than or equal to source1. 

If either source is a NaN (i.e. NC is true), the flag is forced to false. 

‘.l’ Less-than (post_sign & !post_zero & !NC). This conditional modifier tests whether 
source0 is less than source1. 

If either source is a NaN (i.e. NC is true), the flag is forced to false. 

‘.le’ Less-than-
or-equal-to 

((post_sign | post_zero) & !NC). This conditional modifier tests whether 
source0 is less than or equal to source1. 

If either source is a NaN (i.e. NC is true), the flag is forced to false. 

‘.r’ Round-
Increment 

(IN & (!OF)). This conditional modifier tests whether the rounding result (of a 
RNDx instruction) requires increment.  

Normally, the condition is true if IN is true. 
However, if overflow occurs for the execution channel (OF is true), the condition 
is force to false.  

‘.o’ Overflow (OF). This conditional modifier tests whether the computed result causes 
overflow – the computed result is outside the range of the destination data 
type.  

All other internal conditional signals are ignored. 

‘.u’ Unordered (NC). This conditional modifier tests whether the computed result is a NaN 
(unordered).  

All other internal conditional signals are ignored. 

Programming Notes:  

CMPN should be used ONLY to emulate MIN/MAX operations, and only the following 
macros should be used for MIN and MAX operations. 

Macro for MIN: 

CMPN.l.f0.0 null s0 s1 

(f0.0) SEL dst s0 s1 
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Macro for MAX: 

CMPN.ge.f0.0 null s0 s1 

(f0.0) SEL  dst s0 s1 

11.8 Destination Hazard 

GEN4 architecture has built-in hardware to avoid destination hazard.  

Destination Hazard stands for the risk condition when multiple operations are trying to 
write to the same destination and the result of the destination may be ambiguous. 
This may or may not happen on GEN4 for two instructions with the same destination, 
or with destinations that have overlapped register region, depending on the ordering 
of the arrival of destination results. Let’s consider two instructions in a thread with 
potential destination hazard. There may be other instruction between them as long as 
there is no instruction sourcing the same destination. Using register scoreboards, 
GEN4 hardware automatically takes care of the destination hazard by not issuing the 
second instruction until the destination scoreboard is cleared. However, for certain 
cases, in fact for most cases, such destination hazard indicated by the register 
scoreboard is false, causing unnecessary delay of instruction issuing. This may result 
in lower performance. The destination dependency control field in the instruction word 
{NoDDClr, NoDDhk} allows software to selectively override such hardware destination 
dependency mechanism. Such performance optimization hooks must be used with 
extreme caution. When it is not 100% certainty that it is a false destination hazard, 
programmer should reply on hardware to result the dependency. 

As the destination dependency control field does not apply to send instruction, there is 
only one condition that a programmer may use the {NoDDClr, NoDDChk} capability.  

• If none of the two instructions is send, there CANNOT be any destination hazard. 
This is because instructions within a thread are dispatched in order (single-issued) 
and the execution pipeline is in-order and has a fixed latency. 

11.9 Non-present Operands 

Some instructions do not have two source operands and one destination operand. If 
an operand is not present for an instruction the operand field in the binary instruction 
must be filed with null.  Otherwise, results are unpredictable. 

Specifically, for instructions with a single source, it only uses the first source operand 
<src0>. In this case, the second source operand <src1> must be set to null and also 
with the same type as the first source operand <src0>. It is a special case when 
<src0> is an immediate, as an immediate <src0> uses DW3 of the instruction word, 
which is normally used by <src1>. In this case, <src1> must be programmed with 
register file ARF and the same data type as <src0>. 
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11.10 Instruction Prefetch 

Due to prefetch of the instruction stream, the EUs may attempt to access up to 8 
instructions (128 bytes) beyond the end of the kernel program – possibly into the next 
memory page.   Although these instructions will not be executed, software must 
account for the prefetch in order to avoid invalid page access faults.   One possible 
(though inefficient) solution would be to pad the end of all kernel programs with 8 
NOOP instructions.  A more efficient approach would be to ensure that the page after 
all kernel programs is at least valid (even if mapped to a dummy page).  Note that the 
General State Access Upper Bound field of the STATE_BASE_ADDRESS command 
can be used to prevent memory accesses past the end of the General State heap 
(where kernel programs must reside). 
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12 Exceptions 

12.1 Introduction 

The Gen4 Architecture defines a basic exception handling mechanism for several 
exception cases. This mechanism supports both normal operations such as extensions 
of the mask-stack depth, was well as illegal conditions and debug features. 

The following exception-types are supported: 

 

Type Trigger / Source Sync/Async Recognition 

MaskStack Overflow / 
Underflow 

Hardware Synchronous (w/ special case 
for ‘do’; see  12.4.3) 

Software Exception Thread code Synchronous 

Breakpoint A bit in the instruction word 

Triggering a debug snapshot 

Synchronous 

Illegal Opcode Hardware Synchronous 

Halt MMIO register write Asynchronous 

Threads may choose which exceptions to recognize and which to ignore. This mask 
information is specified on a per-kernel basis in fixed function state generated by the 
driver, and delivered to an EU as part of a new-thread dispatch. Upon arrival at the 
EU, the exception-mask information is used to initialize the exception enable fields of 
that thread’s CR0.1 register, which controls exception recognition. This register is 
instantiated on a per-thread basis, allowing independent control of exception-type 
recognition across hardware threads. The exception enables in the CR0.1 register are 
r/w, and thus can be enabled/disabled via software at anytime during thread 
execution. 

The exception handling mechanism relies on the “system routine”, a single subroutine 
which  provides common exception handling for all threads on all EUs in the system. 
This system routine is defined per-context and is identified via a 32b System-IP (SIP) 
register in context state. At the time of each context switch, the appropriate SIP for 
that context is loaded into each EU, allowing each context to have custom 
implementation of exception handling routines if so desired. 

12.2 Exception-Related Architectural Registers 

Exception-related registers are defined in architectural register CR0.0 through CR0.2. 
These registers are instantiated on a per-thread basis providing each hardware thread 
with unique control over exception recognition and handling. The registers provide the 
capability to  mask exception types, determine the type of raised exception, provide 
storage the return address, and control exiting from the system routine back to the 
application thread.  
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Many of the bits in these registers are manipulated by both hardware and software. In 
all cases, the read/write operations by hardware and software occur at exclusive times 
in a thread’s lifetime, thus there is no need for an atomic R-M-W operation when 
accessing these registers. 

12.3 System Routine 

12.3.1 General Flow of the System Routine 

The following diagram illustrates the basic flow of exception handling and structure of 
the system routine. 
 

Application Thread

:
:
Inst n
Inst n+1
Inst n+2
Inst n+3
Inst n+4
:
:

Exception
raised

System Routine

Entry:
Disable accumulators
Calculate scratch space offset for this thread
Save the MRF to scratch memory
Save the GRF (all, or a portion) to scratch memory
Save the ARF (as required) to scratch memory or GRF
While an exception exists {

index = highest priority pending exception number
jump Service[index]

back:
clear exception

}
Restore ARF contents
Restore GRF contents
Restore MRF contents
Enable accumulators
Exit system routine

Handler_6: // breakpoint
:
jmp back

Handler_5:
:
jmp back

:
:

Handler_0: // external halt
:
jmp back  
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12.3.2 Invoking the System Routine 

The system routine is invoked in response to a raised exception. Once an exception is 
raised, no further instructions from the application thread will be issued until the 
system routine has executed and returned control back to the application thread. 

After a exception is recognized by hardware, the EU saves the thread’s IP into its AIP 
register (CR0.2), an then moves the system routine offset, SIP, into the thread’s IP 
register. At this point the next instruction to issue for that thread will be the first 
instruction of the system routine. 

The system routine maintains the same execution priority, GRF and MRF register 
space, and thread state as that of the application thread from which it was invoked.  
Due to the assuming the same priority, there may be significant absolute time 
between exception being raised and the actual invocation of the system routine, as 
other higher priority threads within the EU continue to execute. From a thread’s 
perspective, once an exception is recognized, the next instruction to issue is from the 
system routine.  

At the time of system routine invocation, there may still be outstanding registers in-
flight from the application thread. Depending on the instruction sequence in the 
system routine, an in-flight register may be referenced by the system routine and 
cause a register-in-flight dependency. These dependencies are honored by the system 
routine and may cause the system routine to be suspended until such time that the 
register retires.  

Exception processing is non-nested within an system routine. If a future exception is 
detected while executing the system routine, the exception is latched into CR0.1, but 
does not cause a nested re-invocation of the system routine. The exception 
recognition hardware recognizes only one outstanding exception of each type; i.e. 
once a specific exception type is detected and latched in CR0.1, and until the 
exception is cleared, any further exception of that type will be lost. 

Accumulators are not natively preserved across the system routine. To make sure the 
accumulators are in the identical state once control is returned to the application 
thread, the system routine must either set the Accumulator Disable bit of CR0.0 prior 
to using any instruction which modifies an accumulator, or manually save/restore the 
accumulators (to GRF registers or system thread scratch memory) around the system 
routine. Saving/restoring accumulators, including their extended precision bits, can be 
accomplished by a short series of mov’s and shifts of the accumulator register. Also 
note the state of the Accumulator Disable bit itself must be preserved unless, by 
convention, the driver software limits its manipulation to only the system routine. 

Further, upon system routine entry, the execution-related masks (Continue, Loop, If, 
and Active masks, contained in the Mask Register) will remain set as they were in the 
application thread. Thus only a subset of channels may be active for execution. To 
enable execution on all channels, the system routine may choose to use the 
instruction option ‘NoMask’, or may choose to set the mask registers to the desired 
value so long as it saves/restores the original masks upon system routine entry/exit. 

Similarly there is no hardware mechanism to preserve flags, mask-stacks, or other 
architectural registers across the system routine. The system routine must ensure that 
these values are preserved (see Section  12.3.7 for related discussion). 
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12.3.3 Returning to the Application Thread  

Prior to returning control to the application thread, the system routine should clear the 
proper Exception Status and Control bit in CR1. Failure to do so will force the thread’s 
execution to re-enter the system routine prior to any further instructions being 
executed from that application thread. (Note that single-stepping functionality is the 
one exception where the exception’s Status and Control bit is not reset prior to exit.)  

The system routine may choose to loop under a single invocation of the system 
routine until all pending exceptions are serviced, or may choose to service exceptions 
one at a time (a simpler solution, but less efficient).  

The system routine is exited, and control returned to the application thread, via a 
write to the Master Exception State and Control bit of CR0.0. Upon clearing this bit, 
the value of the AIP architectural register (CR0.2) is restored to the thread’s IP 
register and, with no further exceptions pending, execution resumes that address. The 
system routine must follow any write to Master Exception State and Control bit with at 
least one simd-16 ‘nop’ instruction to allow control to transition. Throughout the 
system routine, the AIP register maintains its value at the time the exception was 
raised unless directly modified by the system routine. (See the AIP register definition 
for specifics on the IP value saved to AIP). 

12.3.4 System-IP (SIP) 

The System IP (SIP) is a 16B-aligned 32b offset of the first instruction of the system 
routine, relative to the General State Base Address. It is set via the STATE_IP 
command to the command streamer. The upper 28b of the 32b address is 
automatically delivered to all Gen4 EUs. 

When the system routine is invoked, the application thread’s current IP is first saved 
into the AIP field of the thread’s architectural register CR0.2. The SIP address is then 
loaded into the thread’s IP register and execution continues within the system routine. 
Thus each invocation of the system routine has a common entry point at the first 
instruction of the system routine. Upon system routine completion, the value held in 
AIP is returned to IP and execution continues on the application thread at the place 
where the exception was recognized. 

12.3.5 System Routine Register Space 

The system routine uses the same GRF and MRF space at the thread which invoked it. 
As such all of the calling thread’s registers and their contents are visible to the system 
routine. Further, the system routine must only use r0..r15 of the GRF, as a minimal 
thread may have requested and been allocated this few. If the system routine requires 
more registers than this, the driver should establish a higher minimum allocation to all 
threads. It should also be noted that the system routine may encounter any residual 
register dependencies of the calling thread until such time that they clear by the 
return of in-flight writebacks.  

Only one 32b GRF location, R0.4, is reserved for system routine usage. This is 
sufficient to allow the system routine to calculate the appropriate offset of its private 
scratch memory in the larger system-scratch memory space (as dictated by binding 
table entry 254). The offset is left as a driver convention, but likely based on a 
combination of Thread and EU IDs (see example system handler in section  12.3.6). 
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Other than the reserved R0.4 register field, there is no explicit GRF register space 
dedicated to the system routine, and any GRF needs must be accomplished via: (a) 
convention between the system routine an application thread, or (b) the system 
routine temporarily spilling the thread’s GRF register contents to scratch memory, and 
restoration prior to system routine exit. 

No persistent storage is natively allocated to the system routine, although a driver 
implementation may choose to carve out a piece of system scratch memory though it 
own convention. 

Any parameter passing to the system routine (for use by s/w exceptions) is performed 
via the GRF  based on a system-thread/application-thread convention.  

12.3.6 System-Scratch Memory Space 

There is a single unified system-scratch memory space per context shared by all EUs. 
It is anticipated that block is further partitioned into a unique scratch sub-space per-
thread via convention implemented in the system routine, with a each hardware 
thread having a uniform block size at a calculated offset from the base address. The 
block address for a thread is based on an offset derived from the thread’s execution 
unit ID and thread ID made available through the TID and EUID field of architectural 
register SR0.0. 

 
 Per_Thread_Block_Size = System_Scratch_Block_Size / (EU_Count * 
Thread_Per_EU); 
 
 Offset = (SR0.0.EID * Threads_Per_EU + SR0.0.TID) * Per_Thread_Block_Size; 
 
     where in Gen4... 
      Threads_Per_EU = 4  
      EU_Count = 8 
      System_Scratch_Block_Size is a driver choice 

Access to the system-scratch memory is performed through the Data Port via linear 
single-register or block-based read/write messages. The driver may choose to use any 
binding table index for system-scratch surface description. As a practical matter, the 
same index is expected to be used across all binding tables, as the index is typically 
hard coded in dataport messages used within the system routine coupled with the fact 
that a single system instance routine is used for all threads. Read/write messages to 
the Data Port contain the address of the binding table (provided in R0 of all threads) 
and an offset, from which the Data Port calculates the final target address.  

The size of the overall system-scratch memory block is a function of the system 
routine’s feature set, but for debug purposes should be, at a minimum, of size 
sufficient to cover storing the entire GRF, MRF, flags, and architectural register set for 
all hardware threads. Additional per-thread memory may also be required for mask-
stack spill/fill, system routine constants, and any global persistent storage needs of 
the system routine. 

It is expected that the system-memory block is allocated by the driver at context-
create time and remains persistent at a constant memory address throughout the 
context’s lifetime. 
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12.3.7 Conditional Instructions Within System Routines 

It is expected that most, if not all, control flow with in the system routine is scalar in 
nature. If so, the system routine should set SPF (Single Program Flow, CR0.0) to 
enable scalar branching. In this mode, conditional/loop instructions do not update the 
mask-stacks and therefore do not have restrictions on their use nor require the 
save/restore of hardware mask-stack registers.  

If SIMD branching is desired within the system routine, special considerations must be 
taken. Upon entry to the system routine, the depth of the mask-stacks is unknown at 
that point, and may be near-full. If so, a subsequent conditional instruction and its 
associated mask ‘push’ may cause a stack overflow. This would generate an 
exception-within-the-system-routine, an unsupported occurrence. To prevent this, if 
the system routine uses SIMD conditional instructions, it must save the mask-stacks 
prior to the first SIMD conditional instruction, and restore them after the last SIMD 
conditional instruction. As a general solution, it may be easiest simply to implement 
the save/restore as part of the entry/exit code sequence, using an available GRF 
register-pair as storage location. Once saved, the stacks should be reset to their 
empty condition, namely depth = 0 and top-of-stack = 0xFFFFFFFF.  

12.3.8 Messages in System Routines 

The system routine uses the same MRF space as the thread on whose behalf the 
system routine was invoked. To allow the thread to resume with the same state as 
prior to the system routine invocation, the thread’s MRF contents must be preserved 
across a system routine invocation. If the system routine requires MRF space for 
messages, it must manually save and restore the MRF locations which it uses. 

Note that the MRF can only be used as an instruction’s destination register, not a 
source. Therefore there is no option to save the MRF to the GRF. Thus the system 
routine should save the MRF contents to its dedicated scratch space. By convention it 
is recommended that MRF register m0 be reserved for system-thread use. This allows 
the system routine enough space to construct an initial Data Port write message 
starting at m0 without corrupting any MRF registers, facilitating a complete 
save/restore of the MRF by the system-thread. 

12.3.9 Use of ‘NoDDClr’ 

The Gen4 instruction word defines an instruction option ‘NoDDClr’ which overrides the 
native register dependency clearing mechanism of the typical instruction. When 
specified, ‘NoDDClr’ does not clear, at register writeback time, the dependency placed 
on the destination register of the instruction. Use of this mechanism may provided 
increased performance when the kernel can guarantee no dependency issues between 
instructions, but may cause issues with exception handling in some circumstances as 
discussed here.  

Typically ‘NoDDClr’ is used in an instruction series to enable a sequence of writes to 
sub-fields of a GRF register without paying a dependency penalty on each instruction. 
In this case, ‘NoDDClr’ and ‘NoDDChk’ are used across an instruction sequence to 
allow the first instruction to set the destination dependency, interior instructions to 
write to the GRF register w/o dependency checks, and the last instruction clear the 
dependency. (This sequence is referred to as a ‘NoDDClr’ code block going forward). 
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By only allowing the last instruction to clear the dependency, program execution is 
prevented from going beyond a certain point until all writes of that sequence are 
known to retire. 

The problem arises should an exception be raised within a ‘NoDDClr’ code block. In 
this case, there exists the potential for the system routine to hang while attempting to 
save/restore the code blocks destination register, as the outstanding dependency on 
that register will not clear until the final instruction of the block is executed – 
sometime after the system thread returns. Should the system routine attempt to use 
that register, the system routine will hang waiting on a dependency to clear from an 
instruction which has not yet been issued. 

This is a known condition and will in some cases not allow the full GRF 
contents to be externally visible in system routine scratch space during a 
break or halt exception.  To minimize the number of cases of such, guidelines are 
provided below for consideration. (Note that these are general guidelines, some of 
which can be alleviated through careful coding and register usage conventions and 
restrictions.) 

• `NoDDClr’ code blocks should only be used where absolutely necessary.  

• Instructions which may generate exceptions should not be placed within ‘NoDDClr’ 
blocks. This includes most conditional branch instructions (if, do, while, ...) as well 
as breakpoints explicitly in the instruction stream or triggered by the debug 
facilities in the IL1 instruction cache. 

• To guarantee that r0 is visible in system scratch memory for debug purposes 
under any condition, (a) threads should not use ‘NoDDClr’ on r0, and (b) the 
system routine should move and send r0 to system scratch memory as a single 
register (as opposed to a block of ‘n’ registers). For practical reasons related to 
dataport message sizes, it may be beneficial to extend this restriction to r1 as 
well. 

• If possible, use ‘NoDDClr’ on registers high in the thread’s register allocation (e.g. 
r120), thus even if a system routine hang occurs, as much of the GRF is visible as 
possible. (Note this would also require the system routine to update the progress 
of the GRF dump, perhaps with each GRF block written, or to initialize the system 
routine’s scratch space to a known value, to be able to distinguish valid/locations 
from unwritten locations). 

 
Also a driver implementation may consider a “disable-NoDDclr” option in which jitted 
code does not use the ‘NoDDClr’ capability. In this case, there is no change to the 
code that is jitted other than removal of the ‘NoDDClr’ instruction option. The code 
executes as normal, but with a higher number of thread switches in what would have 
been a NoDDClr code block. 
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12.4 Exception Descriptions 

12.4.1  ‘Illegal’ opcode 

The Gen4 ISA defines a single ‘illegal’ opcode. The byte value of the ‘illegal’ opcode is 
selected to be 0x00 due to it being a likely byte-value encountered by a wayward 
instruction pointer value. The ‘illegal’ instruction raises an exception prior to issue and 
operates as a ‘nop’ when issued down the execution pipeline. (Specifically, the opcode 
acts a ‘nop’, although other non-opcode instruction attributes still apply).  

12.4.2 Undefined opcode 

All undefined opcodes in the 8b opcode space are detected by hardware. If an 
undefined opcode is detected, the opcode is overridden by hardware, forcing it to the 
defined ‘illegal’ opcode. The offending instruction, should it eventually be issued down 
the execution unit’s pipeline, generates an ‘illegal opcode’ exception as described in 
section  12.4.1. Note that the memory location of the offending opcode remains 
modified and may be queried if desired to determine its original value. 

12.4.3 MaskStack Overflow / Underflow  

Hardware-based mask-stacks are used for saving and restoring mask values for 
nested ifs and loops. These structure are limited to 16 levels of nesting. Thus, in the 
face of normal execution where nesting levels exceed 16, the hardware mask-stacks 
may occasionally overflow.  

Upon reaching maximum capacity, the hardware sets the appropriate LStack/IStack 
Overflow Exception Status and Control bits provided in the thread’s architectural 
register CR0.1. This exception may be used by the system routine to extend the 
depths of mask-stacks by saving the stack contents and current depth to scratch 
memory prior to overflow. After saving, the stacks are reset and execution continues 
for another multiple of 16 nesting levels where a further exceptions are generated and 
the mask-stacks saved. 

Likewise, as a thread exits if or loop nesting levels, masks values are restored 
automatically from the hardware mask-stack via ‘pop’ operations. A stack underflow 
may occur if the nesting level crosses a multiple of the hardware capacity. The 
LStack/IStack Underflow exception if provided for restoring stack values from where 
they had been previously saved.  

As an alternative implementation, the driver may choose to manage the mask-stacks 
manually, by maintaining nesting level counts during the thread’s JIT process, and 
inserting code snippets to save/restore the stacks prior to overflow/underflow. 
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12.4.4 Software Exception 
A mechanism is provided to allow an application thread to invoke an exception and is 
triggered through of the Software Exception Set and Clear bit of CR0.1. Sub-function 
determination and parameter passing into and out-of the exception handler is left to 
convention between the system-thread and application-thread. The thread’s AIP 
instruction pointer is incremented prior to system-routine entry, therefore causing 
execution to resume at the subsequent application-thread instruction when the system 
routine is exited.  

12.4.5 Breakpoint 

A bit (‘DebugCtrl’) is defined in the instruction word which, when set, causes as 
breakpoint exception to be triggered prior to the associated instruction being 
executed. This bit can be set statically in the instruction word or may be dynamically 
set by hardware upon triggering a snapshot event in the Instruction L1 (“Instruction 
L1 Cache Breakpoint Address” registers in the Debug chapter). Note that the dynamic 
setting mechanism of this bit is on an instruction-fetch by instruction-fetch basis (i.e. 
is non-sticky in the L1). The system routine is expected to handle this exception by 
providing debug facilities, such as dumping/restoring the thread’s state to 
programmer-visible memory for inspection. 

Upon return from the system routine, the instruction which contained the breakpoint 
is re-issued. To prevent a subsequent breakpoint exception from being generated by 
the same instruction,   breakpoint recognition may be suppressed for one instruction 
via the Breakpoint Suppress field of CR0.0. This field is typically set by the system 
routine prior to exiting a breakpoint exception. 

For normal breakpoint operations, the system routine must clear the “Breakpoint 
Exception Status and Control” field of CR0.1 prior to returning from the system 
routine. 

A single-stepping capability may be implemented by leaving the “Breakpoint Exception 
Status and Control” set, and clearing the Breakpoint Suppress field prior to system 
routine exit. This combination causes the instruction associated with the breakpoint to 
be reissued, this time with the breakpoint suppressed, and then re-entry to the 
system routine prior to the subsequent instruction due to the lingering breakpoint 
exception that remained un-cleared.  

12.4.6 External Halt 

A ‘halt’ exception may occur upon satisfying a debug snapshot trigger or via direction 
manipulation of a MMIO bit by driver software (see the External Halt on Snapshot bit, 
or Force External Halt bit of the TD-Debug Control register - Debug chapter). The halt 
exception is sent to all EUs simultaneously (although no guarantee is made as to 
recognition in identical clocks). An EU recognizes this condition internally by 
generating an External Halt exception. A likely implementation of a handling routine 
would dump the thread’s state to programmer-visible memory (such as the system 
routine’s scratch space) for inspection and debugging purposes. Although generally 
recognized within a few clocks, there is no specification as to the latency between 
triggering the Halt condition and it being recognized by an EU. 
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12.5 Events Which Do Not Generate Exceptions 

The following conditions are either not recognized or do not generate an exception.  

Illegal Instruction Format 

This includes malformed instructions in which the opcode is legal, but the source or 
destination operands, or instruction attributes are not compliant with the instruction 
specification. There is no direct hardware support to detect these cases and the 
outcome of issuing a malformed instruction is undefined. Note that Gen4 does not 
support self-modifying code, therefore the driver (perhaps in some form of debug 
mode) has an opportunity to detect such cases before the thread is placed in service. 

Malformed Message 

A messages contents, destination registers, lengths, and descriptors are not 
interpreted in anyway by the execution units. Errors in specifying any of these fields 
do not raise exceptions in the execution unit but may be detected and reported by the 
shared functions (see the Debug chapter for details). 

GRF Register Out-of-Bounds 

Unique GRF storage is allocated to each thread which, at a minimum, satisfies that the 
register requirements specified in the thread’s declaration. References to GRF register 
numbers beyond that called for in the thread’s declaration do not generate exceptions. 
Depending on implementation, out-of-bounds register numbers may be remapped to 
r0..r15, although this functionality should not be relied upon by the thread. The 
hardware guarantees the isolation of each threads register space, thus there is no 
possibility of direct register manipulation from an out-of-bounds register access. 

MRF Register Out-of-Bounds 

A fixed amount of MRF register space is allocated for each thread, namely m0 through 
m15. References to MRF registers beyond m15 do not generate exceptions. Depending 
on implementation details, out-of-bounds register numbers may alias to in-bounds 
register numbers, although this functionality should not be relied upon by the thread. 

Hung Thread 

There is no hardware mechanism in the execution units to detect a hung thread, and 
should it occur, the thread remains hung indefinitely. It is the expectation that one or 
more hung threads will eventually cause the driver to recognize a context timeout and 
take appropriate recovery action. 

Instruction Fetch Out of Bounds 

The Gen4 EUs implement a full 32b instruction address range (with the 4 lsb’s don’t 
care), making it possible for a thread to attempt to jump to any 16B aligned offset in 
the 32b address space. The EU itself does not provide any type of address checking on 
its instruction request stream sent to the memory/cache hierarchy, although various 
memory address related error conditions are reported through the Memory Interface 
Registers (specifically “Page Table Error Register”). 
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FPU Math Errors 

The EU’s floating point units have defined behavior for traditional floating point errors 
and do not generate exceptions. Therefore there is no support for signaling FPU math 
errors as exceptions. 

Destination Register Overflow 

Depending on source operand contents, destination register size, and operation being 
performed, overflows may occur in the EU’s pipeline. These are not flagged as 
exceptions and software must explicitly check the overflow bit in the thread’s 
architectural register if overflow is a concern. 

12.6 System Handler Example 
The following code sequence illustrates some concepts of the system routine. It is 
intended to be just a shell, without getting into the specifics of each exception 
handler. The example frees enough MRF and GRF space to get the routine started, 
then jumps to the handler for the specific exception. Many other implementations are 
also valid, including single exception servicing (as opposed to looping) per invocation, 
and saving only the GRF or MRF space required by the exception being serviced. 

 
 #define ACC_DISABLE_MASK  0xFFFFFFFD 
 #define MASTER_EXCP_MASK  0x7FFFFFFF 
 #define SYSROUTINE_SCRATCH_BLKSIZE 16384   //for example 
 
 // --- SharedFunc IDs --- 
 #define DPR 0x04000000 
 #define DPW 0x05000000 
 
 // --- message lengths --- 
 #define ML5 0x00500000 
 #define ML9 0x00900000 
 
 // --- response lengths --- 
 #define RL0 0x00000000 
 #define RL4 0x00040000 
 #define RL8 0x00080000 
 
 // --- dataport block sizes --- 
 #define BS1_LOW 0x0000 
 #define BS1_HIGH 0x0100 
 #define BS2 0x0200 
 #define BS4 0x0300 
 
 // --- Scratch Layout --- 
 #define SCR_OFFSET_MRF 0 
 #define SCR_OFFSET_GRF 512  // + 16 reg 
 #define SCR_OFFSET_ARF 512 + 4096  // + 16 + 128 
reg 
 
 
 
 // --- Write Dataport constants --- 
 // target=dcache, type= oword_block_wr, binding_tbl_offset=0 
 #define DPW 0x000 
 
 // --- Read Dataport constants --- 
 // target=dcache, type= oword_block_rd, binding_tbl_offset=0 
 #define DPR 0x000 
 
Sys_Entry: 
 // --- disable accumulator for debug routine --- 
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 and   (1) cr0.0 cr0.0 ACC_DISABLE_MASK   {NoMask} 
 
 // --- calc scratch offset for this thread into r0.4 --- 
 shr   (1) r0.4 sr0.0:uw 6   {NoMask}  
 add   (1) r0.4 r0.4 sr0.0:ub   {NoMask} 
 mul   (1) r0.4 r0.4 SYSROUTINE_SCRATCH_BLKSIZE  {NoMask}  
 
 // --- setup m0 w/ block offset 
 mov   (8) m0 r0   {NoMask} 
 
 // --- save mrf 7...0; (may choose to save the whole mrf) 
 add   (1) m0.2 r0.4 SCR_OFFSET_MRF   {NoMask} 
 send  (8) null m0 null DPW|ML9|RL0   {NoMask} 
 
 // --- save mrf 8...15; (optional; req’ed if sys-routine stays w/in 
mrf7-0) 
 mov   (8) m7 r0   {NoMask} 
 add   (1) m7.2 r0.4 (SCR_OFFSET_MRF + 256) {NoMask} 
 send  (8) null m7 null DPW|ML9|RL0   {NoMask} 
 
 // --- save r0..r1 to system scratch --- 
 // --- (Note: done as a single register to guarantee external 
 // ---  visibility — see “Use of ‘NoDDClr’” in Excpetions PRM chapter 
 mov  (16)  m1 r0   {NoMask} 
 send (8)  m0 null null DPW|ML2|RL0   {NoMask} 
 
 // --- save r2..r3 to free some room 
 mov  (16) m3 r2   {NoMask} 
 add  (1)  m0.2 r0.4 SCR_OFFSET_GRF + 64   {NoMask} 
 send (8)  m0 null null DPW|ML4|RL0   {NoMask} 
 
 // --- save r4..r7 to free some room (optional, depending on needs) 
 mov  (16) m8 r4   {NoMask} 
 mov  (16) m10 r6   {NoMask} 
 add  (1)  m7.2 r0.4 (SCR_OFFSET_GRF + 128) {NoMask} 
 send (8)  m7 null null DPW|ML5|RL0   {NoMask} 
 
 // --- save r8..r11 to free some room (optional, depending on needs) 
 mov  (16) m1 r8   {NoMask} 
 mov  (16) m3 r10   {NoMask} 
 add  (1)  m0.2 r0.4 (SCR_OFFSET_GRF + 256) {NoMask} 
 send (8)  m0 null null DPW|ML5|RL0   {NoMask} 
 
 // --- save r12..r15 to free some room  (optional, depending on 
needs) 
 mov  (16) m8 r12   {NoMask} 
 mov  (16) m10 r14   {NoMask} 
 add  (1)  m7.2 r0.4 (SCR_OFFSET_GRF + 384) {NoMask} 
 send (8)  m7 null null DPW|ML5|RL0   {NoMask} 
  
 // --- save ARF registers (optional, depending on use) --- 
 // flags, maskstacks, others... 
  
 // --- save f0.0 --- 
  mov (1)  r1.0:uw f0.0   {NoMask} 
 
Next: // --- exceptions pending? If not, exit --- 
 cmp.e (1) f0.0 cr0.4:uw 0:uw   {NoMask} 
 (f0.0) mov (1) IP EXIT    {NoMask} 
 
 // --- find highest priority exception --- 
 lzd  (1) r1.1:uw cr0.4:uw   {NoMask} 
 
 // --- jumptable to service routine --- 
 jmpi (1)  r1.1:uw   {NoMask} 
 mov  (1)  IP CRService_0   {NoMask} 
 mov  (1)  IP CRService_1   {NoMask} 
 mov  (1)  IP CRService_2   {NoMask} 
 // : 
 // : 
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 // : 
 mov  (1)  IP CRService_15   {NoMask} 
 
 mov  (1)  IP Next 
Service_0: 
 // clear exception from CR0.1 
 // perform service routine 
 // jump to exit (or if looping on exceptions, go to next loop) 
 
 // : 
 // : 
  
Service_15: 
 // clear exception from CR0.1 
 // perform service routine 
 // jump to exit (or if looping on exceptions, go to next loop) 
 
Exit: 
 // --- restore f0.0 --- 
 
 // --- restore ARF registers (as required) --- 
 // flags, maskstacks, others... 
 
 // --- restore r12..r15 --- 
 // --- restore r8..r11 --- 
 // --- restore r4..r7 --- 
 // --- restore r0..r3 --- 
 
 // --- restore m8..m15 --- 
 // --- restore m0..m7 --- 
 
 // --- clear Master Exception State bit in CR0.0 
 and  (1)  cr0.0 cr0.0 MASTER_EXCP_MASK 
 nop  (16) 
 
  

Below is a code sequence to programmatically clear the GRF scoreboard in the case of 
a timeout waiting on a register that may never return: 
 
         // At this point, all we know is we have a hung thread. We’d like to 
copy the 
  // GRF to scratch memory to make it visible for debug purposes, but there 
may be 
  // a register that is hung w. an outstanding dependency. To get around 
  // any hung dependency, we can walk the GRF using NoDDChk, using execution 
mask 
  // of f0 = 0 so we don’t touch the register contents. 
 
Clear_Dep: 
       mov f0  0x00 
  (f0) mov r0 0x00 {NoDDChk} 
  (f0) mov r1 0x00 {NoDDChk} 
  (f0) mov r2 0x00 {NoDDChk} 
   ... 
   ... 
  (f0) mov r127 0x00 {NoDDChk} 
 
  // GRF scoreboard now cleared. 
 
 

§§ 
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13 Instruction Set Summary 

13.1 Instruction Set Characteristics 

13.1.1 SIMD Instructions and SIMD Width 

GEN4 instructions are SIMD (single instruction multiple data) instructions. The number 
of data elements per instruction, or the execution size, depends on the data type. For 
example, the execution size for GEN4 instructions operating on 256-bit wide vectors 
can be up to 8 for 32-bit data types, and be up to 16 for 16-bit data. The maximum 
execution size for GEN4 instructions for 8-bit data types is also limited to 16.  

An instruction compression mode is supported for 32-bit instructions (including mixed 
32-bit and 16-bit data computation).  A compressed GEN4 instruction works on twice 
as many SIMD data as that for a non-compressed GEN4 instruction. Non-compressed 
instructions are also referred to as ‘native’ instructions. A compressed instruction is 
converted into two native instructions by the instruction dispatcher in the EU. 

GEN4 instructions are executed on a narrower SIMD execution pipeline. Therefore, 
GEN4 native instructions take multiple execution cycles to complete. See Table  13-1 
for parameters for difference device hardware. 

Table  13-1. GRF instruction execution parameters in device hardware 

Execution 
Pipeline 

Native Instruction Compressed Instruction Device 

Width (bits) Max Width 
(bits) 

Min Execution Cycles 
(clocks) 

Width (bits) Min Execution Cycles 
(clocks) 

[DevBW] 128  256  2 512 4 

[DevCL] 128  256  2 512 4 

13.1.2 Instruction Operands and Register Regions 

Majority of GEN4 instructions may have up to three operands, two sources and one 
destination. Each operand is able to address a register region. Source operands 
support negate and absolute modifier and channel swizzle, and the destination 
operand supports channel mask. 

Dual destination instructions are also supported (four-operand instructions in a 
general sense): One case is for the implied destination – flag register, where the 
conditional modifiers and the predicate modifiers may apply. Another case is the 
message header creation (implied move or implied assembling of the header) in the 
send instruction. 



 
 
 
 

    365 

Each execution channel contains an accumulator that is wider than the input data to 
support back-to-back accumulation operations with increased precision. The added 
precision (see accumulator register description in Execution Environment chapter) 
determines the maximum number of accumulations before possible overflow. The 
accumulator can be pre-loaded through the use of mov. It can also be pre-loaded by 
arithmetic instructions such as add, mul, since the result of these instructions can go 
to the accumulator. The accumulator registers are per thread and therefore safe for 
thread switching.  

Register access can be direct or register-indirect. Register-indirect register access 
uses address registers plus an immediate offset term to compute the register 
addresses, and only applies to the first source operand (src0) and/or the destination 
operand. 

There is one address register that contains 8 sub-registers. Each sub-register contains 
a 16-bit unsigned value. The leading two sub-registers form a special doubleword that 
can be used as the descriptor for the send instruction. 

Source operand can also be immediate value (also referred to as inline constants). For 
instructions with two source operands, only the second operand <src1> is allowed to 
be immediate. For instructions with only one source operand, the source operand 
<src0> is used and it can be an immediate. 

An immediate source operand can be a scalar value of specified type up to 32-bit 
wide, which is replicated to create a vector with length of Execution Size. An 
immediate operand can also be a special 32-bit vector with 8 elements each of 4-bit 
signed integer value, or a 32-bit vector with 4 elements each of 8-bit restricted float 
value. 

13.1.3 Instruction Execution 

It is implied that all instructions operate across all channels of data unless otherwise 
specified either via destination mask, predication, execution mask (caused by SIMD 
branch and loop instructions), or execution size. 

Format conversion of the result is done through destination format specifier; normally, 
there is no need for specific format conversion instructions. 

Mixed format operation, where the two source operands are in different formats, is 
supported through source type specifier. 

Instruction execution size can be specified per instruction, from scalar (ExecSize = 1) 
up to the maximal execution size supported for the data type, with the restriction that 
execution size can only be in power of 2.  
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13.2 Instruction Machine Formats 

This section shows the machine formats of the GEN4 instruction set.  The instructions 
in GEN4 architecture have fixed length of 128 bits. Out of the 128 bits, there are 111 
bits in use, and the remaining bits are reserved for future extensions.  One instruction 
consists of instruction fields that control various stages of execution of the instruction.  
These fields are roughly groups into the 4 doublewords as the following. 

• Instruction Operation Doubleword (DW0) contains the opcode and other general 
instruction control fields. 

• Instruction Destination Doubleword (DW1) contains the destination operand 
(<dst>) and the register file and type of source operands. 

• Instruction Source-0 Doubleword (DW2) contains the first source operand 
(<src0>) and flag register number 

• Instruction Source-1 Doubleword (DW3) contains the second source operand 
(<src1>) and is used to hold the 32-bit immediate source (imm32 as <src0> or 
<src1>). 

Table  13-2 depicts the details of the organization of fields in the 128-bit instruction 
word based on the Addressing Mode and Access Mode of an instruction.  Definitions 
for individual instruction fields are provided in the following sections. 

The send instruction is also shown in the talbe as it has some unique instruction 
fields. For example, the message descriptor (plus EOT) occupies the whole DW3, and 
the immediate destination register overlaps with the Conditional Modifier field. The 
rest of fields in DW0-3 follows the definition on the left, depending on Addressing 
Mode and Access Mode of the send instruction. 

Not shown is for immediate operands. When an immediate source is present in an 
instruction, it always occupies the whole DW3 with a 32-bit value. 

Support for indirect addressing for <src1>, as shown by the gray areas in Table 4-2 is 
device dependent. See Table  11-30 (Indirect source addressing support available in 
device hardware) in ISA Execution Environment for details.  

 



 
 
 
 

    367 

Table  13-2.  GEN4 Instruction Format  

 AccessMode = 
Align16

AccessMode = 
Align1

AccessMode = 
Align16

AccessMode = 
Align1

MsgDesc 
Imm

MsgDesc 
Reg

1 127 127 0
6 126 121 0
4 120 117 4
1 116 116 1
2 115 114 2
2 113 112 2 Src1.HorzStride Src1.HorzStride
1 111 111 1
2 110 109 2
3 108 106 3 Src1.RegNum [7:0]
5 105 101 5
1 100 100 1 Src1.SubRegNum [4] Src1.SubRegNum [4:0]
4 99 96 4 Src1.ChanSel[3:0] Src1.ChanSel[3:0]
6 95 90 0
1 89 89 1
4 88 85 4
1 84 84 1
2 83 82 2
2 81 80 2 Src0.HorzStride Src0.HorzStride
1 79 79 1
2 78 77 2
3 76 74 3
5 73 69 5
1 68 68 1 Src0.SubRegNum [4]
4 67 64 4 Src0.ChanSel[3:0] Src0.ChanSel[3:0]
1 63 63 1
2 62 61 2 Dst.HorzStride Dst.HorzStride
3 60 58 3
5 57 53 5
1 52 52 1 Dst.SubRegNum [4]
4 51 48 4 Dst.ChanEn[3:0] Dst.ChanEn[3:0]
1 47 47 0
3 46 44 3
2 43 42 2
3 41 39 3
2 38 37 2
3 36 34 3
2 33 32 2
1 31 31 1
1 30 30 1
2 29 28 0
4 27 24 4
3 23 21 3
1 20 20 1
4 19 16 4
2 15 14 2
2 13 12 2
2 11 10 2
1 9 9 1
1 8 8 1
1 7 7 0
7 6 0 7

128 111 TOTAL

Src1.AddrSubRegNum

Src1.AddrImm [9:4]
Src1.AddrImm [9:0]

Src1.AddrMode Src1.AddrMode
Src1.SrcModSrc1.SrcMod

Src1.VertStride Src1.VertStride

Src1.Width
Src1.ChanSel[7:4]

Same

Same

Same

Same

MDst.RegNum[8:5]

Same

Same

SEND

EOT

Imm[30:0] Reg32

(reserved for Opcode)
0

AccessMode

Opcode

MaskCtrl

ExecSize

DebugCtrl

ComprCtrl

PredInv

Src1.SrcType

Src0.RegFile

Saturate

Dst.DstType

Src1.SrcType
Src1.RegFile

AddrMode = Direct

Dst.RegFile

Src1.RegFile

Src1.ChanSel[7:4]

Src0.SrcType

Src0.AddrSubRegNum

High 
Bit

Low 
Bit

AddrMode = Indirect

DepCtrl

Src1.Width

DW 
#

ThreadCtrl
PredCtrl

Instr 
Bits 
Alloc

Instr 
Bits 
Used

CondModifier

1

Src0.RegNum [7:0]

3

2

Src0.VertStride

Src0.AddrImm [9:4]
Src0.AddrImm [9:0]

Src0.SrcMod

Src0.Width
Src0.ChanSel[7:4]Src0.ChanSel[7:4]

FlagSubRegNum

Src0.SubRegNum [4:0]

Src0.Width

Src0.AddrMode

Dst.AddrMode

Dst.AddrImm [9:4]
Dst.RegNum [7:0]

Dst.SubRegNum [4:0] Dst.AddrImm [9:0]

Dst.AddrSubRegNum
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13.2.1 Common Instruction Fields 

As shown in Table  13-2, the meanings (encoding) of certain bit fields in the 128-bit 
instruction word varies depending on the values of other bit fields.  

Table  13-3 provides the definition of common fields in the instruction word. The 
‘Width’ column specifies the width of the field in bits.  These common fields will be 
referred to later in describing the fields of different doublewords of the instruction.  
The definition for fields that have unique representation can be found in its 
corresponding doubleword of the instruction.   

Table  13-3. Definitions of Common Instruction Fields 

Field Description Width 

CondModifier Conditional Modifier. This field sets the flag register based on the internal 
conditional signals output from the execution pipe such as sign, zero, overflow, 
round-increment and NaNs, etc.  If this field is set to 0000, no flag registers 
are updated.  

This field may also be referred to as the flag destination control field. 

This field applies to all instructions except send. 

0000 = Do not modify the flag register (normal) 
0001 = Zero or Equal (‘.z’ or ‘.e’) 
0010 = Not Zero or Not Equal (‘.nz’ or ‘.ne’) 
0011 = Greater-than (‘.g’) 
0100 = Greater-than-or-equal (‘.ge’) 
0101 = Less-than (‘.l’) 
0110 = Less-than-or-equal (‘.le’) 
0111 = Round-increment (‘.r’) 
1000 = Overflow (‘.o’) 
1001 = Unordered with Computed NaN (‘.u’) 

1010 -1111 = Reserved 

4 

AddrMode Addressing Mode. This field determines the addressing method of the 
operand. When it is cleared, the register address of the operand is directly 
provided by bits in the instruction word.  It is called a direct register addressing 
mode. When it is set, the register address of the operand is computed based on 
the address register value and an address immediate field in the instruction 
word.  This is referred to as a register-indirect register addressing mode. 

This field applies to the destination operand and the first source operand, 
<src0>. Support for <src1> is device dependent. See Table XX (Indirect 
source addressing support available in device hardware) in ISA Execution 
Environment for details. 

0 = “Direct”.  Direct register addressing 

1 = “Register-Indirect” (or in short “Indirect”).  Register-indirect register 
addressing 

1 
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Field Description Width 

RegNum Register Number. This field provides the register number for the operand. For 
GRF or MRF register operand, it provides the portion of register address 
aligning to 256-bit. For an ARF register operand, this field is encoded such that 
MSBs identify the architecture register type and LSBs provide its register 
number.  

This field together with the corresponding SubRegNum field provides the byte 
aligned address for the origin of the register region. Specifically, this field 
provides bits [12:5] of the byte address, while SubRegNum field provides bits 
[4:0].  

This field applies to the destination operand and the source operands. It is 
ignored (or not present in the instruction word) for an immediate source 
operand. 

This field is present if the operand is in direct addressing mode; it is not 
present if the operand is register-indirect addressed.  

Format = U8, if RegFile = GRF. 

0x00 to 0x7F = Register number in the range of [0, 127] 

0x80 to 0xFF = Reserved 

Format = U8, if RegFile = MRF. 

0x00 to 0x0F = Register number in the range of [0, 15] 

0x10 to 0xFF = Reserved 

Format = 8-bit encoding, if RegFile = ARF. 

This field is used to encode the architecture register as well as providing the 
register number.  See GEN4 Execution Environment chapter for details. 

8 

SubRegNum Sub-Register Number. This field provides the sub-register number for the 
operand. For GRF or MRF register operand, it provides the byte address within 
a 256-bit register. For an ARF register operand, this field also provides the sub-
register number according to special encoding for the given architecture 
register.  

This field together with the corresponding RegNum field provides the byte 
aligned address for the origin of the register region. Specifically, this field 
provides bits [4:0] of the byte address, while RegNum field provides bits 
[12:5].  

This field applies to the destination operand and the source operands. It is 
ignored (or not present in the instruction word) for an immediate source 
operand. 

This field is present if the operand is in direct addressing mode; it is not 
present if the operand is register-indirect addressed.  

Format = U5, if RegFile = GRF or MRF 

0x00 to 0x1F = Sub-Register number in the range of [0, 31] 

Format = 5-bit encoding, if RegFile = ARF. 

This field is used to encode the architecture register as well as providing the 
register number.  See GEN4 Execution Environment chapter for details. 

5 
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Field Description Width 

AddrSubRegNum Address Sub-Register Number. This field provides the sub-register number 
for the address register. The address register contains 8 sub-registers. The size 
of each sub-register is one word.  The address register contains the register 
address of the operand, when the operand is in register-indirect addressing 
mode.  

This field applies to the destination operand and the source operands. It is 
ignored (or not present in the instruction word) for an immediate source 
operand. 

This field is present if the operand is in register-indirect addressing mode; it is 
not present if the operand is directly addressed.   

Format = U3 

0x00 to 0x07 = Address Sub-Register number in the range of [0, 7] 

3 

AddrImm Address Immediate. This field provides the immediate value in unit of byte to 
be added to the address register in order to compute the register address 
(byte-aligned region origin) for the operand.  It is a 10-bit signed integer in 2’s 
complement form.  

This field is present if the operand is in register-indirect addressing mode; it is 
not present if the operand is directly addressed.   

Note: that the address immediate field may not be able to cover the whole GRF 
register range for a thread, as the maximum GRF register space for a thread is 
4KB. 

Format = S9 

Valid range: [-512, 511] 

10 

SrcMod Source Modifier. This field specifies the numerical modification to a source 
operand. The value of each data element of a source operand can optionally 
have its absolute value taken and/or its sign inverted prior to delivery to the 
execution pipe.  The absolute value is prior to negate such that a guaranteed 
negative value can be produced. 

This field only applies to source operand. It does not apply to destination.   

This field is not present for an immediate source operand.  

00 = No modification (normal) 

01 = “(abs)”.  Absolute 

10 = “–”. Negate  

11 = “–(abs)”.  Negate of the absolute (forced negative value) 

2 
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Field Description Width 

VertStride Vertical Stride. The field provides the vertical stride of the register region in 
unit of data elements for an operand.  

Encoding of this field provides values in power of 2, ranging from 0 to 32 
elements. Larger values are not supported due to the restriction that a source 
operand must reside within two adjacent 256-bit registers (64 bytes total).  

Special encoding 1111b (0xF) is only valid when the operand is in register-
indirect addressing mode (AddrMode = 1). If this field is set to 0xF, one or 
more sub-registers of the address registers may be used to compute the 
addresses. Each address sub-register provides the origin for a row of data 
element. The number of address sub-registers used is determined by the 
division of ExecSize of the instruction by the Width fields of the operand. 

This field only applies to source operand. It does not apply to destination.   

This field is not present for an immediate source operand.  

For Align16 access mode, only encodings of 0000 and 0011 are allowed. Other 
codes are reserved. 

Note 1: Vertical Stride larger than 32 is not allowed due to the restriction that 
a source operand must reside within two adjacent 256-bit registers (64 bytes 
total).  

Note 2: In Align16 access mode, as encoding 0xF is reserved, only single-
index indirect addressing is supported.  

Note 3: If indirect address is supported for <src1>, encoding 0xF is reserved 
for <src1> – only single-index indirect addressing is supported.  

 

0000 = 0 Elements 

0001 = 1 Element 

0010 = 2 Elements 

0011 = 4 Elements 

0100 = 8 Elements 

0101 = 16 Elements (applies to byte or word operand only) 

0110 = 32 Elements (applies to byte operand only) 

0111-1110 = Reserved  

1111 = VxH or Vx1 mode (only valid for register-indirect addressing in 
Align1 mode) 

4 

Width Width. This field specifies the number of elements in the horizontal dimension 
of the region for a source operand. This field cannot exceed the ExecSize field 
of the instruction. 

This field only applies to source operand. It does not apply to destination.   

This field is not present for an immediate source operand.  

000 = 1 Elements  

001 = 2 Elements  

010 = 4 Elements 

011 = 8 Elements 

100 = 16 Elements 

101-111 = Reserved 

3 
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Field Description Width 

HorzStride Horizontal Stride. This field provides the distance in unit of data elements 
between two adjacent data elements within a row (horizontal) in the register 
region for the operand. 

This field applies to both destination and source operands.  

This field is not present for an immediate source operand.  

00 = 0 Elements 

01 = 1 Element 

10 = 2 Elements 

11 = 4 Elements 

2 

Imm32 32-bit Immediate. The 32-bit immediate data field for the operand.  It may 
contain any legal bit pattern for its associated type.  Only one 32-bit immediate 
value may be present in an instruction, therefore binary operations only 
support <src1> as an immediate value.   

The low order bits are directly used when fewer than 32-bits are needed to 
describe the desired type; the 32-bits are not coerced into the designated type.  

For UW and W data types, programmer is required to replicate the lower word 
to the upper word of this field.  

This field only applies to the last source operand.  

Signed and unsigned byte integer data types are not supported for an 
immediate operand.  

Valid ranges according to data type: 

Immediate Data 
Type 

Valid Range (inclusive) 

F [0…±1.0*2-128…127 ] 

UW [0, 65535] 

W [-32768, 32767] 

UD [0, 232-1] 

D [-231, 231-1] 

VF [0, ±0.125…±31] 

V [-8, 7] 
 

32 
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Field Description Width 

ChanEn Channel Enable. Four channel enables are defined for controlling which 
channels will be written into the destination region.  These channel mask bits 
are applied in a modulo-four manner to all ExecSize channels. There is 1-bit 
Channel Enable for each channel within the group of 4. If the bit is cleared, the 
write for the corresponding channel is disabled. If the bit is set, the write is 
enabled. Mnemonic for the bit being set for the group of 4 is “x”, “y”, “z”, and 
“w”, respectively, where “x” corresponds to Channel 0 in the group and “w” 
corresponds to channel 3 in the group. 

This field only applies to destination operand.  

This field is only present in Align16 mode.  

0 = Write Disabled 

1 = Write Enabled (normal) 

4 

ChanSel Channel Select. This field controls the channel swizzle for a source operand. 
The normally sequential channel assignment can be altered by explicitly 
identifying neighboring data elements for each channel.  Out of the 8-bit field, 
2 bits are assigned for each channel within the group of 4.  ChanSel[1:0], 
[3.2], [5.4] and [7,6] are for channel 0 (“x”), 1 (“y”), 2 (“z”), and 3 (“w”) in 
the group, respectively.  

For example with an execution size of 8, r0.0<4>.zywz:f would assign the 
channels as follows: Chan0 = Data2, Chan1 = Data1, Chan2 = Data3, Chan3 = 
Data2; Chan4 = Data6, Chan5 = Data5, Chan6 = Data7, Chan7 = Data6.  

This field only applies to source operand.  

This field is only present in Align16 mode. It is not present for an immediate 
source operand.  

The 2-bit Channel Selection field for each channel within the group of 4 is 
defined as the following. 

00 = “x”. Channel 0 is selected for the corresponding execution channel 

01 = “y”. Channel 1 is selected for the corresponding execution channel 

10 = “z”. Channel 2 is selected for the corresponding execution channel 

11 = “w”. Channel 3 is selected for the corresponding execution channel 

8 

MsgDscpt31 Message Description. This field, containing 31-bit immediate values, provides 
the description of the message to be sent. 

This field only applies to the send instruction. It is not present for other 
instructions. 

The meaning of the field depends on the type of message as well as the 
message shared function target. 

Format: U31 

31 

EOT End of Thread. This field controls the termination of the thread. For a send 
instruction, if this field is set, EU will terminate the thread and also set the EOT 
bit in the message sideband.  

This field only applies to the send instruction. It is not present for other 
instructions. 

0 = The thread is not terminated 

1 = EOT 

1 
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13.2.2 Instruction Operation Doubleword (DW0) 

Most fields in Instruction Operation Doubleword (DW0) apply to all instructions. Bit 
field [27:24] is one exception. It is CondModifier for most instructions but is 
CurrDest.RegNum field for the send instruction.  

Table  13-4. Definitions of Fields in Operation Doubleword (DW0) 

Bits Description 

31 Saturate. This field controls the destination saturation.  

When it is set, output data to the destination register are saturated. The saturation operation 
depends on the destination data type.  Saturation is the operation that converts any data that is 
outside the saturation target range for the data type to the closest representable value with the 
target range.  If destination type is float, saturation target range is [0, 1]. For example, any 
positive number greater than 1 (including +INF) is saturated to 1 and any negative number 
(including –INF) is saturated to 0. A NaN is saturated to 0, For integer data types, the maximum 
range for the given numerical data type is the saturation target range.   

When it is not set, output data to the destination register are not saturated. For example, a 
wrapped result (modular) is output to the destination for an overflowed integer data. 

More details can be found in the Data Types chapter. 

0 = No destination modification (normal) 

1 = “sat”. Saturate the output  

 

Destination Type Saturation Target Range (inclusive) 

Float (F) [0.0, 1.0] 

Byte (UB) [0, 255] 

Signed Byte (B) [-128, 127] 

Word (UW) [0, 65535] 

Signed Word (W) [-32768, 32767] 

Double Word (UD) [0, 232-1] 

Signed Double (D) [-231, 231-1] 
 

30 DebugCtrl – Debug Control. This field allows the insertion of a breakpoint at the current 
instruction. When the bit is set, hardware automatically stores the current IP in CR register and 
jumps to the System IP (SIP) BEFORE executing the current instruction. 

0 = No breakpoint (normal) 

1 = “Breakpoint”. Breakpoint is inserted before this instruction is executed. 

29 Reserved: MBZ 

28 Reserved: MBZ 
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Bits Description 

27:24 CondModifier or CurrDst.RegNum[3:0] 

Definition of this bit field depends on whether the instruction is a send or not. 

Opcode != ‘send’ Opcode = ‘send’ 

CondModifier: 

This field sets the flag register 
based on the internal 
conditional signals output from 
the execution pipe. 

CurrDst.RegNum[3:0] 

This field sets the MRF register number for the current 
destination operand in the send instruction. No flag registers 
are updated for the send instruction. The 4-bit field provides 
full access of the 16 MRF registers.  

(See Instruction Reference chapter for CurrDst.) 
 

23:21 ExecSize – Execution Size. This field determines the number of channels operating in parallel for 
this instruction.  The size cannot exceed the maximum number of channels allowed for the given 
data type. 

000 = 1 Channels (scalar operation) 

001 = 2 Channels  

010 = 4 Channels  

011 = 8 Channels  

100 = 16 Channels 

101= 32 Channels 

110-111 = Reserved 

20 PredInv – Predicate Inverse. This field, together with PredCtrl, enables and controls the 
generation of the predication mask for the instruction.  When it is set, the predication uses the 
inverse of the predication bits generated according to setting of Predicate Control. In other words, 
effect of PredInv happens after PredCtrl. 

This field is ignored by hardware if Predicate Control is set to 0000 – there is no predication. 

0 = “+”.  Positive polarity of predication. 

1 = “–”.  Negative polarity of predication. 



 
 

 
 

376     

Bits Description 

19:16 PredCtrl – Predicate Control. This field, together with PredInv, enables and controls the 
generation of the predication mask for the instruction.  It allows per-channel conditional execution 
of the instruction based on the content of the selected flag register.  Encoding depends on the 
access mode.  

In Align16 access mode, there are eight encodings (including no predication). All encodings are 
based on group-of-4 predicate bits, including channel sequential, replication swizzles and horizontal 
any|all operations.  The same configuration is repeated for each group-of-4 execution channels.  

In Align1 access mode, there are twelve encodings (including no predication). The encodings 
applies to all execution channels with explicit channel grouping from single channel up to group of 
16 channels.  

Predicate Control in Align16 access mode 

0000 = No predication (normal) 

0001 = Predication with sequential flag channel mapping 

0010 = Predication with replication swizzle ‘.x’ 

0011 = Predication with replication swizzle ‘.y’ 

0100 = Predication with replication swizzle ‘.z’ 

0101 = Predication with replication swizzle ‘.w’ 

0110 = Predication with ‘.any4h’ 

0111 = Predication with ‘.all4h’ 

1000 -1111 = Reserved 

Predicate Control in Align1 access mode 

0000 = No predication (normal) 

0001 = Predication with sequential flag channel mapping 

0010 = Predication with .anyv (any from f0.0-f0.1 on the same channel) 

0011 = Predication with .allv (all of f0.0-f0.1 on the same channel) 

0100 = Predication with .any2h (any in group of 2 channels) 

0101 = Predication with .all2h (all in group of 2 channels) 

0110 = Predication with .any4h (any in group of 4 channels) 

0111 = Predication with .all4h (all in group of 4 channels) 

1000 = Predication with .any8h (any in group of 8 channels) 

1001 = Predication with .all8h (all in group of 8 channels) 

1010 = Predication with .any16h (any in group of 16 channels) 

1011 = Predication with .all16h (all in group of 16 channels) 

1100 -1111 = Reserved 
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Bits Description 

15:14 ThreadCtrl – Thread Control. This field provides explicit control for thread switching.   

If this field is set to 00, it is up to the GEN4 execution units to manage thread switching. This is the 
normal operations mode. In this mode, for example, if the current instruction cannot proceed due 
to operand dependencies, EU switches to next available thread to fill the compute pipe.  In another 
example, if the current instruction is ready to go, however, there is another thread with higher 
priority also has instruction ready, EU switches to that thread.  

If this field is set to Switch, a forced thread switch occurs after the current instruction is executed 
and before the next instruction. In addition, a long delay (longer than the execution pipe latency) 
for the current thread is introduced for the thread. Particularly, the instruction queue of the current 
thread is flushed after the current instruction is dispatched for execution. 

Switch is designed primarily as a safety feature in case there are race conditions for certain 
instructions. 

00 = Normal Thread Control  

10 = “Switch” 

11 = Reserved 

13:12 ComprCtrl – Compression Control. This field provides explicit control for instruction 
compression.  

If it is set to 00, the current instruction is a normal instruction (uncompressed) that can be directly 
dispatched for execution. A normal instruction most likely takes two instruction clock cycles to 
complete. If half of an architecture register (such as accumulator, mask registers and mask stack 
registers) is implicitly used by the instruction, the first half is used. 

If it is set to SecHalf, the current instruction is a normal instruction (uncompressed) that, if 
applicable, uses the second half of implicit architecture registers. 

If it is set to Compr, the current instruction is a compressed instruction that needs to be 
decompressed into two normal instructions.  Hardware set the ComprCtrl field of the first 
decompressed instruction to 00 and that for the second decompressed instruction to SecHalf.  The 
two native instructions are then dispatched for execution.  A compressed instruction normally takes 
four instruction clock cycles to complete.  

00 = Normal (uncompressed) instruction  

01 = “SecHalf” 

10 = “Compr” 

11 = Reserved 
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Bits Description 

11:10 DepCtrl – Destination Dependency Control. This field selectively disables destination 
dependency check and clear for this instruction.  

When it is set to 00, normal destination dependency control is performed for the instruction – 
hardware checks for destination hazards to ensure data integrity. Specifically, destination register 
dependency check is conducted before the instruction is made ready for execution. After the 
instruction is executed, the destination register scoreboard will be cleared when the destination 
operands retire. 

When bit 10 is set (NoDDClr), the destination register scoreboard will NOT be cleared when the 
destination operands retire.  When bit 11 is set (NoDDChk), hardware does not check for 
destination register dependency before the instruction is made ready for execution.  NoDDClr and 
NoDDChk are not mutual exclusive. 

When this field is not all-zero, hardware does not protect against destination hazards for the 
instruction.  This is typically used to assemble data in a fine grained fashion (e.g. matrix-vector 
compute with dot-product instructions), where the data integrity is guaranteed by software based 
on the intended usage of instruction sequences. 

00 = Destination dependency checked and cleared (normal) 

01 = “NoDDClr”. Destination dependency checked but not cleared 

10 = “NoDDChk”. Destination dependency not checked but cleared 

11 = “NoDDClr, NoDDChk”. Destination dependency not checked and not cleared 

9 MaskCtrl – Mask Control. This field, together with MaskCtrlEx field, determines if conditional 
masks (A/B/L/CMasks) are used for creating the execution mask.  Prediction control is still allowed. 

Encoding for the two-bit field [MaskCtrlEx, MaskCtrl] is as the following 

00 = Use Masks (normal) 

01 = “NoMask” – all masks are ignored for EMask creation for this instruction 

10 = Reserved 

11 = Reserved 

8 AccessMode – Access Mode. This field determines the operand access for the instruction. It 
applies to all source and destination operands. 

When it is cleared (Align1), the instruction uses byte-aligned addressing for source and destination 
operands. Source swizzle control and destination mask control are not supported. 

When it is set (Align16), the instruction uses 16-byte-aligned addressing for all source and 
destination operands. Source swizzle control and destination mask control are supported in this 
mode. 

0 = “Align1” 

1 = “Align16” 

7 Reserved: MBZ (for future opcode extension) 

6:0 Opcode – Instruction Operation Code. This field contains the instruction operation code.  Each 
opcode is given a unique mnemonic. For example, opcode 0x01 is for a move operation. Mnemonic 
for this opcode is mov.  

See Section  13.3 for details of opcode encoding. 
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13.2.3 Instruction Destination Doubleword (DW1) 

Destination Doubleword (DW1) contains the register file and numeric type of all 
operands, as well as the register region parameters of the destination operand.  
Table  13-5 shows the field definition of the Instruction Destination Doubleword. 
Furthermore, the Destination Register Region is described in Table  13-6 through  
Table  13-9. 

Table  13-5. Instruction Destination Doubleword 

Bits Description 

31:16 Destination Register Region. This word contains the parameters describing the register region of 
the destination operand. Subfield definition depends on the AccessMode.  

Detailed descriptions can be found in Table  13-6 through Table  13-9. 

15 Reserved: MBZ 

14:12 Src1.SrcType – Source-1 Data Type. This field specifies the numerical data type of the source 
operand <src1>.  The bits of a source operand are interpreted as the identified numerical data 
type, rather than coerced into a type implied by the operator. Depending on RegFile field of the 
source operand, there are two different encoding for this field. If a source is a register operand, this 
field follows the Source Register Type Encoding. If a source is an immediate operand, this field 
follows the Source Immediate Type Encoding. 

Source Register Type Encoding is identical to that for Destination Type.   

Source Immediate Type Encoding differs in two areas. First, it does not support byte and unsigned 
numerical data types. Secondly, it has two 32-bit vector types – halfbyte integer vector (V) type 
and exponent-only float vector (VF) type. 

Implementation Note 1: Both source operands, <src0> and <src1>, support immediate types, but 
only one immediate is allowed for a given instruction and it must be the last operand. 

Implementation Note 2: Halfbyte integer vector (v) type can only be used in instructions in packed-
word execution mode. Therefore, in a two-source instruction where <src1> is of type :v, <src0> 
must be of type :b, :ub, :w, or :uw. 

Source Register Type Encoding 

000 = “UD”.  Unsigned Doubleword integer 
001 = “D”.  Signed Doubleword integer 
010 = “UW”.  Unsigned Word integer  
011 = “W”.  Signed Word integer 
100 = “UB”.  Unsigned Byte integer 
101 = “B”.  Signed Byte integer  
110 = Reserved 
111 = “F”. Single precision Float (32-bit) 

Source Immediate Type Encoding: 

000 = “UD” 
001 = “D” 
010 = “UW”  
011 = “W” 
100 = Reserved 
101 = “VF”.  32-bit restricted Vector Float 
110 = “V”.  32-bit halfbyte integer Vector 
111 = “F” 
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Bits Description 

11:10 Src1.RegFile – Source-1 Register File. This field identifies the register file of source operand 
<src1>.  

00 =  “ARF”.  Architecture Register File (a#, acc#, f#, n#, null, ip, etc.) 

01 = “GRF”.  General Register File (r#) 

10 =  “MRF”.  Message Register File (m#) 

    11 =  “IMM”.  Immediate 

9:7 Src0.SrcType – Source-0 Data Type. This field is the SrcType for <src0> operand. It has the 
same definitions as Src1.SrcType. 

6:5 Src0.RegFile – Source-0 Register File. This field is the RegFile for <src0> operand. It has the 
same definitions as Src1.RegFile. 

4:2 Dst.DstType – Destination Data Type. This field specifies the numerical data type of the 
destination operand <dst>.  The bits of the destination operand are interpreted as the identified 
numerical data type, rather than coerced into a type implied by the operator. For a send instruction, 
this field applies to the CurrDst – the current destination operand. 

Encoding: 

000 = “UD”.  Unsigned Doubleword integer 

001 = “D”.  Signed Doubleword integer 

010 = “UW”.  Unsigned Word integer  

011 = “W”.  Signed Word integer 

100 = “UB”.  Unsigned Byte integer 

101 = “B”.  Signed Byte integer  

110 = Reserved 

111 = “F”. Single precision Float (32-bit) 

1:0 Dst.RegFile – Destination Register File. This field identifies the register file of the destination 
operand <dst>.  Note that it is obvious that immediate cannot be a destination operand. 

For a send instruction, this field applies to the PostDst – the post destination operand. 

Encoding: 

00 =  “ARF”.  Architecture Register File (a#, acc#, f#, n#, null, ip, etc.) 

01 = “GRF”.  General Register File (r#) 

10 =  “MRF”.  Message Register File (m#) 

11 =  reserved 

The following tables describe the Destination Register Region based on the access 
mode and addressing mode. 
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Table  13-6. Destination Register Region in Direct + Align16 mode 

Bits Description 

15 Dst.AddrMode – Destination Address Mode. This field is the AddrMode for the destination 
operand. (See section  13.2.1 for definition of AddrMode.) 

For a send instruction, this field applies to PostDst – the post destination operand. Addressing 
mode for CurrDst (current destination operand) is fixed as Direct. (See Instruction Reference 
chapter for CurrDst and PostDst.) 

14:13 Reserved: MBZ 

12:5 Dst.RegNum – Destination Register Number. This field is the RegNum field for the destination 
operand. (See section  13.2.1 for definitions of RegNum.) 

For a send instruction, this field applies to PostDst. 

4 Dst.SubRegNum[4]. This is the 16-byte aligned sub-register address. (See section  13.2.1 for 
definitions of SubRegNum) 

For a send instruction, this field applies to CurrDst. 

3:0 Dst.ChanEn – Destination Channel Enable. The channel enable field for the destination 
operand. (See section  13.2.1 for definitions of ChanEn) 

For a send instruction, this field applies to the CurrDst. 

 

Table  13-7. Destination Register Region in Direct+Align1 mode 

Bits Description 

15 Dst.AddrMode – Destination Address Mode. This field is the AddrMode for the destination 
operand.  

For a send instruction, it applies to PostDst. Addressing mode for CurrDst is fixed as Direct. 

14:13 Dst.HorzStride – Destination Horizontal Stride. This field is the HorzStride for the destination 
operand.  

For a send instruction, this field applies to CurrDst.  PostDst only uses the register number. 

12:5 Dst.RegNum – Destination Register Number. This field is the RegNum field for the destination 
operand.  

For a send instruction, this field applies to PostDst. 

4:0 Dst.SubRegNum – Destination Sub-Register Number. This field is the SubRegNum for the 
destination operand. (See section  13.2.1 for definition of SubRegNum) 

For a send instruction, this field applies to CurrDst. 
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Table  13-8. Destination Register Region in Indirect+Align16 mode 

Bits Description 

15 Dst.AddrMode – Destination Address Mode. This field is the AddrMode for the destination 
operand.  

For a send instruction, this field applies to PostDst. Addressing mode for CurrDst is fixed as 
Direct. 

14:13 Reserved: MBZ 

12:10 Dst.AddrSubRegNum – Destination Address Sub-Register Number. This field is the 
AddrSubRegNum for the destination operand. (See section  13.2.1 for definition of 
AddrSubRegNum.) 

For a send instruction, this field applies to PostDst. 

9:4 Dst.AddrImm[9:4] 

This is the half-register aligned AddrImm field for the destination operand. (See section  13.2.1 for 
definition of AddrImm) 

For a send instruction, this field applies to PostDst. 

3:0 Dst.ChanEn – Destination Channel Enable. The channel enable field for the destination 
operand. 

For a send instruction, this field applies to the CurrDst. 

 

Table  13-9. Destination Register Region in Indirect+Align1 mode 

Bits Description 

15 Dst.AddrMode – Destination Address Mode. This field is the AddrMode for the destination 
operand.  

For a send instruction, this field applies to PostDst. Addressing mode for CurrDst is fixed as 
Direct. 

14:13 Dst.HorzStride – Destination Horizontal Stride 

This field is the HorzStride for the destination operand.  

For a send instruction, this field applies to CurrDst.  PostDst only uses the register number. 

12:10 Dst.AddrSubRegNum – Destination Address Sub-Register Number. This field is the 
AddrSubRegNum for the destination operand.  

For a send instruction, this field applies to PostDst. 

9:0 Dst.AddrImm – Destination Address Immediate. This field is the byte-aligned AddrImm for the 
destination operand. 

For a send instruction, this field applies to PostDst. 
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13.2.4 Instruction Source-0 Doubleword (DW2) 

Instruction Source-0 Doubleword (DW2) contains the first source operand and also 
flag register number. 

• Table  13-10 shows the field definition for Direct Addressing with Align16. 

• Table  13-11 shows the field definition for Direct Addressing with Align1. 

• Table  13-12 shows the field definition for Indirect Addressing with Align16. 

• Table  13-13 shows the field definition for Indirect Addressing with Align1. 

Table  13-10.  Instruction Source-0 Doubleword in Direct+Align16 mode 

Bits Description 

31:26 Reserved: MBZ 

25 FlagSubRegNum – Flag Sub-Register Number. This field specifies the sub-register number for 
a flag register operand.  There are two sub-registers in the flag register. Each sub-register contains 
16 flag bits.  

The selected flag sub-register is the source for predication if predication is enabled for the 
instruction.  It is the destination to store conditional flag bits if conditional modifier is enabled for 
the instruction.  The same flag sub-register can be both the predication source and conditional 
destination, if both predication and conditional modifier are enabled.  

24:21 Src0.VertStride – Source-0 Vertical Stride. This field is the VertStride for <src0> operand. (See 
section  13.2.1 for definition of VertStride) 

It is ignored if <src0> is an immediate operand. 

20 Reserved: MBZ 

19:16 Src0.ChanSel[7:4] 

This is bits [7:4] of the ChanSel field for <src0> operand. (See section  13.2.1 for definition of 
ChanSel).It is ignored if <src0> is an immediate operand. 

15 Src0.AddrMode – Source-0 Address Mode. This field is the AddrMode for <src0> operand. (See 
section  13.2.1 for definition of AddrMode) 

It is ignored if <src0> is an immediate operand. 

14:13 Src0.SrcMod – Source-0 Source Modifier. This field is the SrcMod for source operand <src0>. 
(See section  13.2.1 for definition of SrcMod)It is ignored if <src0> is an immediate operand. 

12:5 Src0.RegNum – Source-0 Register Number 

This is  the RegNum field for source operand <src0>. (See section  13.2.1 for definition of 
RegNum.) 

It is ignored if <src0> is an immediate operand. 

4 Src0.SubRegNum[4] 

This is the 16-byte aligned sub-register address for source operand <src0>.  (See section  13.2.1 
for definition of SubRegNum) 

It is ignored if <src0> is an immediate operand. 

3:0 Src0.ChanEn – Source-0 Channel Enable  

This is the ChanEn field for source operand <src0>. (See section  13.2.1 for definitions of ChanEn) 

It is ignored if <src0> is an immediate operand.  
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Table  13-11. Instruction Source-0 Doubleword in Direct+Align1 mode 

Bits Description 

31:26 Reserved: MBZ 

25 FlagSubRegNum – Flag Sub-Register Number. This field specifies the sub-register number for a 
flag register operand.   

24:21 Src0.VertStride – Source-0 Vertical Stride 

This is the VertStride field for <src0> operand. (See section  13.2.1 for definition of VertStride) 

It is ignored if <src0> is an immediate operand. 

20:18 Src0.Width. This is the Width field for source operand <src0>. (See section  13.2.1 for definition of 
Width) 

It is ignored if <src0> is an immediate operand. 

17:16 Src0.HorzStride. This is the HorzStride field for source operand <src0>. (See section  13.2.1 for 
definition of HorzStride) 

It is ignored if <src0> is an immediate operand. 

15 Src0.AddrMode – Source-0 Address Mode. This is the AddrMode for source operand <src0>. 
(See section  13.2.1 for definition of AddrMode) 

It is ignored if <src0> is an immediate operand. 

14:13 Src0.SrcMod – Source-0 Source Modifier. This is the SrcMod field for source operand <src0>. 
(See section  13.2.1 for definition of SrcMod) 

It is ignored if <src0> is an immediate operand. 

12:5 Src0.RegNum – Source-0 Register Number. This is the RegNum field for source operand 
<src0>. (See section  13.2.1 for definition of RegNum.) 

It is ignored if <src0> is an immediate operand. 

4:0 Src0.SubRegNum – Source-0 Sub-Register Number. This is the SubRegNum field for source 
operand <src0>. (See section  13.2.1 for definition of SubRegNum) 

It is ignored if <src0> is an immediate operand. 
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Table  13-12. Instruction Source-0 Doubleword in Indirect+Align16 mode 

Bits Description 

31:26 Reserved: MBZ 

25 FlagSubRegNum – Flag Sub-Register Number. This field specifies the sub-register number for a 
flag register operand.  

24:21 Src0.VertStride – Source-0 Vertical Stride. This is the VertStride field for <src0> operand. (See 
section  13.2.1 for definition of VertStride) 

It is ignored if <src0> is an immediate operand. 

20 Reserved: MBZ 

19:16 Src0.ChanSel[7:4] – Source-0 Channel Select. This is bits [7:4] of the ChanSel field for <src0> 
operand. (See section  13.2.1 for definition of ChanSel). 

It is ignored if <src0> is an immediate operand. 

15 Src0.AddrMode – Source-0 Address Mode. This is the AddrMode for source operand <src0>. 
(See section  13.2.1 for definition of AddrMode) 

It is ignored if <src0> is an immediate operand. 

14:13 Src0.SrcMod – Source-0 Source Modifier. This is the SrcMod field for source operand <src0>. 
(See section  13.2.1 for definition of SrcMod) 

It is ignored if <src0> is an immediate operand. 

12:10 Src0.AddrSubRegNum – Source-0 Address Sub-Register Number. This is the 
AddrSubRegNum field for source operand <src0>. (See section  13.2.1 for definition of 
AddrSubRegNum.) 

It is ignored if <src0> is an immediate operand. 

9:4 Src0.AddrImm[9:4] – Source-0 Address Immediate. This contains the half-register aligned 
AddrImm field ((bits [9:4]) for <src0>. (See section  13.2.1 for definition of AddrImm) 

It is ignored if <src0> is an immediate operand. 

3:0 Src0.ChanEn – Source-0 Channel Enable . This is the ChanEn field for source operand <src0>. 
(See section  13.2.1 for definitions of ChanEn) 

It is ignored if <src0> is an immediate operand.  
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Table  13-13. Instruction Source-0 Doubleword in Indirect+Align1 mode 

Bits Description 

31:26 Reserved: MBZ 

25 FlagSubRegNum – Flag Sub-Register Number. This field specifies the sub-register number for 
a flag register operand.   

24:21 Src0.VertStride – Source-0 Vertical Stride. This is the VertStride field for <src0> operand. (See 
section  13.2.1 for definition of VertStride) 

It is ignored if <src0> is an immediate operand. 

20:18 Src0.Width. This is the Width field for source operand <src0>. (See section  13.2.1 for definition of 
Width) 

It is ignored if <src0> is an immediate operand. 

17:16 Src0.HorzStride. This is the HorzStride field for source operand <src0>. (See section  13.2.1 for 
definition of HorzStride) 

It is ignored if <src0> is an immediate operand. 

15 Src0.AddrMode – Source-0 Address Mode. This is the AddrMode for source operand <src0>. 
(See section  13.2.1 for definition of AddrMode) 

It is ignored if <src0> is an immediate operand. 

14:13 Src0.SrcMod – Source-0 Source Modifier. This is the SrcMod field for source operand <src0>. 
(See section  13.2.1 for definition of SrcMod) 

It is ignored if <src0> is an immediate operand. 

12:10 Src0.AddrSubRegNum – Source-0 Address Sub-Register Number. This is the 
AddrSubRegNum field for source operand <src0>. (See section  13.2.1 for definition of 
AddrSubRegNum.) 

It is ignored if <src0> is an immediate operand. 

9:0 Src0.AddrImm – Source-0 Address Immediate. This is the byte aligned AddrImm field for 
<src0>. (See section  13.2.1 for definition of AddrImm) 

It is ignored if <src0> is an immediate operand. 
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13.2.5 Instruction Source-1 Doubleword (DW3) 

Source-1 Doubleword (DW3) contains the second source operand (<src1>) and is 
used to hold the 32-bit immediate source (imm32 as <src0> or <src1>).  Table  13-14 
and Table  13-15 define the fields in this doubleword with the following exceptions: 

• If <src0> is an immediate operand, this doubleword contains imm32 for <src0>. 

• If <src1> is an immediate operand, this doubleword contains imm32 for <src1>. 

• If the instruction is a send, bit 31 of this doubleword contains EOT field.  
⎯ If <src1> is immediate, the remaining 31 bits in this doubleword is 

MsgDescpt31. 
⎯ If <src1> is a register, <src1> must be a0.0. The rest of this doubleword will 

be configured accordingly. 

• If indirect address is supported for <src1>, Table  13-16 and Table  13-17 define 
the fields in DW3 for indirectly addressed <src1> in Align16 and Align1 modes. 

Table  13-14. Instruction Source-1 Doubleword in Direct + Align16 mode 

Bits Description 

31:25 Reserved: MBZ 

24:21 Src1.VertStride – Source-1 Vertical Stride. This field is the VertStride for <src1> operand. (See 
section  13.2.1 for definition of VertStride) 

It is ignored if <src1> is an immediate operand. 

20 Reserved: MBZ 

19:16 Src1.ChanSel[7:4] 

This contains bits [7:6] of the ChanSel field for <src1> operand. (See section  13.2.1 for definition 
of ChanSel) 

It is ignored if <src1> is an immediate operand. 

15 Reserved: MBZ 

14:13 Src1.SrcMod – Source-1 Source Modifier. This field is the SrcMod for <src1> operand. (See 
section  13.2.1 for definition of SrcMod) 

It is ignored if <src1> is an immediate operand. 

12:5 Src1.RegNum. This field is the RegNum field for <src1> operand. (See section  13.2.1 for 
definition of RegNum.) 

It is ignored if <src1> is an immediate operand. 

4 Src1.SubRegNum[4]. This field is bit [4] of the SubRegNum field for <src1>. (See section  13.2.1 
for definition of SubRegNum) 

It is ignored if <src1> is an immediate operand. 

3:0 Src1.ChanEn – Source-1 Channel Enable. It is the channel enable field for <src1>. (See section 
 13.2.1 for definitions of ChanEn)It is ignored if <src1> is an immediate operand. 
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Table  13-15. Instruction Source-1 Doubleword in Direct + Align1 mode 

Bits Description 

31:25 Reserved: MBZ 

24:21 Src1.VertStride – Source-1 Vertical Stride. This field is the VertStride for <src1> operand. (See 
section  13.2.1 for definition of VertStride) 

It is ignored if <src1> is an immediate operand. 

20:18 Src1.Width. This is the Width field for source operand <src1>. (See section  13.2.1 for definition of 
Width) 

It is ignored if <src1> is an immediate operand. 

17:16 Src1.HorzStride. This is the HorzStride field for source operand <src1>. (See section  13.2.1 for 
definition of HorzStride) 

It is ignored if <src1> is an immediate operand. 

15 Reserved: MBZ 

14:13 Src1.SrcMod – Source-1 Source Modifier. This field is the SrcMod for <src1> operand. (See 
section  13.2.1 for definition of SrcMod) 

It is ignored if <src1> is an immediate operand. 

12:5 Src1.RegNum – Source-1 Register Number. This is the RegNum field for source operand 
<src1>. (See section  13.2.1 for definition of RegNum.) 

It is ignored if <src1> is an immediate operand. 

4:0 Src1.SubRegNum – Source-1 Sub-Register Number. This is the SubRegNum field for source 
operand <src1>. (See section  13.2.1 for definition of SubRegNum) 

It is ignored if <src1> is an immediate operand. 
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Table  13-16. Instruction Source-1 Doubleword in Indirect+Align16 mode 

Bits Description 

31:25 Reserved: MBZ 

24:21 Src1.VertStride – Source-1 Vertical Stride 

This is the VertStride field for <src1> operand. (See section  13.2.1 for definition of VertStride) 

It is ignored if <src1> is an immediate operand. 

20 Reserved: MBZ 

19:16 Src1.ChanSel[7:4] – Source-1 Channel Select 

This is bits [7:4] of the ChanSel field for <src1> operand. (See section  13.2.1 for definition of 
ChanSel). 

It is ignored if <src1> is an immediate operand. 

15 Src1.AddrMode – Source-1 Address Mode 

This is the AddrMode for source operand <src1>. (See section  13.2.1 for definition of AddrMode) 

It is ignored if <src1> is an immediate operand. 

14:13 Src1.SrcMod – Source-1 Source Modifier 

This is the SrcMod field for source operand <src1>. (See section  13.2.1 for definition of SrcMod) 

It is ignored if <src1> is an immediate operand. 

12:10 Src1.AddrSubRegNum – Source-1 Address Sub-Register Number 

This is the AddrSubRegNum field for source operand <src1>. (See section  13.2.1 for definition of 
AddrSubRegNum.) 

It is ignored if <src1> is an immediate operand. 

9:4 Src1.AddrImm[9:4] – Source-1 Address Immediate 

This contains the half-register aligned AddrImm field ((bits [9:4]) for <src1>. (See section  13.2.1 
for definition of AddrImm) 

It is ignored if <src1> is an immediate operand. 

3:0 Src1.ChanEn – Source-1 Channel Enable  

This is the ChanEn field for source operand <src1>. (See section  13.2.1 for definitions of ChanEn) 

It is ignored if <src1> is an immediate operand.  
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Table  13-17.  Instruction Source-1 Doubleword in Indirect+Align1 mode 

Bits Description 

31:25 Reserved: MBZ 

24:21 Src1.VertStride – Source-1 Vertical Stride 

This is the VertStride field for <src1> operand. (See section  13.2.1 for definition of VertStride) 

It is ignored if <src1> is an immediate operand. 

20:18 Src1.Width 

This is the Width field for source operand <src1>. (See section  13.2.1 for definition of Width) 

It is ignored if <src1> is an immediate operand. 

17:16 Src1.HorzStride 

This is the HorzStride field for source operand <src1>. (See section  13.2.1 for definition of 
HorzStride) 

It is ignored if <src1> is an immediate operand. 

15 Src1.AddrMode – Source-1 Address Mode 

This is the AddrMode for source operand <src1>. (See section  13.2.1 for definition of AddrMode) 

It is ignored if <src1> is an immediate operand. 

14:13 Src1.SrcMod – Source-1 Source Modifier 

This is the SrcMod field for source operand <src1>. (See section  13.2.1 for definition of SrcMod) 

It is ignored if <src1> is an immediate operand. 

12:10 Src1.AddrSubRegNum – Source-1 Address Sub-Register Number 

This is the AddrSubRegNum field for source operand <src1>. (See section  13.2.1 for definition of 
AddrSubRegNum.) 

It is ignored if <src1> is an immediate operand. 

9:0 Src1.AddrImm – Source-1 Address Immediate 

This is the byte aligned AddrImm field for <src1>. (See section  13.2.1 for definition of AddrImm) 

It is ignored if <src1> is an immediate operand. 

 



 
 
 
 

   391 

Table  13-18.  GEN4 Compacted Instruction Format  

DW# 

Instr 
Bits 
Alloc 

High 
Bit 

Low 
Bit 

Instr 
Bits 
Used Description 

1 8 63 56 8 Bits[108:101] Source1 register number 

  8 55 48 8 Bits [76:69] Source0 register number 

  8 47 40 8 Bits [60:53] Destination register number 

  5 39 35 5 Src1 Index[4:0] 

  3 34 32 3 Src0 Index[4:2] 

0 2 31 30 2 Src0 Index[1:0] 

  1 29 29 1 CompactCtrl – Compaction Control 

  1 28 28 1 Bit [89] FlagSubRegNum 

  4 27 24 4 Bits [27:24] CondModifier 

  1 23 23 1 MaskCtrlEx - Mask Control Extension 

  5 22 18 5 Subregister Index[4:0] 

  3 17 13 5 Datatype Index[4:0] 

  3 12 8 5 Control Index[4:0] 

  5 7 7 1 Bit[30] - Debug Control 

  7 6 0 7 Bits[6:0] - Opcode 

 

Table  13-19. Definitions of Fields in the Compact Instruction 

Bits Description 

63:56 Bits [108:101] Source1 register number 

forms bits [108:101], the source 1 register number field. 

55:48 Bits [76:69] Source0 register number 

This field, after unpacking, forms bits [76:69], the source 0 register number field, of the 128-bit 
instruction word. 

47:40 Bits [60:53] Destination register number 

This field, after unpacking, forms bits [60:53], the destination register number field, of the 128-bit 
instruction word. 

39:35 Src1Index 

The 5-bit index for source 1. The 12-bit table-look-up result forms bits [120:109], the source 1 
register region fields, of the 128-bit instruction word 

34:30 Src0Index 

The 5-bit index for source 0. The 12-bit table-look-up result forms bits [88:77], the source 0 
register region fields, of the 128-bit instruction word. 
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Bits Description 

29 CompactCtrl – Compaction Control 

This field indicates whether the instruction is in the 64-bit compaction form. When this bit is set (bit 
29 of DW0), the instruction length is only 64-bit..   

The bit location is fixed in both 128-bit and 64-bit instruction forms. 

0 = 128-bit form (normal) 

1 = 64-bit compaction form 

28 Bit [89] – FlagSubRegNum 

This field, after unpacking, is bit [89] of the 128-bit instruction word. 

27:24 Bits [27:24] – CondModifier 

This field, after unpacking, is bits [27:24] of the 128-bit instruction word. 

The bit location is fixed in both 128-bit and 64-bit instruction forms. 

23 MaskCtrlEx – Mask Control Extension. This field is an extension of the MaskCtrl field, see 
MaskCtrl field for detailed definition. 

This field, after unpacking, is bit[28] of the 128-bit instruction word. 

22:18 SubRegIndex 

The 5-bit index for sub-register fields. The 15-bit table-look-up result forms bits [100:96], [68,64] 
and [52,48] of the 128-bit instruction word. 

17:13 DataTypeIndex 

The 5-bit index for data type fields. The 18-bit table-look-up result forms bits [63:61] and [46, 32] 
of the 128-bit instruction word. 

12:8 ControlIndex 

The 5-bit index for data type fields. The 17-bit table-look-up result forms bits[31], and [23, 8] of 
the 128-bit instruction word. 

7 Bits [30] – DebugCtrl 

This field, after unpacking, is bit [30] of the 128-bit instruction word. 

6:0 Bits [6:0] – Opcode 

This field, after unpacking, is bits [6:0] of the 128-bit instruction word. 

The bit location is fixed in both 128-bit and 64-bit instruction forms. 



 
 
 
 

    393 

13.3 Opcode Encoding 

Byte 0 of the 128-bit instruction word contains the opcode. The opcode uses 7 bits. Bit 
location 7 in byte 0 is reserved for future opcode extension.  

There are total of 48 opcodes defined. These opcodes are encoded and organized into 
five groups based on the type of operations: Special instructions, move/logic 
instructions (opcode=00xxxxxb), flow control instructions (opcode=010xxxxb), 
miscellaneous instructions (opcode=011xxxxb), parallel arithmetic instructions 
(opcode=100xxxxb), and vector arithmetic instructions (opcode=101xxxxb). Opcodes 
110xxxb are reserved. 

13.3.1 Move and Logic Instructions 

This instruction group has an opcode format of 00xxxxxb. 

• The opcodes for move instructions (mov, sel and movi) share the common 5 
MSBs in the form of 00000xxb. 

• The opcodes for logic instructions (not, and, or, and xor) share the common 5 
MSBs in the form of 00001xxb. 

• The opcodes for shift instructions (shr, shl, and asr) share the common 4 MSBs 
in the form of 0001xxxb. Bit 2 indicates arithmetic or logic shift (0 = logic, 1 = 
arithmic). Bit 1 is always 0 (which is reserved for future extension to support 
rotation shift as 0 = shift, 1 = rotate). Bit 0 indicates the shift direction (0 = right, 
1 = left). 

• The opcodes for compare instructions (cmp and cmpn) share the common 6 
MSBs in the form of 001000xb. Bit 0 indicates whether it is a normal compare, 
cmp, or a special compare-NaN, cmpn. 

• This group of instructions does not implicitly update the accumulators. 

• Instruction compression applies to this group.  
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Table  13-20. Move and Logic Instructions 

Opcode 

dec hex 

Instruction Description #src #dst 

1 0x01 mov Component-wise move 1 1 

2 0x02 sel Component-wise selective move based on predication 2 1 

3 0x03 Reserved    

4 0x04 not Component-wise one’s compliment (bitwise not) 1 1 

5 0x05 and Component-wise logical AND (bitwise and) 2 1 

6 0x06 or Component-wise logical OR (bitwise or) 2 1 

7 0x07 xor Component-wise logical XOR (bitwise xor) 2 1 

8 0x08 shr Component-wise logical shift right 2 1 

9 0x09 shl Component-wise logical shift left 2 1 

10-11 0x0A-
0x0B 

Reserved    

12 0x0C asr Component-wise arithmetic shift right 2 1 

13-15 0x0D-
0x0F 

Reserved  
  

16 0x10 
cmp Component-wise compare, store condition code in 

destination 2 1 

17 0x11 cmpn Component-wise compare-NaN, store condition code in 
destination 

2 1 

20-31 0x12-
0x1F 

Reserved 
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13.3.2 Flow Control Instructions 

This instruction group has an opcode format of 010xxxxb. 

• This group of instructions does not implicitly update the accumulators. 

• Instruction compression is not allowed for this group.  

Table  13-21. Flow Control Instructions 

Opcode 

dec hex 

Instructio
n 

Description #src #dst 

32 0x20 jmpi Jump indexed 1 0 

33 0x21 Reserved    

34 0x22 if If 0/2 0 

35 0x23 iff Fast if  1 0 

36 0x24 else Else 1 0 

37 0x25 endif End if 0 0 

38 0x26 do Do  0 0 

39 0x27 while While 1 0 

40 0x28 break Break 1 0 

41 0x29 cont Continue 1 0 

42 0x2A halt Halt 1 0 

43 0x2B Reserved    

44 0x2C msave Push mask to stack and update mask  1 1 

45 0x2D mrest Pop mask stack and restore mask  1 1 

46 0x2E push Push mask to stack without updating mask  1 1 

46 0x2E Reserved    

47 0x2F pop Pop mask stack without updating mask 2 0 
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13.3.3 Miscellaneous Instructions 

This instruction group has an opcode format of 011xxxxb. 

• This group of instructions does not implicitly update the accumulators. 

• Instruction compression is not allowed for this group.  

Table  13-22. Miscellaneous Instructions 

Opcode 

dec hex 

Instruction Description #src #dst 

48 0x30 wait Wait for (external) notification 1 0 

49 0x31 send Send 1 1 

51-55 0x33-0x37 Reserved    

57-63 0x39-0x3F Reserved    
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13.3.4 Parallel Arithmetic Instructions 

This instruction group has an opcode format of 100xxxxb. 

• The opcode for round instructions (rndu, rndd, rnde, and rndz) share the 
common 5 MSBs in the form of 10001xxb, with the lower 2 bits indicate the type 
of round. 

• These instructions implicitly update the accumulators if the Accumulator Disable 
bit in control register cr0.0 not set. 
⎯ Some instructions such as frc, lzd, etc., perform the operation after the 

accumulator. Therefore, when the accumulator is implicitly updated, the 
content is undefined. Details can be found in ISA Reference Chapter. 

• Instruction compression applies to this group.  

Table  13-23. Parallel Arithmetic Instructions 

Opcode 

dec hex 

Instruction Description #src #dst 

64 0x40 add Component-wise addition 2 1 

65 0x41 mul Component-wise multiply 2 1 

66 0x42 avg Component-wise average of the two source operands 2 1 

67 0x43 
frc Component-wise floating point truncate-to-minus-

infinity fraction 1 1 

68 0x44 rndu Component-wise floating point rounding up (ceiling) 1 1 

69 0x45 rndd Component-wise floating point rounding down (floor) 1 1 

70 0x46 
rnde Component-wise floating point rounding toward 

nearest even  1 1 

71 0x47 rndz Component-wise floating point rounding toward zero 1 1 

72 0x48 mac Component-wise multiply accumulate 2 1 

73 0x49 mach multiply accumulate high 2 1 

74 0x4A lzd leading zero detection 1 1 

75-79 
0x4B-
0x4F 

Reserved 
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13.3.5 Vector Arithmetic Instructions 

• This instruction group has an opcode format of 101xxxxb. 

• These instructions implicitly update the accumulators if the Accumulator Disable 
bit in control register cr0.0 not set. 
⎯ Some instructions such as dp4-dp2, etc., perform the operation after the 

accumulator. Therefore, when the accumulator is implicitly updated, the 
content is undefined. Details can be found in ISA Reference Chapter. 

• Instruction compression applies to this group.  

Table  13-24. Vector Arithmetic Instructions 

Opcode 

dec hex 

Instruction Description #src #dst 

80 0x50 sad2 2-wide sum of absolute difference 2 1 

81 0x51 sada2 2-wide sad accumulate 2 1 

82-83 
0x52-
0x53 

reserved 
   

84 0x54 dp4 4-wide dot product for 4-vector 2 1 

85 0x55 dph 4-wide homogenous dot product for 4-vector 2 1 

86 0x56 dp3 3-wide dot product for 4-vector 2 1 

87 0x57 dp2 2-wide dot product for 4-vector 2 1 

88 0x58 reserved    

89 0x59 
line Component-wise line equation computation (a 

multiply-add) 2 1 

90 0x5A  reserved    

91 0x5B  reserved    

92-95 
0x5C-
0x5F 

reserved 
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13.3.6 Special Instructions 

There are two special instructions, namely, nop (opcode = 0x7E) and illegal (opcode = 
0x00).  

• Nop instruction may be used for instruction padding in memory between two 
normal instructions to force alignment or to introduce instruction execution delay. 
Currently, there is no need for between-instruction padding.  

• Illegal instruction may be used for instruction padding in memory outside the 
normal instruction sequence such as before or after the kernel program as well as 
between subroutines. It is useful for debugging purpose to signal when a thread 
execution hits a branch that erroneously causes the IP to reach an instruction 
memory location outside the program. 

• Nop and illegal instructions do not have source operands or destination operand. 
Therefore, they do not implicitly update the accumulator register. They cannot be 
compressed.  

Table  13-25. Special Instructions 

Opcode 

dec hex 

Instruction Description #src #dst 

0 0x00 illegal Illegal instruction 0 0 

96-124 0x60-
0x7C 

Reserved    

125 0x7D reserved    

126 0x7E nop No-op 0 0 

127 0x7F Reserved  (may be used as an extension code)   
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13.4 Native Instruction BNF 

The Backus-Naur Form (BNF) grammar identifies the assembly language syntax, 
which is native to the hardware.  It does not include intelligent defaults, assembler 
pragmas, etc. 

13.4.1 Instruction Groups 
<Instruction> ::=  <UnaryInstruction>  

| <BinaryAccInstruction>  
| <BinaryInstruction>  
| <TriInstruction>  
| <JumpInstruction>  
| <BranchLoopInstruction> 
| <ElseInstruction> 
| <BreakInstruction> 
| <MaskControlInstruction> 
| <SyncInstruction> 
| <SpecialInstruction> 

 
<UnaryInstruction> ::=   <Predicate> <UnaryInst> <ExecSize> <Dst> <SrcAccImm> 

<InstOptions> 
<UnaryInst> ::=   <UnaryOp> <ConditionalModifier> <Saturate>  
<UnaryOp> ::=   “mov” | “frc” | “rndu” | “rndd” | “rnde” | “rndz” | “not” | “lzd” 
 
<BinaryInstruction> ::=   <Predicate> <BinaryInst> <ExecSize> <Dst> <Src> 

<SrcImm> <InstOptions> 
<BinaryInst> ::=   <BinaryOp> <ConditionalModifier> <Saturate>  
<BinaryOp> ::=   “mul” | “mac” | “mach” | “line” 
  | “sad2” | “sada2” | “dp4” | “dph” | “dp3” | “dp2” 
 
<BinaryAccInstruction> ::=   <Predicate> <BinaryAccInst> <ExecSize> <Dst> <SrcAcc> 

<SrcImm> <InstrOptions> 
<BinaryAccInst> ::=   <BinaryAccOp> <ConditionalModifier> <Saturate>  
<BinaryAccOp> ::=   “avg” | “add” | “sel”  
  | “and” | “or” | “xor”  
  | “shr” | “shl” | “asr”  
  | “cmp” | “cmpn” 
 
<TriInstruction> ::=   <Predicate> <TriInst> <ExecSize> <PostDst> <CurrDst> 

<TriSrc> <MsgDesc> <InstOptions> 
<TriInst> ::=   <TriOp> <ConditionalModifier> <Saturate>  
<TriOp> ::=   “send” 
 
<JumpInstruction>  ::=  <JumpOp> <RelativeLocation2> 
<JumpOp> ::=   “jmpi” 
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<BranchLoopInstruction> ::=   <Predicate> <BranchLoopOp> < RelativeLocation> 
<BranchLoopOp> ::=   “if” | “iff” | “while” 
 
<ElseInstruction> ::=   <ElseOp> < RelativeLocation> 
<ElseOp> ::=   “else” 
 
<BreakInstruction> ::=   <Predicate> <BreakOp> <LocationStackCtrl> 
<BreakOp> ::=  “break” | “cont” | “halt” 
 
<MaskControlInstruction> ::=   <MaskPushOp> <MaskStackReg> <MaskReg> 
  | <MaskPopOp> <MaskReg> <MaskStackReg> 
  | <MaskPopOpEx> <MaskStackReg> <Imm32> 
<MaskPushOp> ::=   “msave” | “push” 
<MaskPopOp> ::=   “mrest” 
<MaskPopOpEx> ::=   “pop” 
 
<SyncInstruction> ::=   <Predicate> <SyncOp> <NotifyReg> 
<SyncOp> ::=   “wait” 
 
<SpecialInstruction> ::=  “do” | “endif” |“nop” | “illegal” 

13.4.2 Destination Register  
<Dst> ::=  <DstOperand> 

| <DstOperandEx> 
 
<DstOperand> ::=  <DstReg> <DstRegion> <WriteMask> <DstType> 
<DstOperandEx> ::=  <AccReg> <DstRegion> <DstType> 
  | <FlagReg> <DstRegion> <DstType> 
  | <AddrReg> <DstRegion> <DstType> 
  | <MaskReg> <DstRegion> <DstType> 
  | <MaskStackReg> 
   | <ControlReg> 
  | <IPReg> 
  | <NullReg> 
 
<DstReg> ::=  <DirectGenReg> | <IndirectGenReg> 
  | <DirectMsgReg> | <IndirectMsgReg> 
 
<PostDst> ::=  <PostDstReg> <DstRegion> <WriteMask> <DstType> 
  | <NullReg> 
 
<PostDstReg> ::=   <DirectGenReg> | <IndirectGenReg> 
 
<CurrDst> ::=  <DirectAlignedMsgReg> 
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13.4.3 Source Register  

Source with Accumulator Access and with Immediate 
<SrcAccImm> ::=  <SrcAcc>  

| <Imm32> <SrcImmType> 
 
<SrcAcc> ::=  <DirectSrcAccOperand>  

| <IndirectSrcOperand> 
 

<DirectSrcAccOperand> ::=  <DirectSrcOperand> 
  | <SrcArcOperandEx> 
  | <AccReg> <SrcType> 
 
<SrcArcOperandEx> ::=  <FlagReg> <Region> <SrcType> 
  | <AddrReg> <Region> <SrcType> 
  | <MaskReg> <Region> <SrcType>  
  | <MaskStackReg>  
   | <ControlReg> 
  | <StateReg> 
  | <NotifyReg> 
  | <IPReg> 
  | <NullReg> 
 
<IndirectSrcOperand> ::=  <SrcModifier> <IndirectGenReg> <IndirectRegion> 

<Swizzle > <SrcType> 
 

Source without Accumulator Access 
<Src> ::=  <DirectSrcOperand>  

| <IndirectSrcOperand> 
 

< DirectSrcOperand > ::=  <SrcModifier> <DirectGenReg> <Region> <Swizzle> 
<SrcType> 

  | <SrcArcOperandEx> 
 
<TriSrc> ::=  <SrcModifier> <DirectGenReg> <Region> <Swizzle> 

<SrcType> 
| <NullReg> 

 
<MsgDesc> ::=  <ImmDesc>  

| <Reg32> 
<Reg32> ::=  <DirectGenReg> <Region> <SrcType> 
 

Source without Accumulator Access or IP Access 
<SrcImm> ::=   <DirectSrcOperand>  

| <Imm32> <SrcImmType> 
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13.4.4 Address Registers 
<AddrParam> ::=  <AddrReg> <ImmAddrOffset> 
<ImmAddrOffset> ::=    “” 
  |  “,” <ImmAddrNum> 

13.4.5 Register Files and Register Numbers 
<DirectGenReg> ::=  <GenRegFile> <GenRegNum> <GenSubRegNum> 
<IndirectGenReg> ::=  <GenRegFile> “[“ <AddrParam> “]” 
<GenRegFile> ::=  “r” 
<GenRegNum>  :: =  “0”…“127” 
<GenSubRegNum>  :: =    “” 
  |  “.0”...“.7” 
  |  “.0”...“.15” 
  |  “.0”...“.31” 
 
<DirectMsgReg> ::=  <DirectAlignedMsgReg> <MsgSubRegNum> 
<DirectAlignedMsgReg> ::=  <MsgRegFile> <MsgRegNum>  
<IndirectMsgReg> ::=  <MsgRegFile> “[“ <AddrParam> “]” 
<MsgRegFile> ::=  “m” 
<MsgRegNum>  :: =  “0”…“15” 
<MsgSubRegNum>  :: =    <GenSubRegNum> 
 
<AddrReg> ::=  <AddrRegFile> <AddrSubRegNum> 
<AddrRegFile> ::=  “a0” 
<AddrSubRegNum>  :: =    “” 
  |  “.0” … “.7” 
 
<AccReg> ::=  “acc” <AccRegNum><AccSubRegNum> 
<AccRegNum>  :: =   “0” |  “1” 
<AccSubRegNum>  :: =    <GenSubRegNum> 
 
<FlagReg> ::=  “f0” <FlagSubRegNum> 
<FlagSubRegNum>  :: =  “” 
  |   “.0”...“.1” 
 
<MaskReg> ::=  “Mask0” <MaskSubRegNum>  
  |  “AMask” | “IMask” | “LMask” | “CMask” 
<MaskSubRegNum>  :: =  “” 
  |  “.0” … “.3” 
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<MaskStackReg> ::=  “ms0” <MaskStackSubRegNum> 
  |  “ims” | “lms” 
<MaskStackSubRegNum>  :: =  “” 
  |  “.0” | “.16” 
 
<MaskStackDepthReg> ::=  “MSD0” <MaskStackDepthSubRegNum> 
  |  “IMSD” | “LMSD” 
<MaskStackDepthSubRegNum>  :: =  “” 
  |  “.0” … “.1” 
 
<NotifyReg> ::=  “n” <NotifyRegNum> 
<NotifyRegNum>  :: =  “0”...“1” 
 
<StateReg> ::=  “sr0” <StateSubRegNum> 
<StateSubRegNum>  :: =  “.0”... “.1” 
 
<ControlReg> ::=  “cr0” <ControlSubRegNum> 
<ControlSubRegNum>  :: =  “.0” ...“.2” 
 
<IPReg> ::=  “ip”  
 
<NullReg> ::=  “null”  
 

13.4.6 Relative Location and Stack Control 
<RelativeLocation> ::=    <imm16> 
<RelativeLocation2> ::=    <imm32> | <reg32> 
<LocationStackCtrl> ::=  <imm32> 

13.4.7 Regions 
<DstRegion> ::=  “<” <HorzStride> “>” 
 
<IndirectRegion> ::=  <Region> | <RegionWH> | <RegionV> 
 
<Region> ::=  “<” <VertStride> “;” <Width> “,” <HorzStride> “>” 
<RegionWH> ::=  “<” <Width> “,” <HorzStride> “>” 
<RegionV> ::=  “<”<VertStride> “>” 
 
<VertStride> ::=   “0” | “1” | “2” | “4” | “8” | “16” | “32”  
<Width> ::=  “1” | “2” | “4” | “8” | “16” 
<HorzStride> ::=  “0” | “1” | “2” | “4” 
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13.4.8 Types 
<SrcType> ::=  “:f” | “:ud” | “:d” | “:uw” | “:w” | “:ub” | “:b” 
<SrcImmType> ::=  <SrcType> | “:v” | “:vf” 
<DstType> ::=  <SrcType> 
 

13.4.9 Write Mask 
<WriteMask> ::=    “” 
  |  “.” “x” | “.” “y” | “.” “z” | “.” “w” 
  |  “.” “xy” | “.” “xz” | “.” “xw” | “.” “yz” | “.” “yw” | “.” “zw” 
  |  “.” “xyz” | “.” “xyw” | “.” “xzw” | “.” “yzw” 
  |  “.” “xyzw” 
 

13.4.10 Swizzle Control 
<Swizzle> ::=  “” 
  |  “.” <ChanSel> 
  |  “.” <ChanSel> <ChanSel> <ChanSel> <ChanSel> 
 
<ChanSel> ::=    “x”  | “y” | “z” | “w” 
 

13.4.11 Immediate Values 
<ImmAddrNum> ::=  “-512”… “511” 
<Imm32> ::=   “0.0”… “±1.0*2-128…127” | “0”…”232-1” | “-231”…”231-1” 
<Imm16> ::=   “0”…”216-1” | “-215”…”215-1” 
<ImmDesc> ::=  “0”…”232-1” 
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13.4.12 Predication and Modifiers 

Instruction Predication 
<Predicate> ::=  “” 
  | “(” <PredState> <FlagReg> <PredCntrl> “)” 
 
<PredState> ::=  “”  
  | “+”  
  | “-“ 
<PredCntrl> ::=   “” 
  | “.x” | “.y” | “.z” | “.w” 
  | “.any2h” | “.all2h” 
  | “.any4h” | “.all4h” 
  | “.any8h” | “.all8h” 
  | “.any16h” | “.all16h” 
  | “.anyv” | “.allv” 
 
Source Modification 
<SrcModifier> ::=   “” 
  | “-” 
  | “(abs)” 
  | “-” “(abs)” 
 
Instruction Modification 
<ConditionalModifier> ::=  “” 
  | <CondMod> “. ” <FlagReg> 
<CondMod> ::=  “.z” | “.e” | “.nz” | “.ne” | “.g” | “.ge” | “.l” | “.le” | “.o” | “.r” | “.u” 
<Saturate> ::=  “” 
  | “.sat” 
 
Execution Size 
<ExecSize> ::=  “(“ <NumChannels> “)” 
<NumChannels> ::=  “1” | “2” | “4” | “8” | “16” | “32” 
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13.4.13 Instruction Options 
<InstOptions> ::=   “” 
  | “{” <InstOption> “}”  
  | “{” <InstOption> <InstOptionEx> “}”  
 
<InstOptionEx> ::=   “” 
  | “,” <InstOption> <InstOptionEx> 
 
<InstOption> ::=  <AccessMode>  
  | <ComprCtrl>  
  | <ThreadCtrl>  
  | <DependencyCtrl>  
  | <MaskCtrl>  
  | <DebugCtrl>  
  | <SendCtrl>  
 
<AccessMode> ::=   “Align1” | “Align16” 
<ComprCtrl> ::=   “SecHalf” | “Compr” | “Compr4” 
<ThreadCtrl> ::=   “Switch” | “Atomic” 
<DependencyCtrl> ::=   “NoDDChk” | “NoDDClr” 
<MaskCtrl> ::=   “NoMask”| “NoCMask”  
<DebugCtrl> ::=   “Breakpoint” 
<SendCtrl> ::=   “EOT” 
 

Note for Assembler: Compression control “Compr” has a direct map to the binary instruction 
word. It may be omitted as long as the Assembler is able to determine whether an instruction is 
in compressed mode or not based on the execution size and the mode of operation. However, 
“Compr4” requires Assembler to modify both compression control field and the MSB of the MRF 
destination register, so it must be present in the instruction if used. 

Compr4 and NoCMask are not supported. 
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13.5 Deprecated Features 

13.5.1 Defeatured Instructions 

The following instructions are removed from Gen4 implementation mainly due to 
implementation cost/schedule reasons. They are candidates for future generations. 

• Sum of Absolute Difference 4 (sad4) 

• Sum of Absolute Difference Accumulate 4 (sada4) 

• Add Accumulate (aac) 

• Min (min) 

• Max (max) 

• Next (next) 

• Swizzle (swz) 

• Dot Product Accumulate 2 (dpa2) 

• Rotation Shift Left (rsl) 

• Rotation Shift Right (rsr) 

13.5.2 Others 

The following features are also deprecated from GEN4 implementation. 

• Restricted 16-bit Half Floating-Point Numbers 

 

§§ 
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14 Instruction Set Reference 

This chapter describes the functions of GEN4 instructions. Each GEN4 instruction is 
given a different page and the pages are sorted in alphabetical order according to 
assembly language mnemonic. 

14.1 Conventions 

14.1.1 Pseudo Code Format 

The instructions are explained in the following pseudo-code format that resembles the 
GEN4 assembly instruction format.  
 

[(<pred>)] opcode (<exec_size>) <dst> <src0> [<src1>] 

Square brackets “[ ]” are used to signify that the field is optional. Saturation modifier 
and instruction options are omitted for simplicity. 

14.1.2 General Macros and Definitions 

INST_BYTE_COUNT is defined as a constant of 16 bytes. 
 
#define INST_BYTE_COUNT 16 // byte count of instruction 
word 

Function floor() converts a floating point value to an integral floating point value. For 
a given floating point value, from its closest two integral float values, function floor() 
returns the one that is closer to the negative infinity. For example, floor(1.3f) = 1.0f, 
and floor(-1.3f) = -2.0f. 

 
float floor(float g) 
{ 

return maximum( any integral float f: f <= g) 
} 

Function Condition() takes the conditional signals {SN, ZR, OF, IN, NC} of result, 
generates a Boolean data according to a conditional evaluation controlled by the 
conditional modifier cmod, and returns the Boolean data.  

 
Bool Condition(result, cmod) 
{ 
} 
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Function ConditionNaN() takes the conditional signals {SN, ZR, OF, IN, NC, NS} of 
result, generates a Boolean data according to a conditional evaluation controlled by 
the conditional modifier cmod, and returns the Boolean data. The only difference 
between Condition() and ConditionNaN() is that ConditionNaN() uses the NS (NaN of 
the second source) signal. 

 
Bool ConditionNaN(result, cmod) 
{ 
} 
 

Function Jump() jumps the instruction sequence from the current instruction location 
by InstCount number of instructions. If InstCount is a positive number, it jumps 
forward; if InstCount is a negative number, it jumps backward; if InstCount is zero, it 
is effectively an infinite loop on the current instruction.  

 
void Jump(int InstCount) 
{ 

IP = IP + (InstCount * INST_BYTE_COUNT) 
} 

14.1.3 Mask Stack Operations 

The following operations manipulate mask and mask stack. They are used in the 
instruction pseudocodes. 

Function Reset()  resets both the depth count and stack adder of mask stack 
DstStack. 

 
void DstStack.Reset()  
{ 

DstStack.DepthCount = 0; 
for (n = 0; n <= 15; n++) { 

  DstStack.adder[n] == 0; 
} 

} 
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Function Push() pushes mask SrcMask into mask stack DstStack.  It also increments 
the depth count. If the depth count overflows (wrapped to 0), it signals the overflow 
exception for the ask stack. Mask SrcMask is unchanged.  When SPF is set, nothing is 
done in this function. 

 
void DstStack.Push(Mask SrcMask)  
{ 
 if (!SPF) { 

DstStack.DepthCount++; 
if (DstStack.DepthCount == 0) { 

DstStack.DepthOverflow_exception = TRUE; 
 } else { 

DstStack.DepthOverflow_exception = FALSE; 
} 
for (n = 0; n <= 15; n++) { 

  if (SrcMask.BitPos(n) == 0) { 
DstStack.adder[n]++; 

  } 
} 

} 
} 

Function Pop() pops mask stack DstStack by m levels. It subtracts m from each stack 
counter. Any negative results are saturated to zero. The depth count is decremented 
by m. If m exceeds the current depth count, a stack underflow exception is signaled. 
When underflow occurs, depth count contains the modular value – amount of 
underflow. When SPF is set, nothing is done in this function. 

 
void DstStack.Pop(unsigned int m)  
{ 
 if (!SPF) { 

DstStack.DepthUnderflow_exception = (m > 
DepthCount); 

DstStack.DepthCount -= m; 
for (n = 0; n <= 15; n++) { 

  if (DstStack.adder[n] > m) { 
DstStack.adder[n] -= m; 

  } else { 
DstStack.adder[n] = 0; 

  } 
} 

} 
} 
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Function TopOfStack() returns the top entry of mask stack SrcStack.  
 
Mask* SrcStack.TopOfStack()  
{ 
 Mask* DestMask[15:0]; 

for (n = 0; n <= 15; n++) { 
  *DestMask.BitPos[n] = (SrcStack.adder[n] == 0); 

} 
Return DestMask; 

} 

Function Evaluate() the mask Mask according to control parameters in Ctrl.  Mask may 
be the intermediate predication mask PMask, the intermediate branch mask BMask, or 
the internal execution mask EMask.  

 
void Evaluate(Mask* Mask, int Ctrl)  
{ 
 if (Mask == PMask) { 
  if (Predication is off) { 
   PMask[15:0] = 0xFFFF; 
  } else { 
   PMask[15:0] is set on predication control 
   Details are omitted 
  } 
 } else if (Mask == BMask) { 
  BMask[15:0]  = AMask[15:0]; 

BMask[15:0] &= LMask[15:0]; 
BMask[15:0] &= CMask[15:0]; 

 } else if (Mask == EMask) { 
  EMask[15:0]  = AMask[15:0]; 

EMask[15:0] &= IMask[15:0]; 
EMask[15:0] &= LMask[15:0]; 
If (Ctrl != NoCMask) { // used for while 

   EMask[15:0] &= CMask[15:0]; 
  } 
  If (MaskCtrl == NoMask) { 
   EMask[15:0] = 0xFFFF; 
  } 

If (Ctrl != NoPMask) { // used for ‘sel’ 
   Evaluate(PMask); 

EMask[15:0] &= PMask[15:0]; 
} 

  If (CompCtrl == SecHalf) { 
   EMask[7:0] = EMask[15:8]; 

} 
EMask[15:0] &= ExecMask(ExecSize); 
EMask[15:0] &= DestMask(ExecSize); 

 } 
} 

Function ExecMask() returns a mask value for the execution size ExecSize. The mask 
bits of the first ExecSize channels are set to 1 and the rest bits are set to zero. This 
function is used by function Evaluate(). 
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Mask ExecMask(int ExecSize)  
{ 
 Mask TmpMask[15:0] = 0xFFFF; 
 for (int i=0; i < ExecSize; i++) { 
  TmpMask[i] = 1; 
 } 
 Return TmpMask[15:0]; 
} 

Function DeskMask() returns a mask value based on the destination channel select – 
part of the instruction word in Align16 mode. It returns a 0xFFFF mask value if the 
instruction is in Align1 mode. This function is used by function Evaluate(). 

 
Mask DestMask()  
{ 
 Mask TmpMask[15:0] = 0x0000; 
 If (Dest.ChannelSelect == TRUE) { 
  If (Dest.ChannelSelect[x] == TRUE) { 

TmpMask[0] = TmpMask[4] = 1; 
TmpMask[8] = TmpMask[12] = 1; 

} 
  If (Dest.ChannelSelect[y] == TRUE) { 

TmpMask[1] = TmpMask[5] = 1; 
TmpMask[9] = TmpMask[13] = 1; 

} 
  If (Dest.ChannelSelect[z] == TRUE) { 

TmpMask[2] = TmpMask[6] = 1; 
TmpMask[10] = TmpMask[14] = 1; 

} 
  If (Dest.ChannelSelect[w] == TRUE) { 

TmpMask[3] = TmpMask[7] = 1; 
TmpMask[11] = TmpMask[15] = 1; 

} 
 } else { 
  TmpMask[15:0] = 0xFFFF; 

} 
 Return TmpMask[15:0]; 
} 

14.2  Instruction Description 

The rest of the chapter contains the description of GEN4 instructions. 
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14.2.1 add – Addition 

 

Opcode Instruction Description 

64    
(0x40) 

add <dst> <src0> <src1> Component-wise addition of <src0> and <src1> and storing the 
results in <dst>. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

• • • • • • [FLT] 
[INT] 

[FLT] 
[INT] 

Format: 

[(<pred>)] add[.<cmod>] (<exec_size>) <dst> <src0> <src1> 

Syntax: 

[(<pred>)] add[.<cmod>] (<exec_size>) reg reg reg 
[(<pred>)] add[.<cmod>] (<exec_size>) reg reg imm32 

Pseudocode: 

Evaluate(WrEn); 
for (n = 0; n < exec_size; n++) { 
 if (WrEn.chan[n] == 1) { 
  dst.chan[n] = src0.chan[n] + src1.chan[n]; 
 } 
} 

Description: 

The add instruction performs component-wise addition of <src0> and <src1> and 
stores the results in <dst>.  

Addition of two floating point numbers follows rules in Table  14-1 (or Table  14-2), 
if the current floating point mode is IEEE mode (or ALT mode). 
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Table  14-1. Floating point addition of A (column) and B (row) in IEEE mode 

 –inf –finite –denorm –0 +0 +denorm +finite +inf NaN 
–inf –inf –inf –inf –inf –inf –inf –inf NaN NaN 
–finite –inf * A A A A ** +inf NaN 
–denorm –inf B –0 –0 +0 +0 B +inf NaN 
–0 –inf B –0 –0 +0 +0 B +inf NaN 
+0 –inf B +0 +0 +0 +0 B +inf NaN 
+denorm –inf B +0 +0 +0 +0 B +inf NaN 
+finite –inf ** A A A A *** +inf NaN 
+inf NaN +inf +inf +inf +inf +inf +inf +inf NaN 
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 

Notes:  
* Result can be { –finite} 

** Result can be {–finite, –0, +0, +finite} 
*** Result can be {  +finite} 

Table  14-2. Floating point addition of A (column) and B (row) in ALT mode 

 – fmax –finite –denorm –0 +0 +denorm +finite + fmax **** 
–fmax –fmax –fmax –fmax –fmax –fmax –fmax –finite +0  
–finite –fmax * A A A A ** +fmax  
–denorm –fmax B –0 –0 +0 +0 B +fmax  
–0 –fmax B –0 –0 +0 +0 B +fmax  
+0 –fmax B +0 +0 +0 +0 B +fmax  
+denorm –fmax B +0 +0 +0 +0 B +fmax  
+finite –finite ** A A A A *** +fmax  
+fmax +0 +fmax +fmax +fmax +fmax +fmax +fmax +fmax  
****          

Notes:  
* Result can be { –fmax, –finite} 

** Result can be {–finite, –0, +0, +finite} 
*** Result can be { +fmax, +finite} 

**** Result is undefined If any of A and/or is {–inf, +inf, NaN} 

Restrictions: 

Dword integer source is not allowed for this instruction in float execution mode. In 
other words, if one source is of type float (:f, :vf), the other source cannot be of 
type dword integer (:ud or :d). 
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14.2.2 and – Logical And 

 

Opcode Instruction Description 

5       
(0x05) 

and <dst> <src0> <src1> Performing component-wise logic AND of <src0> and <src1> and 
storing the results in <dst>. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

•  •  • • [INT] [INT] 

Format: 

[(<pred>)] and[.<cmod>] (<exec_size>) <dst> <src0> <src1> 

Syntax: 

[(<pred>)] and[.<cmod>] (<exec_size>) reg reg reg 
[(<pred>)] and[.<cmod>] (<exec_size>) reg reg imm32 

Pseudocode: 

Evaluate(WrEn); 
for (n = 0; n < exec_size; n++) { 
 if (WrEn.chan[n] == 1) { 
  dst.chan[n] = src0.chan[n] & src1.chan[n]; 
 } 
} 

Description: 

The and instruction performs component-wise logic AND operation between 
<src0> and <src1> and stores the results in <dst>.  Source modifiers are 
allowed. 

Accumulator register is allowed to be the destination of this instruction with the 
restrictions listed below. 

Restrictions: 

Sign (SN) and Overflow (OF) conditions are undefined for this logic instruction. 
Consequently, saturation modifier (.sat) is not allowed. 

This instruction only applies to integer data types. The behavior is undefined if any 
operand is float. 
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When accumulator is the destination of this instruction, only the low bits 
corresponding to the data type (16 bits for word or 32 bits for dword integer 
instruction) in the accumulator contain the correct results. The internal extra-
precision bits as well as the sign bit of the accumulator are undefined. 
Consequently, there are restrictions for subsequent instructions that use the data 
in the accumulator register created from the previous logical instruction.  

 Only logical and data move instructions are allowed to source the 
accumulator. Results of other instructions (e.g. arithmetic or shift) are 
undefined. 

 When the accumulator is the source of a data move (mov or sel) 
instruction, the destination operand must be of integer type (e.g. no 
conversion to float) and this instruction cannot have satuation instruction 
modifier. 
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14.2.3 asr – Arithmetic Shift Right 

 

Opcode Instruction Description 

12       
(0x0C) 

asr <dst> <src0> <src1> Performing component-wise arithmetic right shift of <src0> and 
storing the results in <dst>. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

•  • • • • [INT] [INT] 

Format: 

[(<pred>)] asr[.<cmod>] (<exec_size>) <dst> <src0> <src1> 

Syntax: 

[(<pred>)] asr[.<cmod>] (<exec_size>) reg reg reg 
[(<pred>)] asr[.<cmod>] (<exec_size>) reg reg imm32 

Pseudocode: 

Evaluate(WrEn); 
for (n = 0; n < exec_size; n++) { 
 if (WrEn.channel[n] == 1) { 
  if (src0.chan[n] >= 0) { 
   dst.chan[n] = src0.chan[n] >> src1.chan[n]; 
  } else { 
   int maskLSB = pow(2, src1.chan[n]) – 1; 
   if (maskLSB & src0.chan[n] == 0) { 
    dst.chan[n] = sign(src0.chan[n]) *  

((abs)src0.chan[n] >> 
src1.chan[n]); 

   } else { 
    dst.chan[n] = sign(src0.chan[n]) *  

((abs)src0.chan[n] >> 
src1.chan[n])–1; 

   } 
  } 
 } 
} 
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Description: 

The asr instruction performs component-wise arithmetic right shift of <src0> and 
storing the results in <dst>.  Arithmetic right shift performs sign-extension by 
repeating the MSB of each data channel of <src0>.  The amount of bit shift is 
provided by <src1>.  Only the 5 LSBs of each channel of <src1> are used as an 
unsigned integer value.  The rest of MSBs of <src1> data channels are ignored. 

Operands for this instruction can be signed or unsigned integers, but cannot be 
floating point type. 5-bit shifting applies to packed-dword mode and packed-word 
mode. For packed word mode, the accumulators have 33 bits per channel.  

This instruction is effectively a power-of-2 integer divide with truncate in 2’s 
complement form. Truncate in 2’s complement form is also known as downward 
rounding – closest integer that is smaller than or equal to the result. For example, 
regardless of the bit shift amount in <src1>, the result of arithmetic right-shift of 
-1 (<src0>) is always -1. 

Restrictions: 

This instruction does not work with float type operands. 

The results are not stored in the accumulator register and therefore this 
instruction cannot have accumulator as destination. 
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14.2.4 avg – Average 

 

Opcode Instruction Description 

66       
(0x42) 

avg <dst> <src0> <src1> Component-wise averaging of <src0> and <src1> and storing the 
results in <dst>. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

• • • • • • [INT] [INT] 

Format: 

[(<pred>)] avg[.<cmod>] (<exec_size>) <dst> <src0> <src1> 

Syntax: 

[(<pred>)] avg[.<cmod>] (<exec_size>) reg reg reg 
[(<pred>)] avg[.<cmod>] (<exec_size>) reg reg imm32 

Pseudocode: 

Evaluate(WrEn); 
for (n = 0; n < exec_size; n++) { 
 if (WrEn.chan[n] == 1) { 
  dst.chan[n] = (src0.chan[n] + src1.chan[n] + 1) >> 1; 
 } 
} 

Description: 

The avg instruction performs component-wise integer average of <src0> and 
<src1> and stores the results in <dst>.  An integer average uses integer upward 
rounding. It is equivalent to increment one to the addition of <src0> and <src1> 
and then apply an arithmetic right shift to this intermediate value. 

Restrictions: 

This instruction only applies to integer data types. The behavior is undefined if any 
operand is float. 
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14.2.5 break – Break  

 

Opcode Instruction Description 

40       
(0x28) 

Break <exitcode> Terminating enabled execution channels and conditionally 
breaking out from the inner most loop. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

  •      

Format: 

[(<pred>)] break (<exec_size>) <exitcode> 

Syntax: 

[(<pred>)] break (<exec_size>) imm32 

Pseudocode: 

Evaluate(EMask); 
LMask = LMask & !EMask; 
CMask = CMask & !Emask;    // *** (1)  
TempMask = LMask & AMask;    // *** (2) 
if (TempMask == 0) { 
  CMask = Lstack.TopOfStack; 
 LStack.pop(1); 
 LMask = Lstack.TopOfStack; 
 LStack.pop(1); 

if (<exitcode.ISPopCount> != 0) { 
   

IStack.pop(<exitcode.ISPopCount> - 1); 
  IMask = IStack.TopOfStack;  
  IStack.pop(1); 
 } 
 Jump(<exitcode.IPCount>); 
} 

Description: 

The break instruction is used to early-out from the inner most loop. When 
executed, the break instruction terminates the loop for all enabled execution 
channels. This is performed by clearing the associated bit positions in LMask. The 
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loop is complete when all bit positions of LMask are cleared. If the loop completes 
on a break instruction, the specified number of entries (If-nesting depth) is 
popped from the IStack, 2 levels of pop of the LStack, and a jump taken to the 
address specified in the <exitcode> field. These pops are intended to restore the 
mask-stacks and LMask/CMask/IMask to their values prior to entering the loop. 

The following table describes the 32-bit exit code <exitcode>.  The InstCount field 
of <exitcode> is a signed 16-bit number, added to IP pre-increment, and should 
point to the first instruction following loop block.  In GEN4 binary, <exitcode> is 
at location <src1> and must be of type D (signed doubleword integer). 

 
Bit Description 

31:20 Reserved: MBZ 

19:16 ISPopCount (If-Stack Pop Count) 

This field specifies the number of times to pop the IStack. 

Format = U4. Unsigned integer [0, 15] 

15:0 InstCount (Jump Instruction Count) 

This field specifies the jump distance in Instruction Count if a jump is 
taken for the instruction. 

Format = S15. Signed integer in 2’s complement 

This instruction executes regardless of the calculated EMask at the time of issue.  
It invokes a thread switch after issue to allow any masks and/or IP to be resolved 
if necessary.   

This instruction performs a mask-stack push/pop operation. Mask-stack push/pop 
operations are always done in 16-bit width regardless of execution size.  Nesting 
depths must be tracked to ensure that a mask-stack under/overflow does not 
occur, or that an appropriate mask-stack exception handler is in place. 

If SPF is set, this instruction does not update any mask stack. When the condition 
is true, this instruction restores LMask and CMask. If “ISPopCount” is not zero, it 
also restores IMask. 

If a jump is invoked by this instruction, IMask will be fully restored, same as 
LMask and CMask.  ISPopCount = 0 is a trivial case that IMask is not changed. 

Notes to the pseudo code: 

(1) CMask is updated by a break instruction to force it to always be a 1’s-subset of 
the LMask. This allows for the sharing of a mask-stack and the reliance on a fixed 
order of pushing LMask first and then CMask for embedded loops. If we did not 
update CMask, the order of pushing would be data dependent and would take 
significant code to do properly or we would not be able to share a stack. 

(2) It should not take CMask as the subset of channels disabled by CMask are 
temporally terminated but still in the do-while loop. 
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Restrictions: 

Instruction compression is not allowed. 

IP register must be put (for example, by the assembler) at <dst> and <src0> 
locations. 
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14.2.6 cmp – Compare 

 

Opcode Instruction Description 

16       
(0x10) 

cmp.<cmod> <dst> <src0> <src1> Component-wise comparison of <src0> and <src1> according 
to conditional modifier in <cmod> and storing the results in 
flag register in <cmod> and <dst>. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

•  •  • • [FLT] 
[INT] 

[FLT] 
[INT] 

Format: 

[(<pred>)] cmp[.<cmod>] (<exec_size>) <dst> <src0> <src1> 

Syntax: 

[(<pred>)] cmp[.<cmod>] (<exec_size>) reg reg reg 
[(<pred>)] cmp[.<cmod>] (<exec_size>) reg reg imm32 

Pseudocode: 

Evaluate(WrEn); 
for (n = 0; n < exec_size; n++) { 

bitMask[n] = 0; 
if (WrEn.chan[n] == 1) { 

results[n] = src0.chan[n] - src1.chan[n]; 
bitMask[n] = Condition(results[n]); 
dst.chan[n][0] = bitMask[n]; 

} 
} 
flag# = bitMask; 

Description: 

The cmp instruction performs component-wise comparison of <src0> and <src1> 
and stores the results in the selected flag register and in <dst>.  It takes 
component-wise subtraction of <src0> and <src1>, evaluating the conditional 
code (excluding NS signal) based on the conditional modifier, and storing the 
conditional bits in bit-packed form in the destination flag register and, optionally, 
in vector form in the LSB of the channels in <dst>. Conditional modifier field 
cannot be 0000b, i.e., it must be one of the defined conditional modifier codes. 
Destination operand can be a GRF, an MRF or a null register.  If it is not null, for 
the enabled channels, the LSB of the result in the destination channel contains the 
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flag value for the channel. The other bits are undefined. When the instruction 
operates on packed word format, one GRF register may store up to 16 such 
comparison results. In dword format, one GRF may store up to 8 results.  When 
the register is used later as a vector of Booleans, as only LSB at each channel 
contains meaning data, software should make sure all higher bits are masked out 
(e.g. by ‘and-ing’ an 0x01 constant).   

If <exec_size> is equal or less than 8, when ‘SecHalf’ option flag is not set, only 
the lower 8 bits of the selected flag register is updated; otherwise, the higher 8 
bits are updated. 

When at least one of the source operands is float, the cmp instruction obeys the 
floating point rules detailed in the tables in the Floating Point Mode section of Data 
Type chapter. 

Restrictions: 

Destination operand cannot be an ARF register, including accumulator. 

Saturation modifier cannot be set in this instruction. 

Dword integer source is not allowed for this instruction in float execution mode. In 
other words, if one source is of type float (:f, :vf), the other source cannot be of 
type dword integer (:ud or :d). 
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14.2.7 cmpn – Compare NaN 

 

Opcode Instruction Description 

17       
(0x11) 

cmpn.<cmod> <dst> <src0> <src1> Performing component-wise special NaN comparison of 
<src0> and <src1> according to conditional modifier in 
<cmod> and storing the results in flag register in <cmod> 
and <dst>. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

•  •  • • [FLT] 
[INT] 

[FLT] 
[INT] 

Format: 

[(<pred>)] cmpn[.<cmod>] (<exec_size>) <dst> <src0> <src1> 

Syntax: 

[(<pred>)] cmpn[.<cmod>] (<exec_size>) reg reg reg 
[(<pred>)] cmpn[.<cmod>] (<exec_size>) reg reg imm32 

Pseudocode: 

Evaluate(WrEn); 
for (n = 0; n < exec_size; n++) { 

bitMask[n] = 0; 
if (EMask.chan[n] == 1) { 

results[n] = src0.chan[n] - src1.chan[n]; 
bitMask[n] = ConditionNaN(results[n]); 
dst.chan[n][0] = bitMask[n]; 

} 
} 
flag# = bitMask; 

Description: 

The cmpn instruction performs component-wise special-NaN comparison of 
<src0> and <src1> and stores the results in the selected flag register and in 
<dst>.  It takes component-wise subtraction of <src0> and <src1>, evaluating 
the conditional signals including NS based on the conditional modifier, and storing 
the conditional flag bits in bit-packed form in the destination flag register and, 
optionally, in vector form in the LSB of the channels in <dst>. Conditional 
modifier field cannot be 0000b, i.e., it must be one of the defined conditional 
modifier codes. Destination operand can be a GRF, an MRF or a null register.  If it 
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is not null, for the enabled channels, the LSB of the result in the destination 
channel contains the flag value for the channel. The other bits are undefined. 
When the instruction operates on packed word format, one GRF register may store 
up to 16 such comparison results. In dword format, one GRF may store up to 8 
results.  When the register is used later as a vector of Booleans, as only LSB at 
each channel contains meaning data, software should make sure all higher bits 
are masked out (e.g. by ‘and-ing’ an 0x01 constant).   

If <exec_size> is equal or less than 8, when ‘SecHalf’ option flag is not set, only 
the lower 8 bits of the selected flag register is updated; otherwise, the higher 8 
bits are updated. 

When at least one of the source operands is float, the cmpn instruction obeys the 
floating point rules detailed in the tables in the Floating Point Mode section of Data 
Type chapter. 

This instruction is similar to cmp. The only difference is that if the second source 
operand <src1> is a NaN, the result for any conditional modifier except .nz is 
false.   

For integer operands, cmpn and cmp are identical. 

Restrictions: 

Destination operand cannot be an ARF register, including accumulator. 

Saturation modifier cannot be set in this instruction. 

Dword integer source is not allowed for this instruction in float execution mode. In 
other words, if one source is of type float (:f, :vf), the other source cannot be of 
type dword integer (:ud or :d). 
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14.2.8 cont – Continue 

 

Opcode Instruction Description 

41       
(0x29) 

cont <exitcode> Temporally disabling enabled execution channels for the 
remainder of the inner most loop and conditionally jumping to 
the last instruction (while) of the loop. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

  •      

Format: 

[(<pred>)] cont (<exec_size>) <exitcode> 

Syntax: 

[(<pred>)] cont (<exec_size>) imm32 

Pseudocode: 

Evaluate(EMask); 
CMask = CMask & !EMask; 
TempMask = CMask & AMask;    // *** (1) 
if (TempMask == 0) { 
 if (<exitcode.ISPopCount> != 0) { 
    IStack.pop(<exitcode.ISPopCount> - 1);  
  IMask = IStack.TopOfStack;    
  IStack.pop(1); 
 } 
 Jump(<exitcode.IPCount>); 
} 

Description: 

The cont instruction disables execution for the subset of channels for the 
remainder of the current loop iteration. Channels remain disabled until explicitly 
re-enabled by the thread through writing to the CMask register.  If CMask = 0 
after evaluating this instruction, a jump is made a distance of <InstCount> where 
execution continues.  It is expected that this is the location of the associated 
‘while’.  For proper loop operation, CMask must be re-initialized to EMask on each 
loop pass. 

The following table describes the 32-bit exit code <exitcode>.  The InstCount field 
of <exitcode> is a signed 16-bit number, added to IP pre-increment, and should 



 
 

 
 

430     

point to the loop’s associated ‘while’ instruction.  In GEN4 binary, <exitcode> is at 
location <src1> and must be of type D (signed doubleword integer). 

 
Bit Description 

31:20 Reserved: MBZ 

19:16 ISPopCount (If-Stack Pop Count) 

This field specifies the number of times to pop the IStack. 

Format = U4. Unsigned integer [0, 15] 

15:0 InstCount (Jump Instruction Count) 

This field specifies the jump distance in Instruction Count if a jump is taken 
for the instruction. 

Format = S15. Signed integer in 2’s complement 

 

This instruction executes regardless of the calculated EMask at the time of issue.  
It invokes a thread switch after issue to allow any masks and/or IP to be resolved 
if necessary.   

This instruction performs a mask-stack push/pop operation. Mask-stack push/pop 
operations are always done in 16-bit width regardless of execution size.  Nesting 
depths must be tracked to ensure that a mask-stack under/overflow does not 
occur, or that an appropriate mask-stack exception handler is in place. 

If SPF is set, this instruction does not update any mask stack. When the condition 
is true and “ISPopCount” is not zero, this instruction restores IMask. 

If a jump is invoked by this instruction, IMask will be fully restored, same as 
LMask and CMask.  ISPopCount = 0 is a trivial case that IMask is not changed. 

Upon completion of this instruction, B/LMask will only be valid if popping 1 level. If 
more than one level needs to be popped from any mask-stack, n-1 levels should 
be popped at the instruction and the final level popped by an explicit pop 
instruction.  

Note that the ‘break’ instruction also updates CMask. This allows CMask and LMask 
to share the same mask-stack. 

Restrictions: 

Instruction compression is not allowed. 

IP register must be put (for example, by the assembler) at <dst> and <src0> 
locations. 
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14.2.9 do – Do 
 

Opcode Instruction Description 

38       
(0x26) 

do Updating mask and mask stack to enter a do-while loop. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

        

Format: 

do 

Syntax: 
do 

Pseudocode: 
Evaluate(EMask); 
LStack.push(LMask); 
LStack.push(CMask); 
LMask = EMask; 
CMask = EMask; 

Description: 

The do instruction indicates the start of a do-while block. Each do must have a 
matching while instruction. Execution of the do instruction causes the LMask and 
CMask (in that order) to be saved to the LStack for preservation and eventual 
restoration upon completion of the do-while block. 

This instruction is equivalent to two msave instructions (in the order of “msave 
lstack lmask” and “msave lstack cmask”). It is an efficient construct for a do-while 
block.  

This instruction performs a mask-stack push/pop operation.  Mask-stack push/pop 
operations are always done in 16-bit width regardless of execution size.  Nesting 
depths must be tracked to ensure that a mask-stack under/overflow does not 
occur, or that an appropriate mask-stack exception handler is in place. 

SPF effectively turns this instruction into a nop, as LMask and CMask should be 
coherent with EMask. It may be used as instruction filler for code readability 
keeping in mind that a nop wastes an instruction cycle. 

Restrictions: 

Predication is not allowed.  Instruction compression does not apply to this 
instruction.  

Execution size is ignored for this instruction. 
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14.2.10 dp2 – Dot Product 2 

 

Opcode Instruction Description 

87       
(0x57) 

Dp2 <dst> <src0> <src1> Performing two-wide dot product in four-tuples of <src0> and 
<src1> and storing the replicated results in four-tuples in <dst>. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

• • • • • • [FLT]  [FLT] 
[INT] 

Format: 

[(<pred>)] dp2[.<cmod>] (<exec_size>) <dst> <src0> <src1> 

Syntax: 

[(<pred>)] dp2[.<cmod>] (<exec_size>) reg reg reg 
[(<pred>)] dp2[.<cmod>] (<exec_size>) reg reg imm32 

Pseudocode: 

Evaluate(WrEn); 
for (n = 0; n < exec_size; n+=4) { 
 fTmp = src0.chan[n] * src1.chan[n]  

+ src0.chan[n+1] * src1.chan[n+1]; 
if (WrEn.chan[n] == 1) dst.chan[n] = fTmp; 
if (WrEn.chan[n+1] == 1) dst.chan[n+1] = fTmp; 
if (WrEn.chan[n+2] == 1) dst.chan[n+2] = fTmp; 
if (WrEn.chan[n+3] == 1) dst.chan[n+3] = fTmp; 

} 

Description: 

The dp2 instruction performs a two-wide dot-product on four-tuple vector basis 
and storing the same scalar result per four-tuple to all four channels in <dst>.  
This instruction is similar to dp4 except that every third and fourth elements of 
<src0> (post-source-swizzle if present) are not involved in the computation. 

Special care has been taken in the hardware such that if the resulting value for a 
given group of four channels is 0.0f, the sign of the result correctly reflects the 
input data of the first two channels of the group of four. 
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Restrictions: 

Source operands cannot be an accumulator register. 

Execution size cannot be less than 4. 

This instruction does not support integer operation. Furthermore, both source 
operands must be float. Destination can be float or integer. 

Horizontal stride must be 1. 

The results are NOT stored in the accumulator register. This instruction does 
implicitely update accumulator register, however with undefined values. 
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14.2.11 dp3 – Dot Product 3 

 

Opcode Instruction Description 

86       
(0x56) 

dp3 <dst> <src0> <src1> Performing three-wide dot product in four-tuples of <src0> and 
<src1> and storing the replicated results in four-tuples in <dst>. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

• • • • • • [FLT]  [FLT] 
[INT] 

Format: 

[(<pred>)] dp3[.<cmod>] (<exec_size>) <dst> <src0> <src1> 

Syntax: 

[(<pred>)] dp3[.<cmod>] (<exec_size>) reg reg reg 
[(<pred>)] dp3[.<cmod>] (<exec_size>) reg reg imm32 

Pseudocode: 

Evaluate(WrEn); 
for (n = 0; n < exec_size; n+=4) { 
 fTmp = src0.chan[n] * src1.chan[n]  

+ src0.chan[n+1] * src1.chan[n+1]  
+ src0.chan[n+2] * src1.chan[n+2];  

if (WrEn.chan[n] == 1) dst.chan[n] = fTmp; 
if (WrEn.chan[n+1] == 1) dst.chan[n+1] = fTmp; 
if (WrEn.chan[n+2] == 1) dst.chan[n+2] = fTmp; 
if (WrEn.chan[n+3] == 1) dst.chan[n+3] = fTmp; 

} 

Description: 

The dp3 instruction performs a three-wide dot-product on four-tuple vector basis 
and storing the same scalar result per four-tuple to all four channels in <dst>.  
This instruction is similar to dp4 except that every fourth element of <src0> 
(post-source-swizzle if present) is not involved in the computation. 

Special care has been taken in the hardware such that if the resulting value for a 
given group of 4 channels is 0.0f, the sign of the result correctly reflects the input 
data of the first three channels of the group of four. 
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Restrictions: 

Source operands cannot be an accumulator register. 

Execution size cannot be less than 4. 

This instruction does not support integer operation. Furthermore, both source 
operands must be float. Destination can be float or integer. 

Horizontal stride must be 1. 

The results are NOT stored in the accumulator register. This instruction does 
implicitely update accumulator register, however with undefined values. 
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14.2.12 dp4 – Dot Product 4 

 

Opcode Instruction Description 

84       
(0x54) 

dp4 <dst> <src0> <src1> Performing four-wide dot product of <src0> and <src1> and 
storing the four-wide replicated results in <dst>. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

• • • • • • [FLT]  [FLT] 
[INT] 

Format: 

[(<pred>)] dp4[.<cmod>] (<exec_size>) <dst> <src0> <src1> 

Syntax: 

[(<pred>)] dp4[.<cmod>] (<exec_size>) reg reg reg 
[(<pred>)] dp4[.<cmod>] (<exec_size>) reg reg imm32 

Pseudocode: 

Evaluate(WrEn); 
for (n = 0; n < exec_size; n+=4) { 
 fTmp = src0.chan[n] * src1.chan[n]  

+ src0.chan[n+1] * src1.chan[n+1]  
+ src0.chan[n+2] * src1.chan[n+2]  
+ src0.chan[n+3] * src1.chan[n+3]; 

if (WrEn.chan[n] == 1) dst.chan[n] = fTmp; 
if (WrEn.chan[n+1] == 1) dst.chan[n+1] = fTmp; 
if (WrEn.chan[n+2] == 1) dst.chan[n+2] = fTmp; 
if (WrEn.chan[n+3] == 1) dst.chan[n+3] = fTmp; 

} 

Description: 

The dp4 instruction performs a four-wide dot-product on four-tuple vector basis 
and storing the same scalar result per four-tuple to all four channels in <dst>. 
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Restrictions: 

Source operands cannot be an accumulator register. 

Execution size cannot be less than 4. 

This instruction does not support integer operation. Furthermore, both source 
operands must be float. Destination can be float or integer. 

Horizontal stride must be 1. 

The results are NOT stored in the accumulator register. This instruction does 
implicitely update accumulator register, however with undefined values. 
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14.2.13 dph –Dot Product Homogeneous 

 

Opcode Instruction Description 

85       
(0x55) 

dph <dst> <src0> <src1> Performing four-wide homogeneous dot product of <src0> and 
<src1> and storing the four-wide replicated results in <dst>. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

• • • • • • [FLT]  [FLT] 
[INT] 

Format: 

[(<pred>)] dph[.<cmod>] (<exec_size>) <dst> <src0> <src1> 

Syntax: 

[(<pred>)] dph[.<cmod>] (<exec_size>) reg reg reg 
[(<pred>)] dph[.<cmod>] (<exec_size>) reg reg imm32 

Pseudocode: 

Evaluate(WrEn); 
for (n = 0; n < exec_size; n+=4) { 
 fTmp = src0.chan[n] * src1.chan[n]  

+ src0.chan[n+1] * src1.chan[n+1]  
+ src0.chan[n+2] * src1.chan[n+2]  
+ src1.chan[n+3]; 

if (WrEn.chan[n] == 1) dst.chan[n] = fTmp; 
if (WrEn.chan[n+1] == 1) dst.chan[n+1] = fTmp; 
if (WrEn.chan[n+2] == 1) dst.chan[n+2] = fTmp; 
if (WrEn.chan[n+3] == 1) dst.chan[n+3] = fTmp; 

} 

Description: 

The dph instruction performs a four-wide homogeneous dot-product on four-tuple 
vector basis and storing the same scalar result per four-tuple to all four channels 
in <dst>. This instruction is similar to dp4 except that every fourth element of 
<src0> (post-source-swizzle if present) is forced to 1.0f. 
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Restrictions: 

Source operands cannot be an accumulator register. 

Execution size cannot be less than 4. 

This instruction does not support integer operation. Furthermore, both source 
operands must be float. Destination can be float or integer. 

Horizontal stride must be 1. 

The results are NOT stored in the accumulator register. This instruction does 
implicitely update accumulator register, however with undefined values. 
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14.2.14 else – Else 

 

Opcode Instruction Description 

36       
(0x24) 

else <exitcode> An optional statement within an if/else/endif block of code. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

        

Format: 

else (<exec_size>) <exitcode> 

Syntax: 

else (<exec_size>) imm32 

Pseudocode: 

Evaluate(EMask); 
IMask = !IMask & IStack.TopOfStack; 
Evaluate(EMask);    // *** (1) 
if (EMask == 0) { 

IMask = IStack.TopOfStack; 
 IStack.pop(ISPopCount); 
 Jump(<exitcode.IPCount>); 
} 

Description: 

The else instruction is an optional statement within an if/else/endif block of 
code. It restricts execution within the else/endif portion to the opposite set of 
channels enabled under the if/else portion. Channels which were inactive prior to 
entering the if/endif block remain inactive throughout the entire block. 

The IMask, which maintains the bit-mask of enabled channels inside the 
conditional block, is updated to reflect the new subset of active channels within 
the else/endif portion. If all channels are inactive (IMask = 000…), a relative 
jump is performed to the location specified in <exitcode.IPCount>. The jump 
target should be the instruction immediately following the matching endif 
instruction for that conditional block. 

The following table describes the 32-bit exit code <exitcode>.  In GEN4 binary, 
<exitcode> is at location <src1> and must be of type D (signed doubleword 
integer). <exitcode> must be an immediate operand, whereas IPCount is a signed 
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16-bit number and is intended to be forward referencing. This value is added to IP 
pre-increment. The ISPopCount field must be 1 as only one pop is performed if a 
jump occurs and hardware uses this field to pop the IStack. Hardware behavior is 
undefined if any other values are used in this field. 

 
Bit Description 

31:20 Reserved: MBZ 

19:16 ISPopCount (If-Stack Pop Count) 

This field specifies the number of times to pop the IStack.  

Format = U4. Must be set to 1. 

15:0 InstCount (Jump Instruction Count) 

This field specifies the jump distance in Instruction Count if a jump is taken 
for the instruction. 

Format = S15. Signed integer in 2’s complement 

This instruction executes regardless of the calculated EMask at the time of issue.  
It invokes a thread switch after issue to allow any masks and/or IP to be resolved 
if necessary. 

This instruction performs a mask-stack push/pop operation. Mask-stack push/pop 
operations are always done in 16-bit widths regardless of execution size.  Nesting 
depths must be tracked to ensure that a mask-stack under/overflow does not 
occur, or that an appropriate mask-stack exception handler is in place. 

If SPF is set, this instruction does not update mask stack. SPF can be used for the 
case when a scalar condition is evaluated.  

Each else instruction must be preceded with a matching if instruction and 
followed by a matching endif instruction. 

Pseudocode notes: 

(1) Uses the updated IMask calculated during instruction execution, not the IMask 
prior to instruction dispatch. 

(2) The EMask calculation already has <exec_size> incorportated; therefore the 
full 16-bit EMask value can be used in the comparison. 

Restrictions: 

Instruction compression is not allowed. 

Predication is not allowed. 

IP register must be put (for example, by the assembler) at <dst> and <src0> 
locations. 
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14.2.15  endif – End-If  

 

Opcode Instruction Description 

37       
(0x24) 

endif <exitcode> Restoring execution to those data channels that were active prior 
to the if/else/endif block. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

        

Format: 

endif <exitcode> 

Syntax: 

endif imm32 

Pseudocode: 

IMask = IStack.TopOfStack; 
IStack.pop(ISPopCount); 

Description: 

The endif instruction terminates an if/else/endif block of code. It restores the 
execution to these data channels that were active prior to the if/else/endif block 
by popping the IMask once. IMask is updated to reflect the popped value from the 
IStack. 

The following table describes the 32-bit exit code <exitcode>.  In GEN4 binary, 
<exitcode> is at location <src1> and must be of type D (signed doubleword 
integer).  <exitcode> must be an immediate operand, whereas ISPopCount field 
must be 1 as only one pop is performed if a jump occurs and hardware uses this 
field to pop the IStack. 

Software must put a 1 in unsigned integer format in this field as this instruction 
only pop the IStack once. Hardware behavior is undefined if any other values are 
used in this field. 

<exitcode> must be an immediate operand, whereas ISPopCount field must be 1 
as only one pop is performed if a jump occurs and hardware uses this field to pop 
the IStack. 



 
 
 
 

    443 

 
Bit Description 

31:20 Reserved: MBZ 

19:16 ISPopCount (If-Stack Pop Count). This field specifies the number of 
times to pop the IStack.  

Format = U4. Must be set to 1. 

15:0 Reserved: MBZ 

 

This instruction updates IMask, therefore, a thread switch is always invoked after 
the issuance of an ‘endif’ instruction. 

If SPF is set, this instruction restores IMask from IStack’s Top-Of-Stack, which is 
supposed to be static for code with single program flow. 

Execution size is ignored for this instruction. 

Restrictions: 

Instruction compression does not apply to this instruction. 

Predication is not allowed. 
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14.2.16 frc – Fraction 

 

Opcode Instruction Description 

67    
(0x43) 

frc <dst> <src0> Taking component-wise truncate-to-minus-infinity fraction 
operation of <src0> and storing the results in <dst>. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

• • •  • • [FLT] [FLT] 
[INT] 

Format: 

[(<pred>)] frc[.<cmod>] (<exec_size>) <dst> <src0> 

Syntax: 

[(<pred>)] frc[.<cmod>] (<exec_size>) reg reg 
[(<pred>)] frc[.<cmod>] (<exec_size>) reg imm32 

Pseudocode: 

Evaluate(WrEn); 
for (n = 0; n < exec_size; n++) { 
 if (WrEn.chan[n] == 1) { 
  dst.chan[n] = src0.chan[n] – floor(src0.chan[n]); 
 } 
} 

Description: 

The frc instruction computes, component-wise, the truncate-to-minus-infinity 
fractional values of <src0> and stores the results in <dst>. The results, in the 
range of [0.0, 1.0], are the fractional portion of the source data. 

Source operand for this instruction must be of floating point type.  This instruction 
can only operate on normalized floating source and therefore cannot take 
accumulator as source or destination operand. 

This instruction only applies to floating point operands.  

Floating point fraction computation follows rules in Table  14-3 (or Table  14-4), if 
the current floating point mode is IEEE mode (or ALT mode). 
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Table  14-3. Floating point fraction computation in IEEE mode 

<src0> –inf –finite –denorm –0 +0 +denorm +finite +inf NaN 
<dst> NaN * +0 +0 +0 +0 * NaN NaN 

Notes:  
* Result is in the range of [+0, 1) – not including 1. 

Table  14-4. Floating point fraction computation in ALT mode 

<src0> – fmax –finite –denorm –0 +0 +denorm +finite + fmax ** 
<dst> +0 * +0 +0 +0 +0 * +0  

Notes:  
* Result is in the range of [+0, 1) – not including 1. 

** Result is undefined if <src0> is {–inf, +inf, NaN}. 

 

Restrictions: 

Saturation modifier does not apply to this instruction. 

This instruction cannot take accumulator as source or destination operand as it 
can only operate on normalized floating source. 

This instruction does implicitely update accumulator register when enabled, 
however with undefined values. 
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14.2.17 halt – Halt  

 

Opcode Instruction Description 

42       
(0x2A) 

halt <exitcode> Temporarily suspending execution for all enabled execution 
channels. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

  •      

Format: 

[(<pred>)] halt (<exec_size>) <exitcode> 

Syntax: 

[(<pred>)] halt (<exec_size>) imm32 

Pseudocode: 

Evaluate(EMask); 
AMask = AMask & !EMask; 
if (AMask == 0) { 
 Jump(<exitcode.IPCount>); 
} 

Description: 

The halt instruction temporarily suspends execution for all enabled compute 
channels. The value of AMask is updated, with bits in positions of enabled 
channels set to ‘0’. If all the bits of the resultant AMask are cleared, a jump is 
made <inst_count> instructions away. 

The halt instruction is also used inside subroutines as a ‘return’, utilizing AMask to 
keep track of which execution channels have returned and which to continue 
execution. Since there is no hardware mask stack for AMask, software must 
manually preserve the value of AMask around a subroutine call.  

The following table describes the 32-bit exit code <exitcode>.  In GEN4 binary, 
<exitcode> is at location <src1> and must be of type D (signed doubleword 
integer).  The InstCount field of <exitcode> is a signed 16-bit number, added to 
IP pre-increment, and should typically point to code which restores AMask. 
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Bit Description 

31:16 Reserved: MBZ 

15:0 InstCount (Jump Instruction Count) 

This field specifies the jump distance in Instruction Count if a jump is taken 
for the instruction. 

Format = S15. Signed integer in 2’s complement 

 

This instruction executes regardless of the calculated EMask at the time of issue.  
This instruction invokes a thread switch after issue to allow any masks and/or IP 
to be resolved if necessary. 

The jump target used in the halt instruction typically crosses loops or ‘if’s, leaving 
the associated mask-stacks stale. It is the responsibility of program to manually 
restore these stacks to their values at the nesting level of the jump target.  

Restrictions: 

Instruction compression is not allowed. 

IP register must be put (for example, by the assembler) at <dst> and <src0> 
locations. 

As DMask is not automatically reloaded into AMask upon completion of this 
instruction, software has to manually restore AMask upon completion. 
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14.2.18 if – If 

 

Opcode Instruction Description 

34       
(0x22) 

if <exitcode> Signifying the start of an if/else/endif block of code. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

  •      

Format: 

[(<pred>)] if (<exec_size>) <exitcode> 

Syntax: 

[(<pred>)] if (<exec_size>) imm32 

Pseudocode: 

Evaluate(EMask); 
IStack.push(IMask); 
IMask = EMask; 
if (EMask == 0) {  

Jump(<exitcode.IPCount>); 
} 

Description: 

The if instruction starts an if/endif or an if/else/endif block of code. It restricts 
execution within the conditional block to only those channels that were enabled 
via EMask calculation in this instruction.  

Each if instruction must have a matching endif instruction and may have up to one 
matching else instruction before endif. 

The if instruction causes the value of the IMask prior to the if instruction to be 
saved to the IStack for retrieval at the conclusion of the conditional block.  The if 
instruction evaluates the EMask. If all channels are inactive (for the if/endif or 
if/else block), a jump is performed of the relative distance as specified in the 
instruction. This jump must be to the matching else instruction when present, or 
otherwise to the matching endif instruction of that conditional block.  

The following table describes the 32-bit exit code <exitcode>.  <exitcode> must 
be an immediate operand, whereas IPCount is a signed 16-bit number. When a 
jump occurs, this value is added to IP pre-increment.  In GEN4 instruction binary, 



 
 
 
 

    449 

<exitcode> is at location <src1> and must be of type D (signed doubleword 
integer).  IP register must be put (for example, by the assembler) at both <dst> 
and <src0> locations. 

 
Bit Description 

31:16 Reserved: MBZ 

15:0 IPCount (Jump Instruction Count). This field specifies the jump 
distance in number of instructions if a jump is taken for the instruction. 

Format = S15. Signed integer in 2’s complement 

 

This instruction executes regardless of the calculated EMask at the time of issue.  
This instruction invokes a thread switch after issue to allow any masks and/or IP 
to be resolved if necessary. 

This instruction performs a mask-stack push/pop operation. Mask-stack push/pop 
operations are always done in 16-bit widths regardless of execution size.  Nesting 
depths must be tracked to ensure that a mask-stack under/overflow does not 
occur, or that an appropriate mask-stack exception handler is in place. 

If SPF is set, this instruction does not update mask stack. SPF can be used for the 
case when a scalar condition is evaluated.  

Restrictions: 

Instruction compression is not allowed. 
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14.2.19 iff – Fast-If  

 

Opcode Instruction Description 

35       
(0x23) 

iff <exitcode> Signifying the start of a fast if/endif block of code. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

  •      

Format: 

[(<pred>)] iff (<exec_size>) <exitcode> 

Syntax: 

[(<pred>)] iff (<exec_size>) imm32 

Pseudocode: 

Evaluate(EMask); 
if (EMask != 0) {  

IStack.push(IMask); 
IMask = EMask; 

} else { 
Jump(<exitcode.IPCount>); 

} 

Description: 

The iff instruction starts a high-performance (fast-if) if/endif block of code. It 
restricts execution within the conditional block to only those channels that were 
enabled via EMask calculation by this instruction.  

Each iff instruction must have a matching endif instruction, but must NOT have a 
matching else instruction. 

This fast-if has only one execution cycle of overhead comparing 2-3 for the 
general purpose if instruction. Unlike the if instruction, this instruction only pushes 
the IMask when at least one execution channels is active (i.e. EMask != 0) and 
thus requires processing within the if-endif block. When all execution channels are 
inactive (i.e. EMask = 0), the mask stack push is not performed, and execution 
continues at a relative distance specified by the <exitcode.IPCount> field. In this 
case, since the mask stack push was not performed, the mask stack pop 
associated with an endif must not be executed. Thus it is intended that the 
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instruction pointed to by <exitcode.IPCount> is one instruction beyond the block’s 
endif instruction. 

The following table describes the 32-bit exit code <exitcode>.  <exitcode> must 
be an immediate operand, whereas IPCount is a signed 16-bit number. When a 
jump occurs, this value is added to IP pre-increment.  In GEN4 instruction binary, 
<exitcode> is at location <src1> and must be of type D (signed doubleword 
integer).  IP register must be put (for example, by the assembler) at both <dst> 
and <src0> locations. 

 
Bit Description 

31:16 Reserved: MBZ 

15:0 IPCount (Jump Instruction Count). This field specifies the jump 
distance in number of instructions if a jump is taken for the instruction. 

Format = S15. Signed integer in 2’s complement 

 

This instruction executes regardless of the calculated EMask at the time of issue.  
This instruction invokes a thread switch after issue to allow any masks and/or IP 
to be resolved if necessary. 

This instruction may perform a mask-stack push/pop operation. If it is performed, 
mask-stack push/pop operations are always done in 16-bit widths regardless of 
execution size.  Nesting depths must be tracked to ensure that a mask-stack 
under/overflow does not occur, or that an appropriate mask-stack exception 
handler is in place. 

If SPF is set, this instruction does not update mask stack. SPF can be used for the 
case when a scalar condition is evaluated.  

Restrictions: 

Instruction compression is not allowed. 

Each iff must have one matching endif, but cannot have a matching else 
instruction. 
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14.2.20 jmpi – Jump Indexed 

 

Opcode Instruction Description 

32      
(0x20) 

jmpi <index> Redirecting program execution to <index> instructions forward of 
the current post-incremented instruction pointer. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

  •      

Format: 

[(<pred>)] jmpi (1) <exitcode> {NoMask} 

Syntax: 

[(<pred>)] jmpi (1) reg32 {NoMask} 
[(<pred>)] jmpi (1) imm32 {NoMask} 

Pseudocode: 

Evaluate(WrEn); 
if (WrEn != 0) {  
 Jump(<exitcode.index> + 1); 
} 

Description: 

The jmpi instruction redirects program execution to <exitcode.index> instructions 
forward of the current post-incremented instruction pointer. <exitcode.index> is 
treated a signed integer value, with positive integers or zero generating forward 
jumps, and negative integers generating backward jumps. An <exitcode.index> 
value of 0 means execution continues at the instruction immediately following the 
jmpi instruction, while an index value of -1 would imply an infinite loop. 

 
Bit Description 

31:16 Reserved: MBZ 

15:0 index (Jump Index) 

This field specifies the jump distance in number of instructions if a jump is 
taken for the instruction. 

Format = S15. Signed integer in 2’s complement 
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<exitcode> may be a scalar register or an immediate. The data type of 
<exitcode> must be D (signed doubleword integer). However, hardware only uses 
lower 16 bits of <exitcode>. The valid range of <exitcode.index> is [–32768, 
32767]. Behavior for <exitcode.index> outside that range is undefined. 

This instruction executes regardless of the calculated WrEn at the time of issue. – 
To reduce hardware complexity, instruction optional control {NoMask} must be 
set for this instruction.  This instruction invokes a thread switch after issue to 
allow any masks and/or IP to be resolved if necessary. 

Execution size must be 1. 

Predication is allowed to provide conditional jump with a scalar condition. As the 
execution size is 1, the first channel of PMASK (flags post prediction control and 
negate) is used to determine whether the jump is taken or not. If the condition is 
false, the jump is not taken and the IP immediately following will be executed 
next. 

In GEN4 binary, <exitcode.index> is at location <src1>.  IP register must be put 
(for example, by the assembler) at <dst> and <src0> locations. 

Restrictions: 

Instruction compression is not allowed. 
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14.2.21 line – Line 

 

Opcode Instruction Description 

89       
(0x59) 

Line <dst> <src0> <src1> Computing a component-wise line equation (v = p*u+q) of 
<src0> and <src1> and storing the results in <dst>. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

• • • • • • [FLT] 
[INT] 

[FLT] 
[INT] 

Format: 

[(<pred>)] line[.<cmod>] (<exec_size>) <dst> <src0> <src1> 

Syntax: 

[(<pred>)] line[.<cmod>] (<exec_size>) reg reg reg 
[(<pred>)] line[.<cmod>] (<exec_size>) reg reg imm32 

Pseudocode: 

Evaluate(WrEn); 
for (n = 0; n < exec_size; n++) { 
for (n = 0; n < exec_size; n++) { 
 dwP = src0.RegNum.SubRegNum[bits4:2] // a DW aligned 
scalar 
 dwQ = src0.RegNum.(SubRegNum[bit4]|0x8) // 4-th 
component 
 if (WrEn.chan[n] == 1) { 
  dst.chan[n] = dwP * src1.chan[n] + dwQ 
 } 
} 

Description: 

The line instruction computes a component-wise line equation (v = p*u+q where 
u/v are vectors and p/q are scalars) of <src0> and <src1> and storing the results 
in <dst>.  <src1> is the input vector u.  <src0> provides input scalars p and q, 
where p is the scalar value based on the region description of <src0> and q is the 
scalar value implied from <src0> region. Specifically, q is the fourth component of 
the 4-tuple (128-bit aligned) that p belongs to. 
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Restrictions: 

This is a specialized instruction that only support execution size of 8 or 16. 

<src0> region must be a replicated scalar (with HorzStride = VertStride = 0). 

Dword integer source is not allowed for this instruction in float execution mode. In 
other words, if one source is of type float (:f, :vf), the other source cannot be of 
type dword integer (:ud or :d).  

In particular, <src0> must be float. <src1> may be float, byte or word integer. 
<src1> cannot be dword integer. <dst> may be float or integer of any size. 

Source operands cannot be an accumulator register. 

<src0> for line instruction has to have .0 or .4 as the subregister number. 
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14.2.22 lzd – Leading Zero Detection 

 

Opcode Instruction Description 

74       
(0x4A) 

lzd <dst> <src0> Performing component-wise leading zero detection of <src0> 
and storing the results in <dst>. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

• • • • •  [INT] [INT] 

Format: 

[(<pred>)] lzd[.<cmod>] (<exec_size>) <dst> <src0> 

Syntax: 

[(<pred>)] lzd[.<cmod>] (<exec_size>) reg reg 
[(<pred>)] lzd[.<cmod>] (<exec_size>) reg reg 

Pseudocode: 

Evaluate(WrEn); 
for (n = 0; n < exec_size; n++) { 
 if (WrEn.chan[n] == 1) { 
  UD udScalar = src0.chan[n]; 
  UD cnt = 0; 
  while ( (udScalar & (1<<31)) == 0 && cnt != 32) { 
   cnt ++; 
   udScalar = udScalar << 1; 

} 
  dst.chan[n] = cnt; 
 } 
} 

Description: 

The lzd instruction counts component-wise the leading zeros from <src0> and 
storing the resulting counts in <dst>. 

This instruction only work on unsigned dword source. Source operand may be a 
signed or unsigned. If it is a signed integer, source modifier (abs) must be used to 
convert the source into an unsigned integer type. 

The destination operand must also be of unsigned dword type. 
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Restrictions: 

The destination operand cannot be the accumulator. 

This instruction does implicitely update accumulator register when enabled, 
however with undefined values. 
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14.2.23 mac – Multiply Accumulate 

 

Opcode Instruction Description 

72       
(0x48) 

mac <dst> <src0> <src1> Performing component-wise multiply accumulate of <src0> and 
<src1> and storing the results in <dst>. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

• • • • • • [FLT] 
[INT] 

[FLT] 
[INT] 

Format: 

[(<pred>)] mac[.<cmod>] (<exec_size>) <dst> <src0> <src1> 

Syntax: 

[(<pred>)] mac[.<cmod>] (<exec_size>) reg reg reg 
[(<pred>)] mac[.<cmod>] (<exec_size>) reg reg imm32 

Pseudocode: 

Evaluate(WrEn); 
for (n = 0; n < exec_size; n++) { 
 if (WrEn.chan[n] == 1) { 
  dst.chan[n] = src0.chan[n] * src1.chan[n] + 
acc0.chan[n] 
 } 
} 

Description: 

The mac instruction takes component-wise multiplication of <src0> and <src1>, 
adds the results with the corresponding accumulator values, and then stores the 
final results in <dst>. 

Restrictions: 

Accumulator is an implied source to the addition portion of the computation. 
Explicit source operands cannot be accumulator.   

This instruction doesn’t support dword integers (D or UD). 
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14.2.24 mach – Multiply Accumulate High 

 

Opcode Instruction Description 

73       
(0x49) 

mach <dst> <src0> <src1> Performing component-wise multiply accumulation of <src0>, 
<src1> and accumulator register, and returning the high dword 
of results in <dst>. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

• • •  • • [INT] [INT] 

Format: 

[(<pred>)] mach[.<cmod>] (<exec_size>) <dst> <src0> <src1> 

Syntax: 

[(<pred>)] mach[.<cmod>] (<exec_size>) reg reg reg 
[(<pred>)] mach[.<cmod>] (<exec_size>) reg reg imm32 

Pseudocode: 

Evaluate(WrEn); 
for (n = 0; n < exec_size; n++) { 

acc0.chan[n][63:0]  
= (src0.chan[n][31:16] * 

src1.chan[n][31:0])<<16  
+ acc0.chan[n][63:0]; 

if (WrEn.channel[n] == 1) { 
dst.channel[n][31:0] = acc0.chan[n][63:32] 

} 
} 

Description: 

The mach instruction performs dword integer multiply-accumulate operation and 
outputs the high dword (bits [63:32]). On a component by component basis, this 
instruction multiplies dwords in <src1> with the high words of dwords in <src0>, 
left-shifts the results by 16 bits, adds them with the corresponding accumulator 
values, and keeps the whole 64-bit results in the accumulator. It then stores the 
high dword (bits [63:32]) of the results in <dst>. 

This instruction is intended to be used to emulate 32-bit dword integer 
multiplication by utilizing the large number of bits available in the accumulator. 
For example, the following three instructions perform vector multiplication of two 
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32-bit signed integer source from r2 and r3 and store the resulting vectors with 
high 32-bit in r4 and low 32-bit in r5. 

 
mul (8) acc0:d  r2.0<8;8,1>d  r3.0<8;8,1>:d 
mach (8) r4.0<1>:d  r2.0<8;8,1>d  r3.0<8;8,1>:d 
mov (8) r5.0<1>:d  acc0:d 

As mach is used to generate part of 64-bit dword integer results, saturation 
modifier should not be used. In fact, saturation modifier should not be used for 
any of these three instructions. 

Source and destination operands must be dword integers. Source and destination 
must be of the same type, signed integer or unsigned integer.  

 If <dst> is UD, <src0> and <src1> may be UD and/or D. However, if any 
of <src0> and <src1> is D, source modifier, (abs), must be present to 
convert it to match with <dst>. 

 If <dst> is D, <src0> and <src1> must also be D. They cannot be UD as 
it may cause unexpected overflow because the computed results are 
limited to 64 bits. 

Restrictions: 

Accumulator is an implied source to the addition portion of the computation. 
Therefore, explicit source operands cannot be accumulator.   
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14.2.25 mov – Move 

 

Opcode Instruction Description 

1       
(0x01) 

mov <dst> <src0> Component-wise move from <src0> to <dst>. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

•  • • • • [FLT] 
[INT] 

[FLT] 
[INT] 

Format: 

[(<pred>)] mov[.<cmod>] (<exec_size>) <dst> <src0> 

Syntax: 

[(<pred>)] mov[.<cmod>] (<exec_size>) reg reg 
[(<pred>)] mov[.<cmod>] (<exec_size>) reg imm32 

Pseudocode: 

Evaluate(WrEn); 
for (n = 0; n < exec_size; n++) { 
 if (WrEn.chan[n] == 1) { 
  dst.chan[n] = src0.chan[n] 
 } 
} 

Description: 

The mov instruction moves the components in <src0> into the channels of <dst>. 
If <src0> and <dst> are of different types, format conversion is performed. If 
<src0> is a scalar immediate, the immediate value is loaded into all channels of 
<dst>. 

Restrictions: 

The accumulator can be either <src0> or <dst> but not both. 

This instruction does not implicitely update accumulator register. 
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14.2.26 mrest – Mask Restore  

 

Opcode Instruction Description 

45       
(0x2D) 

mrest <mstack> <mask> Restoring <mask> from <mstack> and also updating 
<mstack>. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

      [INT] [INT] 

Format: 

mrest (1) <mask> <mstack> 

Syntax: 

mrest (1) <mask> <mstack> 

Pseudocode: 

<mask> = <mstack>.TopOfStack; 
<mstack>.pop(1); 

Description: 

The mrest instruction restores the value of a mask register from the specified 
mask-stack. 

This instruction performs a mask-stack push/pop operation. Nesting depths must 
be tracked to ensure that a mask-stack under/overflow does not occur, or that an 
appropriate mask-stack exception handler is in place. 

Nesting depths must be tracked to ensure that a mask-stack under/overflow does 
not occur, or that an appropriate mask-stack exception handler is in place. 

This instruction is scalar operation only; it can only update one mask stack at a 
time.  

If SPF is set, this instruction restores <mask> from the top of stack of <mstack>, 
but it does not pop the mask stack. 

Restrictions: 

Predication is not allowed. 

<exec_size> must be set to 1 (by Assembler for example). 

Instruction compression is not allowed. Both source and destination operands 
must be unsigned integer. Source modifier is not allowed. 
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14.2.27 msave – Mask Save  

 

Opcode Instruction Description 

44       
(0x2C) 

msave <mstack> <mask> Pushing <mask> onto <mstack> and updating <mask> with 
the current EMask. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

      [INT] [INT] 

Format: 

msave (1) <mstack> <mask> 

Syntax: 

msave (1) <mstack> <mask> 

Pseudocode: 

<mstack>.push(<mask>); 
<mask> = EMask; 

Description: 

The msave instruction pushes the value held in the specified mask register to the 
specified mask-stack, and then updates the mask value to the current execution 
mask (EMask). This is typically used just prior to entering a nested loop. 

This instruction performs a mask-stack push/pop operation. Nesting depths must 
be tracked to ensure that a mask-stack under/overflow does not occur, or that an 
appropriate mask-stack exception handler is in place. 

This instruction is scalar operation only; it can only update one mask stack at a 
time.  

If SPF is set, this instruction updates <mask>, but does not update any mask 
stack.  

Restrictions: 

Predication is not allowed. 

<exec_size> must be set to 1 (by Assembler for example). 

Instruction compression is not allowed. Both source and destination operands 
must be unsigned integer. Source modifier is not allowed. 
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14.2.28 mul – Multiply 

 

Opcode Instruction Description 

65       
(0x41) 

mul <dst> <src0> <src1> Performing component-wise multiplication of <src0> and 
<src1> and storing the results in <dst>. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

• • • • • • [FLT] 
[INT] 

[FLT] 
[INT] 

Format: 

[(<pred>)] mul[.<cmod>] (<exec_size>) <dst> <src0> <src1> 

Syntax: 

[(<pred>)] mul[.<cmod>] (<exec_size>) reg reg reg 
[(<pred>)] mul[.<cmod>] (<exec_size>) reg reg imm32 

Pseudocode: 

Evaluate(WrEn); 
for (n = 0; n < exec_size; n++) { 
 if (WrEn.chan[n] == 1) { 
  dst.chan[n] = src0.chan[n] * src1.chan[n]; 
 } 
} 

Description: 

The mul instruction performs component-wise multiplication of <src0> and 
<src1> and stores the results in <dst>.  

When both <src0> and <src1> are of type D or UD, only the lower 16 bits of each 
element of <src0> are used. Accumulator maintains full 48-bit precision. Together 
with mach and mov instructions, full precision 64 bits multiplication results can be 
produced. (For that purpose, the type of <dst> must UD for the last mov 
instruction to get the lower dwords of partial results out.) 

Multiplication of two floating point numbers follows rules in Table  14-5 (or Table 
 14-6), if the current floating point mode is IEEE mode (or ALT mode). 
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Table  14-5. Floating point multiplication of A (column) and B (row) in IEEE mode 

 –inf –finite –1.0 –denorm –0 +0 +denorm +1.0 +finite +inf NaN 
–inf +inf +inf +inf NaN NaN NaN NaN –inf –inf –inf NaN 
–finite +inf * –A +0 +0 –0 –0 A ** –inf NaN 
–1.0 +inf –B +1.0 +0 +0 –0 –0 –1.0 –B –inf NaN 
–denorm NaN +0 +0 +0 +0 –0 –0 –0 –0 NaN NaN 
–0 NaN +0 +0 +0 +0 –0 –0 –0 –0 NaN NaN 
+0 NaN –0 –0 –0 –0 +0 +0 +0 +0 NaN NaN 
+denorm NaN –0 –0 –0 –0 +0 +0 +0 +0 NaN NaN 
+1.0 –inf B –1.0 –0 –0 +0 +0 +1.0 B +inf NaN 
+finite –inf ** –A –0 –0 +0 +0 A * +inf NaN 
+inf –inf –inf –inf NaN NaN NaN NaN +inf +inf +inf NaN 
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 

Note:  
* Result may be {+finite, +inf (overflow)} 

** Result may be {–inf (overflow), –finite} 

Table  14-6. Floating point multiplication of A (column) and B (row) in ALT mode 

 – fmax –finite –1.0 –denorm –0 +0 +denorm +1.0 +finite +fmax *** 

– fmax +fmax +fmax 
+fma

x NaN NaN NaN NaN –fmax –fmax –fmax  
–finite +fmax * –A +0 +0 –0 –0 A ** –fmax  
–1.0 +fmax –B +1.0 +0 +0 –0 –0 –1.0 –B –fmax  
–denorm +0 +0 +0 +0 +0 –0 –0 –0 –0 –0  
–0 +0 +0 +0 +0 +0 –0 –0 –0 –0 –0  
+0 –0 –0 –0 –0 –0 +0 +0 +0 +0 +0  
+denorm –0 –0 –0 –0 –0 +0 +0 +0 +0 +0  
+1.0 –fmax B –1.0 –0 –0 +0 +0 +1.0 B +fmax  
+finite –fmax ** –A –0 –0 +0 +0 A * +fmax  

+fmax –fmax –fmax 
–

fmax –0 –0 +0 +0 +fmax +fmax +fmax  
***            

Note:  
* Result may be {+finite, +fmax (overflow)} 

** Result may be {–fmax (overflow), –finite} 
*** Result is undefined If any of A and/or is {–inf, +inf, NaN} 

Restrictions: 

Source operands cannot be an accumulator register. 

When operating on integers with at least one of the source being a dword type 
(signed or unsigned), the destination cannot be a float (implementation note: the 
data converter only looks at the lower 34 bits of the results).  
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Dword integer source is not allowed for this instruction in float execution mode. In 
other words, if one source is of type float (:f, :vf), the other source cannot be of 
type dword integer (:ud or :d). 

When operating on integers with at least one of the source being a dword type 
(signed or unsigned), the Overflow and Sign flags are undefined. Therefore, 
conditional modifier and instruction operation ‘.sat’ cannot be used.  
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14.2.29 nop – No Operation 

 

Opcode Instruction Description 

126       
(0x7E) 

nop Issuing an dummy instruction and performing no operation. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

        

Format: 

nop 

Syntax: 

nop 

Pseudocode: 

n/a 

Description: 

The nop instruction takes an instruction dispatch but performs no operation. It 
may be used for assembly patching in memory, or be used to insert an instruction 
delay in the program sequence. 

The nop instruction takes no operands, no instruction modifier, no conditional 
modifier and no predication. 
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14.2.30 not – Logic Not 

 

Opcode Instruction Description 

4       
(0x04) 

not <dst> <src0> Performing component-wise logic NOT of <src0> and storing 
the results in <dst>. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

•  •  • • [INT] [INT] 

Format: 

[(<pred>)] not[.<cmod>] (<exec_size>) <dst> <src0> 

Syntax: 

[(<pred>)] not[.<cmod>] (<exec_size>) reg reg 
[(<pred>)] not[.<cmod>] (<exec_size>) reg imm32 

Pseudocode: 

Evaluate(WrEn); 
for (n = 0; n < exec_size; n++) { 
 if (WrEn.chan[n] == 1) { 
  dst.chan[n] = !src0.chan[n] 
 } 
} 

Description: 

The not instruction performs logical NOT operation (or one’s compliment) of 
<src0> and storing the results in <dst>. 

Source modifiers are allowed.  

Accumulator register is allowed to be the destination of this instruction with the 
restrictions listed below. 

Restrictions: 

This instruction does not work with float type operands.  

Sign (SN) and Overflow (OF) conditions are undefined for this logic instruction. 
Consequently, saturation modifier (.sat) is not allowed. 
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This instruction does not implicitely update accumulator register. 

When accumulator is the destination of this instruction, only the low bits 
corresponding to the data type (16 bits for word or 32 bits for dword integer 
instruction) in the accumulator contain the correct results. The internal extra-
precision bits as well as the sign bit of the accumulator are undefined. 
Consequently, there are restrictions for subsequent instructions that use the data 
in the accumulator register created from the previous logical instruction.  

 Only logical and data move instructions are allowed to source the 
accumulator. Results of other instructions (e.g. arithmetic or shift) are 
undefined. 

 When the accumulator is the source of a data move (mov or sel) 
instruction, the destination operand must be of integer type (e.g. no 
conversion to float) and this instruction cannot have satuation instruction 
modifier. 
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14.2.31 or – Logic Or 

 

Opcode Instruction Description 

6       
(0x06) 

or <dst> <src0> <src1> Performing component-wise logic OR of <src0> and <src1> and 
storing the results in <dst>. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

•  •  • • [INT] [INT] 

Format: 

[(<pred>)] or[.<cmod>] (<exec_size>) <dst> <src0> <src1> 

Syntax: 

[(<pred>)] or[.<cmod>] (<exec_size>) reg reg reg 
[(<pred>)] or[.<cmod>] (<exec_size>) reg reg imm32 

Pseudocode: 

Evaluate(WrEn); 
for (n = 0; n < exec_size; n++) { 
 if (WrEn.chan[n] == 1) { 
  dst.chan[n] = src0.chan[n] | src1.chan[n]; 
 } 
} 

Description: 

The or instruction performs component-wise logic OR operation between <src0> 
and <src1> and stores the results in <dst>.   

Source modifiers are allowed. 

Accumulator register is allowed to be the destination of this instruction with the 
restrictions listed below. 

Restrictions: 

Sign (SN) and Overflow (OF) conditions are undefined for this logic instruction. 
Consequently, saturation modifier (.sat) is not allowed. 

This instruction does not work with float type operands.  
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This instruction does not implicitely update accumulator register. 

When accumulator is the destination of this instruction, only the low bits 
corresponding to the data type (16 bits for word or 32 bits for dword integer 
instruction) in the accumulator contain the correct results. The internal extra-
precision bits as well as the sign bit of the accumulator are undefined. 
Consequently, there are restrictions for subsequent instructions that use the data 
in the accumulator register created from the previous logical instruction.  

 Only logical and data move instructions are allowed to source the 
accumulator. Results of other instructions (e.g. arithmetic or shift) are 
undefined. 

 When the accumulator is the source of a data move (mov or sel) 
instruction, the destination operand must be of integer type (e.g. no 
conversion to float) and this instruction cannot have satuation instruction 
modifier. 
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14.2.32 pop – Mask Stack Pop  

 

Opcode Instruction Description 

47       
(0x2F) 

pop <mstack> <depth> Popping <depth> level from <mstack> and updating 
<mstack>. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

      [INT] [INT] 

Format: 

pop (1) <mstack> <depth> 

Syntax: 

pop (1) <mask> reg32 
pop (1) <mask> imm32 

Pseudocode: 

<mstack>.pop(1); 

Description: 

The pop instruction pops ‘n’ levels off the specific mask-stack structure. The 
<depth> field specified the number of levels to discard from the stack, and is 
always treated as an unsigned integer value. 

This instruction performs a mask-stack push/pop operation. Nesting depths must 
be tracked to ensure that a mask-stack under/overflow does not occur, or that an 
appropriate mask-stack exception handler is in place. 

Nesting depths must be tracked to ensure that a mask-stack under/overflow does 
not occur, or that an appropriate mask-stack exception handler is in place. 

This instruction is scalar operation only; it can only update one mask stack at a 
time.  

If SPF is set, this instruction does not update the mask stack.  

Restrictions: 

Predication is not allowed. 

<exec_size> must be set to 1 (by Assembler for example). 

Instruction compression is not allowed. Both source and destination operands 
must be unsigned integer. Source modifier is not allowed. 

As the mask stacks are 16 deep, <depth> must be an unsigned dword integer 
with bits [31:4] set to zero. Effectively, it is a 4-bit unsigned integer. 
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14.2.33 push – Mask Stack Push  

 

Opcode Instruction Description 

46       
(0x2E) 

push <mstack> <mask> Pushing <mask> onto <mstack>. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

      [INT] [INT] 

Format: 

push (1) <mstack> <mask> 

Syntax: 

push (1) <mstack> <mask> 

Pseudocode: 

<mstack>.push(<mask>); 

Description: 

The push instruction pushes the value held in the specified mask register to the 
specified mask-stack, and leaves the mask unchanged.  

This instruction performs a mask-stack push/pop operation. Nesting depths must 
be tracked to ensure that a mask-stack under/overflow does not occur, or that an 
appropriate mask-stack exception handler is in place. 

This instruction is scalar operation only; it can only update one mask stack at a 
time. <exec_size> must be set to 1 (for example by Assembler). 

If SPF is set, this instruction does not update the mask stack. 

Restrictions: 

Predication is not allowed. 

Instruction compression is not allowed. Both source and destination operands 
must be unsigned integer. Source modifier is not allowed. 
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14.2.34 rndd – Round Down 

 

Opcode Instruction Description 

69    
(0x45) 

rndd <dst> <src0> Taking component-wise floating point downward rounding of 
<src0> and storing the results in <dst>. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

• • • • • • [FLT] [FLT] 
[INT] 

Format: 

[(<pred>)] rndd[.<cmod>] (<exec_size>) <dst> <src0> 

Syntax: 

[(<pred>)] rndd[.<cmod>] (<exec_size>) reg reg 
[(<pred>)] rndd[.<cmod>] (<exec_size>) reg imm32 

Pseudocode: 

Evaluate(WrEn); 
for (n = 0; n < exec_size; n++) { 
 if (WrEn.chan[n] == 1) { 
  dst.chan[n] = floor(src0.chan[n]); 
 } 
} 

Description: 

The rndd instruction takes component-wise floating point downward rounding (to 
the integral float number closer to negative infinity) of <src0> and storing the 
rounded integral float results in <dst>.  This is commonly referred to as the 
floor() function.  

This instruction only applies to floating point source operands. Destination may be 
of float type or of integer type. 

This is the only single instruction floating point rounding operation. The other 
three rounding modes (up, to-even, to-zero) require two instructions.  

Output data <dst> and conditional flag Increment (IN) for floating point rounding-
down follow rules in Table  14-7 (or Table  14-8), if the current floating point mode 
is IEEE mode (or ALT mode).  Note again that conditional flag IN is 0 for all cases. 
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Table  14-7. Floating point round-down in IEEE mode 

<src0> –inf –finite –denorm –0 +0 +denorm +finite +inf NaN 
<dst> –inf * –0 –0 +0 +0 ** +inf NaN 

IN 0 0 0 0 0 0 0 0 0 
Notes:  

* Result may be {–finite, –0}. 
** Result may be {+finite, +0}. 

Table  14-8. Floating point round-down in ALT mode 

<src0> – fmax –finite –denorm –0 +0 +denorm +finite + fmax *** 
<dst> –fmax * –0 –0 +0 +0 ** +fmax  

IN 0 0 0 0 0 0 0 0  
Notes:  

* Result may be {–finite, –0}. 
** Result may be {+finite, +0}. 

*** Result is undefined if <src0> is {–inf, +inf, NaN}. 

Restrictions: 

This instruction cannot take accumulator as source or destination operand. 
However, when the accumulator is implicitly updated by this instruction, the 
results in the accumulator are undefined.  
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14.2.35 rndu – Round Up  

 

Opcode Instruction Description 

68    
(0x44) 

rndu <dst> <src0> Taking component-wise floating point upward rounding of <src0> 
and storing the results in <dst>. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

• • • • • • [FLT] [FLT] 
[INT] 

Format: 

[(<pred>)] rndu[.<cmod>] (<exec_size>) <dst> <src0> 

Syntax: 

[(<pred>)] rndu[.<cmod>] (<exec_size>) reg reg 
[(<pred>)] rndu[.<cmod>] (<exec_size>) reg imm32 

Pseudocode: 

Evaluate(WrEn); 
for (n = 0; n < exec_size; n++) { 
 if (WrEn.chan[n] == 1) { 
  dst.chan[n] = floor(src0.chan[n]); 
  if (src0.chan[n]-floor(src0.chan[n]) > 0.0f) 
   dst.increment[n] = 1; 
  else 
   dst.increment[n] = 0; 
 } 
} 

Description: 

The rndu instruction takes component-wise floating point upward rounding (to the 
integral float number closer to positive infinity) of <src0> with results in two 
pieces – a downward rounded integral float results stored in <dst> and the round-
up rounding increment stored in the increment bits. The rounding increments 
must be added to the results in <dst> to create the final round-up values to 
emulate the round-up operation, commonly known as the ceiling() function. 

This instruction only applies to floating point source operands. Destination 
operand may be a floating point or an integer type operand. 
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The ceiling() function can be emulated in two instructions using rndu, for example, 
as 

 
 [(<pred>)] rndu.r.f# (<exec_size>) <dst> <src0> 
 (f#) add (<exec_size>) <dst> <dst> 1.0:f 

The first instruction stores the round up increments in a flag register, f#, by 
turning on the conditional modifier. The second instruction increments <dst> by 
1.0 predicated by f#. This works even when predication is on for the rndu 
instruction, as the set bits in the resulting flag register, f#, is a subset of the 
enabled channels of the previous instruction. Output data <dst> and conditional 
flag Increment (IN) for floating point rounding-up follow rules in Table  14-9 (or 
Table  14-10), if the current floating point mode is IEEE mode (or ALT mode).  
Note that conditional flag IN is 1 only if source data is a finite non-integral float. 

Table  14-9. Floating point round-up in IEEE mode 

<src0> –inf –finite –denorm –0 +0 +denorm +finite +inf NaN 
<dst> –inf * –0 –0 +0 +0 ** +inf NaN 

IN 0 *** 0 0 0 0 *** 0 0 
Notes:  

* Result may be {–finite, –0}. 
** Result may be {+finite, +0}. 

*** Increment may be {0, 1}. It is 0 if source data is an integral float, and is 1 otherwise. 

Table  14-10. Floating point round-up in ALT mode 

<src0> – fmax –finite –denorm –0 +0 +denorm +finite + fmax **** 
<dst> –fmax * –0 –0 +0 +0 ** +fmax  

IN 0 *** 0 0 0 0 *** 0  
Notes:  

* Result may be {–finite, –0}. 
** Result may be {+finite, +0}. 

*** Increment may be {0, 1}. It is 0 if source data is an integral float, and is 1 otherwise. 
**** Result is undefined if <src0> is {–inf, +inf, NaN}. 

Restrictions: 

This instruction cannot take accumulator as source or destination operand. This 
instruction does change the content of accumulator, however, the results in the 
accumulator are undefined. 
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14.2.36 rnde – Round to Even 

 

Opcode Instruction Description 

70    
(0x46) 

Rnde <dst> <src0> Taking component-wise floating point round-to-even operations of 
<src0> and storing the results in <dst>. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

• • • • • • [FLT] [FLT] 
[INT] 

Format: 

[(<pred>)] rnde[.<cmod>] (<exec_size>) <dst> <src0> 

Syntax: 

[(<pred>)] rnde[.<cmod>] (<exec_size>) reg reg 
[(<pred>)] rnde[.<cmod>] (<exec_size>) reg imm32 

Pseudocode: 

Evaluate(WrEn); 
for (n = 0; n < exec_size; n++) { 
 if (WrEn.chan[n] == 1) { 
  dst.chan[n] = floor(src0.chan[n]); 
  if (src0.chan[n]-floor(src0.chan[n]) > 0.5f) { 
   dst.increment[n] = 1; 
  } else if (src0.chan[n]-floor(src0.chan[n]) < 0.5f) { 
   dst.carry[n] = 0; 
   } else { 
    if (dst.chan[n] is odd) { 
     dst.increment[n] = 1; 
    } else { 
     dst.increment[n] = 0; 
   } 
  } 
 } 
} 



 
 
 
 

    479 

Description: 

The rnde instruction takes component-wise floating point round-to-even operation 
of <src0> with results in two pieces – a downward rounded integral float results 
stored in <dst> and the round-to-even increments stored in the rounding 
increment bits. The round-to-even increment must be added to the results in 
<dst> to create the final round-to-even values to emulate the round-to-even 
operation, commonly known as the round() function. The final results are the one 
of the two integral float values that is nearer to the input values. If the neither 
possibility is nearer, the even alternative is chosen. 

This instruction only applies to floating point operands. Similar to ceiling(), the 
round() function can be emulated in two instructions using rnde, for example, as 

 
 [(<pred>)] rnde.c.f# (<exec_size>) <dst> <src0> 
 (f#) add (<exec_size>) <dst> <dst> 1.0:f 

Output data <dst> and conditional flag Increment (IN) for floating point rounding-
to-even follow rules in Table  14-11 (or Table  14-12), if the current floating point 
mode is IEEE mode (or ALT mode).  Note that conditional flag IN may be 0 or 1 if 
source data is a finite non-integral float. 

Table  14-11. Floating point round-to-even in IEEE mode 

<src0> –inf –finite –denorm –0 +0 +denorm +finite +inf NaN 
<dst> –inf * –0 –0 +0 +0 ** +inf NaN 

IN 0 *** 0 0 0 0 *** 0 0 
Notes:  

* Result may be {–finite, –0}. 
** Result may be {+finite, +0}. 

*** Increment may be {0, 1}. It is 0 if source data is an integral float. It may be 0 or 1 otherwise. 

Table  14-12. Floating point round-to-even in ALT mode 

<src0> – fmax –finite –denorm –0 +0 +denorm +finite + fmax **** 
<dst> –fmax * –0 –0 +0 +0 ** +fmax  

IN 0 *** 0 0 0 0 *** 0  
Notes:  

* Result may be {–finite, –0}. 
** Result may be {+finite, +0}. 

*** Increment may be {0, 1}. It is 0 if source data is an integral float. It may be 0 or 1 otherwise. 
**** Result is undefined if <src0> is {–inf, +inf, NaN}. 

Restrictions: 

This instruction cannot take accumulator as source or destination operand. 
However, when the accumulator is implicitly updated by this instruction, the 
results in the accumulator are undefined. 
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14.2.37 rndz – Round to Zero 

 

Opcode Instruction Description 

71    
(0x47) 

rndz <dst> <src0> Taking component-wise floating point round-to-zero operations of 
<src0> and storing the results in <dst>. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

• • • • • • [FLT] [FLT] 
[INT] 

Format: 

[(<pred>)] rndz[.<cmod>] (<exec_size>) <dst> <src0> 

Syntax: 

[(<pred>)] rndz[.<cmod>] (<exec_size>) reg reg 
[(<pred>)] rndz[.<cmod>] (<exec_size>) reg imm32 

Pseudocode: 

Evaluate(WrEn); 
for (n = 0; n < exec_size; n++) { 
 if (WrEn.chan[n] == 1) { 
  dst.chan[n] = floor(src0.chan[n]); 
  if (abs(src0.chann[n]) < abs(dst.chan[n])) { 
   dst.increment[n] = 1; 
  } else { 
   dst.increment[n] = 0; 
  } 
 } 
} 

Description: 

The rndz instruction takes component-wise floating point round-to-zero operation 
of <src0> with results in two pieces – a downward rounded integral float results 
stored in <dst> and the round-to-zero increments stored in the rounding 
increment bits. The round-to-zero increment must be added to the results in 
<dst> to create the final round-to-zero values to emulate the round-to-zero 
operation, commonly known as the truncate() function. The final results are the 
one of the two closest integral float values to the input values that is nearer to 
zero. 
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This instruction only applies to floating point operands. Similar to ceiling() and 
round(), the truncate() function can be emulated in two instructions using rndz 
instruction.  For example, as 

 
[(<pred>)] rndz.c.f# (<exec_size>) <dst> <src0> 
(f#) add (<exec_size>) <dst> <dst> 1.0:f 

Output data <dst> and conditional flag Increment (IN) for floating point rounding-
to-zero follow rules in Table  14-13 (or Table  14-14), if the current floating point 
mode is IEEE mode (or ALT mode).  Note that conditional flag IN is 0 for a source 
that is a positive float, and is 1 only for negative non-integral float. 

Table  14-13. Floating point round-to-zero in IEEE mode 

<src0> –inf –finite –denorm –0 +0 +denorm +finite +inf NaN 
<dst> –inf * –0 –0 +0 +0 ** +inf NaN 

IN 0 *** 0 0 0 0 0 0 0 
Notes:  

* Result may be {–finite, –0}. 
** Result may be {+finite, +0}. 

*** Increment may be {0, 1}. It is 0 if source data is an integral float, and is 1 otherwise. 

Table  14-14. Floating point round-to-zero in ALT mode 

<src0> – fmax –finite –denorm –0 +0 +denorm +finite + fmax **** 
<dst> –fmax * –0 –0 +0 +0 ** +fmax  

IN 0 *** 0 0 0 0 0 0  
Notes:  

* Result may be {–finite, –0}. 
** Result may be {+finite, +0}. 

*** Increment may be {0, 1}. It is 0 if source data is an integral float, and is 1 otherwise. 
**** Result is undefined if <src0> is {–inf, +inf, NaN}. 

Restrictions: 

This instruction cannot take accumulator as source or destination operand. 
However, when the accumulator is implicitly updated by this instruction, the 
results in the accumulator are undefined. 
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14.2.38 sad2 – Sum of Absolute Difference 2 

 

Opcode Instruction Description 

80       
(0x50) 

sad2 <dst> <src0> <src1> Performing a two-wide sum-of-absolute-difference operation on 
a 2-tuple basis of <src0> and <src1>, and storing the scalar 
result to the first channel per 2-tuple in <dst>. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

 • • • • • [INT] [INT] 

Format: 

[(<pred>)] sad2[.<cmod>] (<exec_size>) <dst> <src0> <src1> 

Syntax: 

[(<pred>)] sad2[.<cmod>] (<exec_size>) reg reg reg 
[(<pred>)] sad2[.<cmod>] (<exec_size>) reg reg imm32 

Pseudocode: 

Evaluate(WrEn); 
for (n = 0; n < exec_size; n+=2) { 
 if (WrEn.chan[n] == 1) { 
  dst.chan[n] = abs(src0.chan[n] - src1.chan[n])  

+ abs(src0.chan[n+1] - src1.chan[n+1]); 
} 

Description: 

The sad2 instruction takes source data channels from <src0> and <src1> in 
groups of 2-tuples. For each 2-tuple, it computes the sum-of-absolute-difference 
(SAD) between <src0> and <src1> and stores the scalar result in the first 
channel of the 2-tuple in <dst>.   

This instruction only applies to integer operands. In particular, source operands 
must be unsigned bytes and/or signed bytes and destination operand must be of 
word type. Source modifiers are allowed. 

The results are also stored in the accumulator register. Destination operand and 
accumulator maintain 16-bit per channel precision.  

Destination register must have a stride of 2 bytes and must be aligned to even 
word. The even words in destination region will contain the correct data. The odd 
words are also written but with undefined values 
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Restrictions: 

Source operands cannot be an accumulator register. 

Execution size cannot be 1 as the computation requires at least two data 
channels. 
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14.2.39 sada2 – Sum of Absolute Difference Accumulate 2 

 

Opcode Instruction Description 

81       
(0x51) 

sada2 <dst> <src0> <src1> Performing a two-wide sum-of-absolute-difference operation on 
a 2-tuple basis of <src0> and <src1>, added to that from the 
accumulator, and storing the scalar result to the first channel 
per 2-tuple in <dst>. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

 • • • • • [INT] [INT] 

Format: 

[(<pred>)] sada2[.<cmod>] (<exec_size>) <dst> <src0> <src1> 

Syntax: 

[(<pred>)] sada2[.<cmod>] (<exec_size>) reg reg reg 
[(<pred>)] sada2[.<cmod>] (<exec_size>) reg reg imm32 

Pseudocode: 

Evaluate(WrEn); 
for (n = 0; n < exec_size; n+=2) { 

uwTmp = abs(src0.channel[n] - src1.channel[n])  
+ abs(src0.channel[n+1] - src1.channel[n+1])  

if (WrEn.channel[n] == 1) { 
dst.channel[n] = uwTmp + acc[n] 

} 
} 

Description: 

The sada2 instruction takes source data channels from <src0> and <src1> in 
groups of 2-tuples. For each 2-tuple, it computes the sum-of-absolute-difference 
(SAD) between <src0> and <src1>, adds the intermediate result with the 
accumulator value corresponding to the first channel, and stores the scalar result 
in the first channel of the 2-tuple in <dst>.   

This instruction only applies to integer operands. In particular, source operands 
must be unsigned bytes and/or signed bytes and destination operand must be of 
word type. Source modifiers are allowed. 

The results are also stored in the accumulator register. Destination operand and 
accumulator maintain 16-bit per channel precision. Higher precision (guide bits) 
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stored in the accumulator allows multiple rounds (64 rounds) of sada2 instructions 
to be issued back to back without overflow the accumulator.  

Destination register must have a stride of 2 bytes and must be aligned to even 
word. The even words in destination region will contain the correct data. The odd 
words are also written but with undefined values 

Restrictions: 

Source operands cannot be an accumulator register. 

Execution size cannot be 1 as the computation requires at least two data 
channels. 
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14.2.40 sel – Select  

 

Opcode Instruction Description 

2       
(0x02) 

(pred) sel <dst> <src0> <src1> Component-wise selective move from <src0> or <src1> to 
<dst> based on predication. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

•  • •  • [FLT] 
[INT] 

[FLT] 
[INT] 

Format: 

(<pred>) sel (<exec_size>) <dst> <src0> <src1> 

Syntax: 

(<pred>) sel (<exec_size>) reg reg reg 
(<pred>) sel (<exec_size>) reg reg imm32 

Pseudocode: 

Evaluate(WrEn, NoPMask); 
Evaluate(PMask); 
for (n = 0; n < exec_size; n++) { 

if (r.channel[n] == 1) { 
if (PMask.channel[n] == 1) { 

dst.channel[n] = src0.channel[n] 
} else { 

dst.channel[n] = src1.channel[n] 
} 

} 
} 

Description: 

The sel instruction selectively moves the components in <src0> or <src1> into 
the channels of <dst> based on the predication.  On a channel by channel basis, if 
the channel condition is true, data in <src0> is moved into <dst>; Otherwise, 
data in <src1> is moved into <dst>.   

As the predication is used to select the two sources, it is not included in the 
evaluation of WrEn.  <pred> is mandatory. If it is <omitted>, the results are 
unpredictable. 
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If <src0>, <src1> and <dst> are of different types, format conversion is 
performed. 

Restrictions: 

Destination channels cannot be on odd-byte sub-register locations.  In other 
words, when destination is of byte type, destination horizontal stride cannot be 1. 
If destination horizontal stride is not 1, destination register region origin cannot be 
on an odd byte location. This is because that the conditional flag for execution 
channels that have minimal granularity of word are used by this instruction. 

This instruction does not implicitly update accumulator registers. 
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14.2.41 send – Send Message  

 

Opcode Instruction Description 

49       
(0x31) 

send <post_dest> <curr_dest> 
<src0> <desc> 

Performing an implied move from <src0> to <curr_dest>, 
sending a message stored in MRF starting at <curr_dest> to a 
shared function identified by <desc> with a GRF writeback 
location at <post_dest>. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

  • • • • [FLT] 
[INT] 

[FLT] 
[INT] 

Format: 

[(<pred>)] send (<exec_size>) <pdst> <cdst> <src0> <desc> 

Syntax: 

[(<pred>)] send (<exec_size>) reg reg reg reg32a 
[(<pred>)] send (<exec_size>) reg reg reg imm32 

Pseudocode: 

Evaluate(EMask); 
if (src0 != null) { 
 MRFREG <mdest> = <curr_dest>.RegNum with 
<post_dest>.region; 

for (n = 0; n < exec_size; n++) { 
  mdest.chan[n] = src0.chan[n]; 

} 
} 
if (post_dest != null) { 

<ResponseReg> = <post_dest>.RegNum; 
} 
<MsgChEnable> = EMask; 
<SourceReg> = <curr_dest>.RegNum; 
MessageEnqueue(<MsgChEnable>, <ResponseReg>, <SourceReg>, 
<desc>; 
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Description: 

The send instruction performs data communication between a thread and external 
function units, including shared functions (Extended Math unit, Sampler, Data Port 
Read, Data Port Write and URB) and some fixed functions (e.g. Thread Spawner, 
who also have an unique Shared Function ID). The send instruction adds an entry 
to the EU’s message request queue. The request message is stored in a block of 
contiguous MRF registers. The response message, if present, will be returned to a 
block of contiguous GRF registers. The return GRF writes may be in any order 
depending on the external function units. The current destination operand, 
<curr_dest>, is the lead MRF register for request. The posted destination operand, 
<post_dest>, is the lead GRF register for response. The message descriptor field 
<desc> contains the Message Length (the number of consecutive MRF registers) 
and the Response Length (the number of consecutive GRF registers). It also 
contains the target function unit ID and function control signals. The bit field 
definition of <desc> can be found in Table  14-15. EMask is forwarded to the 
target function in the message sideband.  

In addition to enqueueing message request, the send instruction also performs an 
implied move from source operand <src0> to the current MRF destination 
<curr_dest>. The implied move is not subject to EMask. The send instruction is 
the only way to terminate a thread. When the EOT (End of Thread) bit of <desc> 
is set, it indicates the end of thread to the EU, the Thread Dispatcher and, in most 
cases, the parent fixed function. 

Message descriptor field <desc> can be a 32-bit immediate, imm32, or a 32-bit 
scalar register, <reg32a>. The MSB of the message descriptor, the EOT field, 
always comes from bit 127 of the instruction word, which is the MSB of imm32. 
GEN4 restricts that the 32-bit scalar register <reg32a> must be the leading dword 
of the address register. It should be in the form of a0.0<0;1,0>:ud. When <desc> 
is a register operand, only the lower 31 bits of <reg32a> are used. A thread must 
terminate with a send instruction with EOT turned on. 

<curr_dest> is a 256-bit aligned physical MRF register. Only the register number 
is present in the instruction word. It serves for two purposes: as the leading MRF 
register of the request message and as the destination of the implied move. 

<src0> is used to signal whether there is an implied move or not. It can be either 
a null register or a GRF register. For other cases, hardware behavior is undefined. 
<src0> cannot be any ARF and cannot be register-indirect-addressed, as address 
register may be used as the operand for <desc>. If <src0> is a null register, 
there is no implied move. If it is a GRF register, there is an implied move from 
GRF to MRF. The implied move is fully described based on the parameters of the 
‘send’ instruction. The destination operand of the implied move, <move_dest>, 
assumes the register number of <curr_dest> and the rest parameters from 
<post_dest>. The source operand of the implied move is <src0>. The implied 
move also assumes the same <exec_size>. The implied move turns on all the 
write enables for MRF destination, therefore, the whole MRF register of 
<curr_dest> is updated regardless of the content of EMask. The subfields 
belonging to the region of <move_dest> contain valid data, other subfields are 
undefined. The implied move may be used to save an instruction of moving the 
message header from GRF to MRF. It may also be used for header-less message 
going to the Extended Math unit by taking advantage of source swizzle 
specifications. Specifically, the ‘send’ instruction with implied move makes the 
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computation on Extended Math unit just like other arithmetic operations 
performed by the EU. In that case, the full MRF register can be viewed as pipeline 
storage to hold intermediate data post source swizzle and before the Extended 
Math unit performs the actual computation. 

<post_dest> serves for three purposes: to provide the leading GRF register 
location for the response message if present, to provide parameters to form the 
channel enable sideband signals, and to provide the subregister parameters for 
the implied move. 

<post_dest> signals whether there is a response to the message request. It can 
be either a null register, a direct-addressed GRF register or a register-indirect GRF 
register. Otherwise, hardware behavior is undefined.  

If <post_dest> is null, there is no response to the request. Meanwhile, the 
Response Length field in <desc> must be 0. Certain types of message requests, 
such as memory write (store) through the Data Port, do not want response data 
from the function unit. If so, the posted destination operand can be null.  

If <post_dest> is a GRF register, the register number is forwarded to the shared 
function. In this case, the target function unit must send one or more response 
message phases back to the requesting thread. The number of response message 
phases must match the Response Length field in <desc>, which of course cannot 
be zero. For some cases, it could be an empty return message. An empty return 
message is defined as a single phase message with all channel enables turned off.   

The subregister number, horizontal stride, destination mask and type fields of 
<post_dest> are always valid and are used in part to generate the EMask. This is 
true even if <post_dest> is a null register (this is an exception for null as for most 
cases these fields are ignored by hardware). These parameters of <post_dest> 
follow the same restriction as that of normal destination operand – destination 
region cannot cross the 256-bit register boundary.  

If the implied move is performed, the subregister number, horizontal stride and 
type fields of <post_dest> are used to describe the implied MRF destination 
register region. 

The EMask corresponds to the 256-bit aligned data fields of the type of 
<post_dest>. EMask can have up to 16 bits. Therefore, fundamental type of 
<post_dest> can be either word or dword, but not byte. If <post_dest> is of 
dword, lower 8 bits of EMask (as dword enables) are generated based on the 
instruction parameters, and the higher 8 bits are forced to zero by hardware. If 
<post_dest> is of word, all 16 bits are generated. In other words, if execution size 
is 16, <post_dest> must be 256-bit aligned and must be of fundamental type of 
word. If execution size is 8 or less (yes, smaller execution size is allowed), the 
fundamental type of <post_dest> can be word or dword. The generation of EMask 
is subject to the following parameters: predication control if present, execution 
size, {subregister number, mask if present, horizontal stride if present, type} of 
<post_dest>, composite mask (from A/L/I/Cmask) if NoMask is not present, 
SecHalf if present. Only the 16-bit EMask is forwarded to the target function as 
the channel enable sideband signals; none of the input parameters are sent out. 
Therefore, these parameters may be manipulated to form a desired EMask 
according to the specifications of the target function. For example, in order to 
forward the 16-bit dword enables to the Data Port Write unit for a scattered dword 
store message, <post_dest> may be set to a null register of ‘uw’ type, even 
though the actual data stored in MRF are floating point values. 



 
 
 
 

   491 

The 16-bit channel enables of the message sideband are formed based on the 
above mentioned EMask. Interpretation of the channel enable sideband signals is 
subject to the target external function. In general for a ‘send’ instruction with 
return messages, they are used as the destination dword write mask for the GRF 
registers starting at <post_dest>. For a message that has multiple return phases, 
the same set of channel enable signals applies to all the return phases.  

Instruction compression is not allowed for this instruction. The hardware behavior 
is undefined if this instruction is set as compressed. However, compress control 
can be set to “SecHalf” to affect the EMask generation. 

Thread managed memory coherency: A special usage of using non-null 
<post_dest> is to support write-commit signaling for memory write service by the 
Data Port Write unit. If <post_dest> is not null for a memory write request, the 
Data Port along with the Data Cache or Render Cache will wait until all the posted 
writes for the request have reached the coherent domain before sending back to 
the requesting thread an empty message to <post_dest> register. A memory 
write reaching the coherent domain, also referred to as reaching the global 
observable state, means that subsequent read to the same memory location, no 
matter which thread issues the read, must return the data of the write. 

The destination dependency control, {NoDDClr}, can be used in this instruction. 
This allows software to control the destination dependencies for multiple ‘read’-
type messages similar to that for multiple instructions using EU execution pipeline. 
As send does not check register dependencies for the post destination, 
{NoDDChk} should not be used for this instruction.  
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Table  14-15. Message Descriptor Definition 

Bit Description 

31 End Of Thread 
This field, if set, indicates that this is the final message of the thread and the 

thread’s resources can be reclaimed. 
This field is also valid when the Message Descriptor is from a register. 

However, in that case, this field comes from the instruction word instead of 
the register. 

30:28 Reserved : MBZ 
27:24 Target Function ID 

This field indicates the function unit for which the message is intended. 
0000 = Null  
0001 = Extended Math 
0010 = Sampling Engine 
0011 = Message Gateway 
0100 = Data Port Read 
0101 = Data Port Write 
0110 = URB 
0111 = Thread Spawner 
1000--1111: Reserved 

23:20 Message Length. This field specifies the number of 256-bit MRF registers 
starting from <curr_dest> to be sent out on the request message payload. 
Valid value ranges from 1 to 15. A value of 0 is considered erroneous. 

Format = U4 
Range = [1,15] 

19:16 Response Length. This field indicates the number of 256-bit registers 
expected in the message response.  The valid value ranges from 0 to 8. A 
value 0 indicates that the request message does not expect any response. 
The largest response supported by GEN4 is 8 GRF registers. 

Format = U4 
Range = [0,8] 

15:0 Function Control 
This field is intended to control the target function unit. Refer to the section 

on the specific target function unit for details on the contents of this field. 

Table  14-16 provides a summary of the signals associated with each message that is 
sent to the shared function. It contains fields from the send instruction as well as 
fields from control register cr0 and state register sr0. 
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Table  14-16. Sideband Signals Associated with Each Message Sent to the Shared 
Function 

Signal  Bits Source 

EOT 1 End of Thread: Sourced from the EOT bit in send instruction word 
SFID 3 Shared Function Identifier: Sourced from the target function ID field in 

<desc> of send 
MLEN 4 Message Length: Sourced from the message length field in <desc> of 

send 
RLEN 4 Response Length: Sourced from the response length field in <desc> of 

send 
FC 16 Function Control: Sourced from the function control field in <desc> of 

send 
REG 7 Destination Register: Sourced from the 256-bit register aligned register 

number of the <post_dest> field of send 
CE 16 Channel Enable: Sourced from the execution mask of send 

CLEAR 1 Destination Register Clear: Source from the Destination Dependency 
Control field (inverse of NoDDClr) in send instruction word 

FFID 4 Fixed Function Identifier: Sourced from the Fixed Function ID field in 
sr0 

EUID 4 Execution Unit Identifier: Sourced from the EUID field in sr0 
TID 2 Thread Identifier: Sourced from the TID field in sr0 

FPMODE 1 Floating Point Mode: Sourced from the floating point mode field in cr0 

Restrictions: 

Software must obey the following rules in signaling the end of thread using the 
send instruction: 

 The posted destination operand must be null. 

o No acknowledgement is allowed for the send instruction that 
signifies the end of thread. This is to avoid deadlock as the EU is 
expecting to free up the terminated thread’s resource. 

 A thread must terminate with a send instruction with message to a shared 
function on the output message bus; therefore, it cannot terminate with a 
send instruction with message to the following shared functions: Sampler 
unit, Extended Math unit, NULL function 

o For example, a thread may terminate with a URB write message or 
a render cache write message. 

 A root thread originated from the media (generic) pipeline must terminate 
with a send instruction with message to the Thread Spawner unit. A child 
thread should also terminate with a send to TS. Please refer to the Media 
Chapter for more detailed description. 

This instruction does not implicitly update accumulator registers. 
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Implementation Restrictions: As the hardware does not check for post destination 
dependencies on this instruction, software must ensure that there is no destination 
hazard for the case of ‘write followed by a posted write’ shown in the following 
example. 

1. mov r3 0 

2. send r3.xy <rest of send instruction> 

3. mov r2 r3 

Due to no post-destination dependency check on the ‘send’, the above code 
sequence could have two instructions (1 and 2) in flight at the same time that 
both consider ‘r3’ as the target of their final writes. The first write to complete will 
release the dependency on ‘r3’ for subsequent instructions, thus allowing 
instruction 3 to proceed, even though one of the two prior instructions is still in-
flight and will eventually modify ‘r3’. Thus the proper instruction-order contents of 
‘r3’ cannot be guaranteed for such a code sequence, and such sequence should 
not be used. 

A proper code sequence which does guarantee program-order writes to ‘r3’ in this 
example is shown below. The solution is to use {NoDDClr} to the first instruction. 
Due to in-order instruction dispatch and known/fixed execution pipeline latencies, 
the posted write from the second instruction cannot bypass the first instruction, r3 
update order from instructions 1 and 2 are ensured. So any dependencies on ‘r3’ 
will only be cleared by the posted write from the second instruction. Therefore, 
the third instruction will access the correct data from r3.  

1. mov r3 0 {NoDDClr} 

2. send r3.xy <rest of send instruction> 

3. mov r2 r3 

Another coding option is to insert a dummy move before the send instruction to stall 
the thread’s execution until the first write to ‘r3’ has retired, this avoiding the 
potential destination hazard. However, this approach will consume additional 
instruction cycles waiting for ‘r3’ to retire. 

1. mov r3 0 

2. mov null r3 // This instruction clears the scoreboard for r3 

3. send r3.xy <rest of send instruction> 

4. mov r2 r3 

Yet another coding option is to use {switch} instruction option on the instruction 
preceding the send instruction. The ‘switch’ instruction option will flush the execution 
pipe, ensuring all writes in the execution pipe to be retired.  

1. mov r3 0 

2. <any instruction> {switch} // This instruction flushes the execution pipe 

3. send r3.xy <rest of send instruction> 

4. mov r2 r3 

This coding option is particularly useful for send instruction with indirect-addressed 
post destination, where the post destination registers are not known to the 
programmer. 
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As the retirement order for post-destinations of different send instructions may be 
unknown (e.g. from different shared functions), a posted write overlapping with a 
previously-issued posted write should be avoided in general, particularly for send 
instructions with indirect post-destinations.  

[DevBW, DevCL] Errata: A destination register from a send cannot be used as a 
destination register until after it has been sourced by an instruction with a different 
destination register.   
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14.2.42 shl – Shift Left 
 

Opcode Instruction Description 

9       
(0x09) 

shl <dst> <src0> <src1> Performing component-wise logic left shift of <src0> and storing 
the results in <dst>. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

•  • • • • [INT] [INT] 

Format: 

[(<pred>)] shl[.<cmod>] (<exec_size>) <dst> <src0> <src1> 

Syntax: 

[(<pred>)] shl[.<cmod>] (<exec_size>) reg reg reg 
[(<pred>)] shl[.<cmod>] (<exec_size>) reg reg imm32 

Pseudocode: 

Evaluate(WrEn); 
for (n = 0; n < exec_size; n++) { 
 if (WrEn.chan[n] == 1) { 
  dst.chan[n] = src0.chan[n] << src1.chan[n] 
 } 
} 

Description: 

The shl instruction performs component-wise logical left shift of <src0> with zero-
insertion and storing the results in <dst>.  The amount of bit shift is provided by 
<src1>, where only the 5 LSBs of each channel of <src1> are used as an 
unsigned integer value. The MSBs of <src1> data channels are ignored.  The 
results are NOT stored in the accumulator register. 

5-bit shifting applies to packed-dword mode and packed-word mode. For packed 
word mode, the accumulators have 33 bits per channel. <src0> and <dst> can be 
signed or unsigned integers and can be of different types. This instruction does 
not work with float type operands. Saturation modifier is only allowed when this 
instruction is in packed-word mode. Hardware detects overflow properly and use it 
to perform saturation operation on the output, as long as the shifted result is 
within 33 bits. Otherwise, the result is undefined. 

Results of saturation in packed-dword mode are unpredicable. 

Restrictions: 

This instruction does not work with float type operands. 

This instruction does not implicitely update accumulator register. 
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14.2.43 shr – Shift Right 

 

Opcode Instruction Description 

8       
(0x08) 

shr <dst> <src0> <src1> Performing component-wise logic right shift of <src0> and 
storing the results in <dst>. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

•  • • • • [INT] [INT] 

Format: 

[(<pred>)] shr[.<cmod>] (<exec_size>) <dst> <src0> <src1> 

Syntax: 

[(<pred>)] shr[.<cmod>] (<exec_size>) reg reg reg 
[(<pred>)] shr[.<cmod>] (<exec_size>) reg reg imm32 

Pseudocode: 

Evaluate(WrEn); 
for (n = 0; n < exec_size; n++) { 
 if (WrEn.chan[n] == 1) { 
  dst.chan[n] = src0.chan[n] >> src1.chan[n] 
 } 
} 

Description: 

The shr instruction performs component-wise logical right shift of <src0> with 
zero-insertion and storing the results in <dst>. The amount of bit shift is provided 
by <src1> where only the 5 LSBs of each channel of <src1> are used as an 
unsigned integer value. The MSBs of <src1> data channels are ignored. 

5-bit shifting applies to packed-dword mode and packed-word mode. For packed 
word mode, the accumulators have 33 bits per channel.  

This instruction only takes on unsigned sources. When <src0> contains unsigned 
integers, no source modifier is allowed. <src0> is only allowed to be signed 
integer if source modifier (abs) is used. Note: for unsigned sources, the behavior 
of shr and asr are effectively the same. 

Restrictions: 

This instruction does not work with float type operands. 

This instruction does not implicitely update accumulator register. 
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14.2.44 wait – Wait Notification 

 

Opcode Instruction Description 

48       
(0x30) 

wait <nreg> Waiting for notification on the notification register <nreg>. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

        

Format: 

wait (<exec_size>) <nreg> 

Syntax: 

wait (1) n# 

Pseudocode: 

n/a 

Description: 

The wait instruction evaluates the value of the notification count register <nreg>. 
If <nreg> is zero, the execution of the thread is stalled and the thread is put in 
‘wait_for_notification’ state. If <nreg> is not zero (i.e., one or more notifications 
have been received), <nreg> is decremented by one and the thread continues 
executing on the next instruction. If a thread is in the ‘wait_for_notification’ state, 
when a notification arrives, the notification count register is incremented by one. 
As the notification count register becomes non-zero, the thread wakes up to 
continue execution and at the same time the notification register is decremented 
by one. If there was only one notification arrived, the notification register value 
becomes zero. However, during the above mentioned time period, it is possible 
that more notifications may arrive, making the notification register non-zero 
again. 

When multiple notifications are received, software must use ‘wait’ instruction to 
decrement notification count register for each of the notifications.  

Notification register n0:ud is for thread to thread communication (through 
message gateway shared function) and n1:ud for host to thread communication 
(through MMIO registers). See Message Gateway chapter for thread-thread 
communication and Debug chapter for host-to-thread communication. 
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Restrictions: 

Only one source operand. 

 <src0> and <dst> must be n0 or n1, <src1> must be null. 

Execution size must be 1 as the notification registers are scalar. 

Predication is not allowed. 

Implementation restriction: Two back-to-back wait instructions in a program 
(without any instruction in between) are not allowed. As a minimal, a nop has to 
be inserted between two wait instructions. 
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14.2.45 while – While  

 

Opcode Instruction Description 

39       
(0x27) 

while <exitcode> Marking the end of a do-while block of code. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

  •      

Format: 

[(<pred>)] while (<exec_size>) <exitcode> 

Syntax: 

[(<pred>)] while (<exec_size>) imm32 

Pseudocode: 

Evaluate(EMask, NoCMask); 
if (EMask != 0) { 
 CMask = EMask;  
 LMask = EMask;  
 Jump(<exitcode.IPCount>); 
} else { 
 CMask = LStack.TopOfStack; 
 LStack.Pop(1); 
 LMask = LStack.TopOfStack; 
 LStack.Pop(1); 
} 

Description: 

The while instruction marks the end of a do-while block. The instruction first 
evaluates the loop termination condition for each channel as determined by the 
bit-wise AND of the AMask, LMask, and the predication flag specified in the 
instruction. Both CMask and LMask are updated to this value for any further 
passes through the loop. If any channel has not terminated as indicated by its bit 
position = 1, a branch is taken to a destination address based specified in the 
instruction, and the loop continued for those channels.  

Once all channels have been suspended (as indicated by LMask = ...000b), the 
loop is terminated by popping CMask and then LMask from the LStack, enabling 
those data channels active prior to entering the loop. The instruction sequence 
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then falls through and execution continues with the instruction immediately 
following the ‘while’.  Note that this instruction also updates CMask to ensure that 
CMask is always a subset of LMask. 

Also note that the EMask evaluation does not consider CMask as the channels 
temporally turned off by CMask in the current loop need to be considered in the 
conditional evaluation in the while instruction. 

The following table describes the 32-bit exit code <exitcode>.  <InstCount> is a 
signed 16-bit number, added to IP pre-increment, and should point to the first 
instruction after the do instruction of the do-while block of code.  It should be a 
negative number for the backward referencing.  

In GEN4 binary, <exitcode> is at location <src1> and must be of type D (signed 
doubleword integer).   

 
Bit Description 

31:16 Reserved: MBZ 

15:0 InstCount (Jump Instruction Count). This field specifies the jump 
distance in Instruction Count if a jump is taken for the instruction. 

Format = S15. Signed integer in 2’s complement 

This instruction executes regardless of the calculated EMask at the time of issue.  
It invokes a thread switch after issue to allow any masks and/or IP to be resolved 
if necessary.   

This instruction pops both CMask and LMask from LStack upon falling through.  

This instruction performs a mask-stack push/pop operation. Mask-stack push/pop 
operations are always done in 16-bit width regardless of execution size.  Nesting 
depths must be tracked to ensure that a mask-stack under/overflow does not 
occur, or that an appropriate mask-stack exception handler is in place. 

If SPF is set, this instruction does not update any mask stack. When this 
instruction falls through, it restores the CMask and LMask from 
LStack.TopOfStack, which supposes to be static for code with single program flow.   

If a jump is invoked by this instruction, IMask will be fully restored, same as 
LMask and CMask.  ISPopCount = 0 is a trivial case that IMask is not changed. 

Restrictions: 

Instruction compression is not allowed. 

IP register must be put (for example, by the assembler) at <dst> and <src0> 
locations. 
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14.2.46 xor – Logic Xor 

 

Opcode Instruction Description 

7       
(0x07) 

xor <dst> <src0> <src1> Performing component-wise logic XOR of <src0> and <src1> 
and storing the results in <dst>. 

 

Instr 
Comp 

Imp’d 
Accu 

Pred Sat Cond 
Mod 

Src 
Mod 

Src 
Types 

Dst 
Types 

•  •  • • [INT] [INT] 

Format: 

[(<pred>)] xor[.<cmod>] (<exec_size>) <dst> <src0> <src1> 

Syntax: 

[(<pred>)] xor[.<cmod>] (<exec_size>) reg reg reg 
[(<pred>)] xor[.<cmod>] (<exec_size>) reg reg imm32 

Pseudocode: 

Evaluate(WrEn); 
for (n = 0; n < exec_size; n++) { 
 if (WrEn.chan[n] == 1) { 
  dst.chan[n] = src0.chan[n] ^ src1.chan[n]; 
 } 
} 

Description: 

The xor instruction performs component-wise logic XOR operation between 
<src0> and <src1> and stores the results in <dst>.   

Source modifiers are allowed. 

Accumulator register is allowed to be the destination of this instruction with the 
restrictions listed below. 

Restrictions: 

Sign (SN) and Overflow (OF) conditions are undefined for this logic instruction. 
Consequently, saturation modifier (.sat) is not allowed. 

This instruction does not work with float type operands.  
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The results are NOT stored in the accumulator register. 

When accumulator is the destination of this instruction, only the low bits 
corresponding to the data type (16 bits for word or 32 bits for dword integer 
instruction) in the accumulator contain the correct results. The internal extra-
precision bits as well as the sign bit of the accumulator are undefined. 
Consequently, there are restrictions for subsequent instructions that use the data 
in the accumulator register created from the previous logical instruction.  

o Only logical and data move instructions are allowed to source the 
accumulator. Results of other instructions (e.g. arithmetic or shift) are 
undefined. 

o When the accumulator is the source of a data move (mov or sel) 
instruction, the destination operand must be of integer type (e.g. no 
conversion to float) and this instruction cannot have satuation instruction 
modifier. 
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15 EU Programming Guide 

15.1 Assembler Pragmas 

15.1.1 Declarations 

A register or a register region can be declared as a symbol using the following form 

.declare <symbol> Base=RegFile RegBase {.SubRegBase} 
ElementSize=ElementSize {SrcRegion=DefaultSrcRegion} 
{DstRegion=DefaultDstRegion} {Type=DefaultType} 

The register file, the base of the register origin and the element size (in unit of bytes) 
are the mandatory parameters for a declared register region. Optionally, the base of 
the sub-register address, the default source region, the default destination region and 
the default type can be provided in the declaration for the symbol.  

For immediate register addressing mode, the declared symbol can be used in the 
following Cartesian form  

<symbol>(RegOff, SubRegOff)  RegNum = RegBase + RegOff; SubRegNum = 
SubRegBase + SubRegOff 

or in the following simplified row-aligned form 

<symbol>(RegOff)  RegNum = RegBase + RegOff; SubRegNum = 
SubRegBase 

For register-indirect-register-addressing mode, the declared symbol can be used to 
provide immediate address term in the following Cartesian form  

<symbol>[IdxReg, RegOff, SubRegOff]   RegNum (byte-aligned) = 
[IdxReg] +(RegBase + RegOff)*32 + (SubRegBase + SubRegOff)*ElementSize 

or in the following simplified row-aligned form 

<symbol>[IdxReg, RegOff]    RegNum (byte-aligned) = [IdxReg] +(RegBase + 
RegOff)*32 

or in the form without the immediate address term 

<symbol>[IdxReg]    RegNum (byte-aligned) = [IdxReg] + RegBase 
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15.1.2 Defaults and Defines 

The default execution size is set according to the destination register type as the 
following 

Destination Register Type Default Execution Size 

UB | B (16) 

UW | W (16) 

F | UD | D (8) 

The default execution size can be overwritten globally for all instructions using  

.default_execution_size  (Execution_Size) 

or be set according the destination register type using  

.default_execution_size_Type (Execution_Size) 

 

The default register type can be set for all register files using  

.default_register_type  Type 

or be set per register file using  

.default_register_type_RegFile Type 

The default source register region for all symbols can be set using 

.default_source_register_region <VirtStride; Width, HorzStride> 

or be set per register type using  

.default_source_register_region_type <VirtStride; Width, HorzStride> 

 

The default destination register region for all symbols can be set using 

.default_destination_register_region < HorzStride> 

or be set per register type using  

.default_destination_register_region_type < HorzStride> 

 

 



 
 

 
 

506     

Finally, the precompiler supports the string replacement statement of .define in the 
following form 

.define <symbol>  Expression 

 

Notes: 

• .declare does not support nesting. In other words, each symbol in .declare 
must be self defined. This would allow the pre-processor to expand all symbols 
in one pass.  

• .define does support nesting. Only string substitution is supported 
(currently). 

• White space within square, angle and round brackets are allowed for easy 
source code alignment. 

15.1.3 Example Pragma Usages 

 

Example 1: Declaration for 8x4=32-Byte Regions:  

The following symbol Block can be used to address any 8x4 byte region within the 
Cartisian system of a 16x8 byte GRF register area starting from r0. 

Declaration 
// 32x4 Byte Array 

.declare Block Base=r0 ElementSize=1 Region=<32;8,1> Type=b 

Fully-Expressed 
Instr  

mov(32)  ?:b  r0.16<32;8,1>:b  // r0 
xxxxxxxxxxxxxxxxooooooooxxxxxxxx 

           // r1 
xxxxxxxxxxxxxxxxooooooooxxxxxxxx 

           // r2 
xxxxxxxxxxxxxxxxooooooooxxxxxxxx 

           // r3 
xxxxxxxxxxxxxxxxooooooooxxxxxxxx 

Short-handed 
Instr 

Mov  ?:b  Block(0,16)     // (0,16): RegNum=0, 
SubRegNum=16 

Example 2: Declaration for 8x1 Float Regions:  
The following symbol Trans can be used to address any 8x1 float region within the 
Cartisian system of a 8x4 float GRF register area starting from r5. 

Declaration 
// 8x4 float Array starting at r5 

.declare Trans Base=r5 ElementSize=4 Region=<0;8,1> Type=f  

Fully-Expressed 
Instr  

mov(8)  ?:f  r6.0<0;8,1>:f   // 2nd 16x1 Row of 
Trans. Matrix  

           // r5 FFFFFFFF 

           // r6 OOOOOOOO 

           // r7 FFFFFFFF 

           // r8 FFFFFFFF 
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Short-handed 
Instr 

mov   ?:f  Trans(1)     // RegNum = 5+1 = 6 

Example 3: Declaration for 8x1 Float Regions with 1x1 Indirect Addressing:  
Trans region defined (same as in the previous example) is used in conjunction with 
the address register. 

Declaration 
//8x4 float data array and 16x1 word address array 

.declare Trans Base=r5 ElementSize=4 Region=<0;8,1> Type=f  

Fully-Expressed 
Instr  

mov(8)  ?:f  r[a0.0,224]<0;8,1>:f 

Short-handed 
Instr 

mov   ?:f  Trans[a0.0,2]    // [a0.0 + 5*32 + 2*32]

Example 4: Declaration with VxH Indirect Addressing:  
The VxH register-indirect-register-addressing for Trans can be provided in the 
following short-hand form. 

Declaration 
//8x4 float data array and word indices 

.declare Trans Base=r5 ElementSize=4 Region=<0;8,1> Type=f  

Fully-Expressed 
Instr  

mov(8)  ?:f  r[a0.0,224]<1,0>:f   

Short-handed 
Instr 

mov   ?:f  Trans[a0.0,2]<1,0>  // [a0.0+224] 
[a0.1+224] … [a0.7+224] 

Example 5: Declaration with Vx1 Indirect Addressing:  
As width (4) is smaller than the execution region size (8), multiple indexed 
registers are used.  

Declaration 
//8x4 float data array and word address array 

.declare Trans Base=r5 ElementSize=4 Region=<0;8,1> Type=f   

Fully-Expressed 
Instr 

mov(8)  ?:f  r[a0.0,244]<4,1>:f 

Short-handed 
Instr 

 

mov   ?:f  Trans[a0.0,2]<4,1>  //[a0.0+224] [a0.1+224]

  

15.1.4 Assembly Programming Guideline 

The following program skeleton illustrates the basic structure of a typical assembly 
program. 
 
//  single line comment 

 

/*     

       block comment 

*/ 
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<preproc_directive> // macros, include, etc.  Are global – handled by the pre-
processor 

<preproc_directive> // applies to all code that follows in sequence 

  

// ------------ some kernel --------------------------- 

.kernel <kernel_name_string> // [REQUIRED] 

        // ------- Register requirements -------- 

 .reg_count_total     <uint> // [REQUIRED] a more direct way to specify the exact 
parameters require    

 .reg_count_payload   <uint> // [REQUIRED] rather than to have to indirectly do 
that by adding the 

        //   the payload and temps together to get the total 
(as is the case now) 

        // Note: no more “reg-count-temp” 

  

        // -------------- Defaults --------------- 

 <default…>      // these should be specified per-kernel and have 
only kernel-scope 

 <default…>      // Same defaults as those already defined in the ISA 
doc, but just  

 <default…>      // moved within the kernel to make each kernel 
completely self-sufficient 

        // and not impacted defaults of earlier kernels 

  

        // --------- Memory Requirements --------- 

        // [optional] memory block info (just a placeholder 
for now...) 

 <MBDa>       //     memory block descriptor a (TBD) 

 <MBDb>       //     memory block descriptor b (TBD) 

 <MBDc>       //     memory block descriptor c (TBD) 

 <MBDd>       //     memory block descriptor d (TBD) 

 

        // ---------------- Code  ---------------- 

 .code       // [REQUIRED] 

  <instruction> 

  <instruction> 

  <instruction> 

 <LabelLine>     // labels are code-block scope 

  <instruction> 

  <instruction> 

  

 .end_code      // [REQUIRED] 

  

.end_kernel      // [REQUIRED] 

 

// --------- next kernel ------------- 

  

// --------- next kernel ------------- 

  
// ... 
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15.2 Usage Examples 

15.2.1 Vector Immediate 

The immediate form of vector allows a constant vector to be in-lined in the instruction 
stream. An immediate vector is denoted by type v as imm32:v, where the 32-bit 
immediate field is partitioned into 8 4-bit subfields. Each 4-bit subfield contains a 
signed integer value in 2’s complement form. Therefore each 4-bit subfield has a 
range of [-8, +7]. This is depicted in the following figure. 
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15.2.1.1 Supporting Pixel Shader Indexing 

When a pixel shader program is converted to run on Gen4 in channel-serial mode at 
16 pixels in parallel, the per-pixel index must be translated into 16 indices with per 
channel offset. The creation of the per-channel offset can be achieved using the vector 
immediate.  

Consider a generic pixel shader instruction in the form of  

op r4 r[ind] r2 

and assume that r0-r1 contain the 16 indices packed every other words, and r2-r3 
contains source 1 and r4-r5 contain the destination. This instruction can be converted 
into the following Gen4 instructions. The corresponding operations are illustrated in 
Figure  15-1. 

mov (16)  r11.0<1>:w  0x01234567:v  // assigning a ramp vector, repeated 
once 

mul (16) acc0:w  r11.0<0;16,1>:w 4:w // expand ramp range to 4 bytes per 
step 

mac (16) r10.0<1>:w r0.0<16;8,2>:w 32:w // r10 = index*32 + 
0|4|…|28|0|4…|28 

mov (8) a0.0<1>:w r10.0<0;8,1>:w 

op (8) r4.0<1>:f r[a0.0]<1,0>:f  r2.0<0;8,1>:w // Operate on the first half 

mov (8) a0.0<1>:w r10.8<0;8,1>:w   // Index values are off by a reg 
(32b) 

op (8) r5.0<1>:f r[a0.0+32]<1,0>:f r3.0<0;8,1>:w // Operate on the second half. 
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Figure  15-1. Pixel Shader example using vector immediate 
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Without vector immediate support, such translation has to either use a long sequence 
of scalar instructions which is very inefficient or use a constant load which requires 
additional constant to be managed in memory.  

15.2.1.2 Supporting OpenGL Vertex Shader Instruction SWZ 

When an OpenGL Vertex Shader program is converted to run on Gen4 in Vertex Pair, 
i.e. two 4-wide vectors in parallel, the special OpenGL Shader instruction SWZ 
(Swizzle) needs to be emulated. OpenGL SWZ instruction uses an extended swizzle 
control field that, in addition to the 4-wide full swizzle control, also includes constant 0 
and 1 replacement as well as per channel sign reversal. The later two are not 
supported by the Gen4 native instruction. The vector immediate can significantly 
reduce the overhead of emulating such OpenGL instruction. 

Consider an OpenGL Shader instruction in the form of  

SWZ r1 r0.0-zx-1 // Expected results: r1.x = 0; r1.y = -r0.z; r1.z = r0.x; r1.w = 
-1 

It can be emulated by the following three Gen4 instructions. 

mul (8) r1.0<1>:f r0.xzxz  0x1F111F11:v // Constant vector of (1 -1 1 1 1 -1 1 
1) 

mov (1) f0.0  8b’10011001   // Set flag & masked out channels y and z 

(f0.0)mov(8) r1.0<1>:f  0x000F000F:v   // Constant vector of (0 0 0 -1 0 0 
0 -1) 

In case that only 0, 1, -1 channel replacement is used and there is no signed swizzle, 
it may be emulated in two Gen4 instructions. This is illustrated by the following 
example: 

OpenGL: 

SWZ r1 r0.0zx-1 // Expected results: r1.x = 0; r1.y = r0.z; r1.z = r0.x; r1.w = 
-1 
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Gen4: 

mov (1) f0.0 8b’01100110   // Set flag and masked out channels x and w 

(f0.0)sel (8) r1.0<1>:f r0.yzxy 0x000F000F:v // Constant vector of (0 0 0 -1 0 0 0 -
1) 

15.2.2 Destination Mask for DP4 and Destination Dependency 
Control 

The following example demonstrates the use of destination mask mode of floating 
point dot-product instruction as well as the use of destination dependency control to 
improve performance (i.e., avoiding unnecessary thread switch due to possible false 
dependencies). 

Consider a generic vertex shader of matrix-vector product that is implemented on 
Gen4 in the pair of 4-component vector mode. The equivalent Shader instructions are 
as the following. 

dp4 r5.x r0 r4 

dp4 r5.y r1 r4 

dp4 r5.z r2 r4 

dp4 r5.w r3 r4 

With destination dependency control, the Gen4 instructions are as the following. The 
first instruction in the sequence checks for the destination dependency, but does not 
clear the dependency bit. The subsequent two instructions would do neither of them. 
The last instruction avoids checking the destination dependency, but at completion, it 
clears the destination scoreboard. It ensures that the content of the destination 
register is coherent, if any of the following instructions uses the same register as 
source. 

dp4 (8) r5.0<1>.x:f r0.0<4;4,1>:f r4.0<4;4,1>:f  {NoDDClr} 

dp4 (8) r5.0<1>.y:f r1.0<4;4,1>:f r4.0<4;4,1>:f  {NoDDClr, NoDDCChk} 

dp4 (8) r5.0<1>.z:f r2.0<4;4,1>:f r4.0<4;4,1>:f  {NoDDClr, NoDDCChk} 

dp4 (8) r5.0<1>.w:f r3.0<4;4,1>:f r4.0<4;4,1>:f  {NoDDChk} 
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Just as a comparison, IF Gen4 DP4 implies reduction at the destination; additional 
shifted moves are required to achieve the same results. The corresponding codes are 
as the following. The lower performance due to the additional three move instruction 
as well as added back-to-back dependencies shows that why we choose to implement 
the destination channel replication for floating point DP4. 

dp4 (8) r5.0<1>.y:f  r1.0<4;4,1>:f  r4.0<4;4,1>:f 

mov (1) r5.1<1>:f  r8.0<1;1,1>:f 

dp4 (8) r5.0<1>.z:f  r2.0<4;4,1>:f  r4.0<4;4,1>:f 

mov (1) r5.2<1>:f  r8.0<1;1,1>:f 

dp4 (8) r5.0<1>.w:f  r3.0<4;4,1>:f  r4.0<4;4,1>:f 

mov (1) r5.3<1>:f  r8.0<1;1,1>:f 

dp4 (8) r5.0<1>.x:f  r0.0<4;4,1>:f  r4.0<4;4,1>:f 

15.2.3 Null Register as the Destination 

Null register can be used as the destination for most of the instructions. Here are 
some example usages. 

• Null as destination for regular ALU instructions: As all ALU instructions can be 
configured to update the flag registers using the conditional modifiers, it is not 
necessary to have a destination register if the programmer only cares about the 
conditionals of the operation. In that case, a null in the destination operand field 
saves register space as well as one less dependency checking. 

• Null as the destination for SEND/STOR instructions: for the send instruction that 
only send messages out to an external unit and does not require any return data 
or feedback, a null in the destination register field signifies the case.  
⎯ One extension of such case is that even though the operation does not have 

any return values, a return phase with no payload but simply updating the 
scoreboard flag for a non-null register can provide a signaling mechanism 
between the thread and the target external unit. One application of this usage 
is to allow software to manage the coherency of shared memory resources 
such like the many caches in the system (particularly, valuable for read/write 
caches). This is not currently the POR for Gen4 though. 
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15.2.4 Use of LINE Instruction 

LINE instruction is specifically designed to speed up floating point vector/matrix 
computation when a program operates in channel serial.  

The following example demonstrates how to use LINE instruction to compute line 
equations for a pixel shader. In this example, 2 sets of (Cx#, Cy#, Don’t Care, C0#) 
4-tuple coefficient vectors are stored in registers R1.  

R1: Cx0 Cy0 DC Co0 Cx1 Cy1 DC Co1 

8 sets of coordinate 2-D vectors (X, Y) are stored in R2 and R3 in the channel serial 
mode as 

R2: X0 X1 … X7 
R3: Y0 Y1 … Y7 

The objective is to compute the following two line equations for each set of 2D 
coordinate and store the results in R4 and R5 as 

R4: (X0*Cx0 + Y0*Cy0+Co0) ... (X7*Cx0 + Y7*Cy0+Co0) 

R5: (X0*Cx1 + Y0*Cy1+Co1) ... (X7*Cx1 + Y7*Cy1+Co1) 

 

Example  15-1. LINE Equations 

//------------------------------------------------------------------- 
// Example compute LINE equation in channel serial scenario 
//------------------------------------------------------------------- 
 
line (8) acc:f   r1<0;1,0>:f   r2<0;8,1>:f // does acc = X# * Cx0 + Co0 
mac  (8) r4<1>:f r1.1<0;1,0>:f r3<0;8,1>:f // does r4.# = Y# * Cy0 + acc.# 
 
line (8) acc:f   r1<0;1,0>:f   r2<0;8,1>:f // does acc = X# * Cx0 + Co0 
mac  (8) r4<1>:f r1.1<0;1,0>:f r3<0;8,1>:f // does r4.# = Y# * Cy0 + acc.# 

 

The next example is to compute homogeneous dot product for OpenGL pixel shader 
running in Channel Serial. In this example, an original OpenGL PS instruction is like  

dph R2.x R0 R1 

With register remapping, we can store the input coefficient vector R0 in original 
format in r0, but 8 sets of input coordinate vectors in channel serial format in r2, r3, 
r4 and r5, and the destination R2.x component in r6.  

r0: Cx0 Cy0 Cz0 Co0 DC DC DC DC 
r2: X0 X1 … X7 
r3: Y0 Y1 … Y7 
r4: Z0 Z1 … Z7 
r5: W0 W1 … W7 
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The objective is to compute the following DPH equations and store the results in r6 as 

R6: (X0*Cx0+Y0*Cy0+Z0*Cz0+Co0) ... (X7*Cx0+Y7*Cy0+Z7*Cz0+Co0) 

 

Example  15-2.  Homogeneous Dot Product in Channel Serial 

//------------------------------------------------------------------- 

// Example compute homogeneous dot product in channel serial scenario 

//------------------------------------------------------------------- 

 

line (8) acc:f   r0<0;1,0>:f   r2<0;8,1>:f   // does acc = X# * Cx0 + Co0 

mac  (8) acc:f   r0.1<0;1,0>:f r3<0;8,1>:f  // does acc.# = Y# * Cy0 + acc.# 

mac  (8) r6<1>:f r0.2<0;1,0>:f r4<0;8,1>:f  // does r6.# = Z# * Cz0 + acc.# 
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15.2.5 Mask for SEND Instruction 

Execution mask (upto 16 bits) for the SEND instruction is transferred to the Shared 
Function. This provides optimized implementation of shader instructions.  

15.2.5.1 Channel Enables for Extended Math Unit 

The following example demonstrates how to use the SEND instruction to get service 
from the Extended Math unit.  

Let’s consider COS instruction in the following form: 

[([!]p0.{select|any|all})] cos[_sat] dest[.mask], [-]src0[_abs][.swizzle] 

For a SIMD4x2 VS implementation with the following register mappings: 

p0     f0.0 

src0    r0 

dest   r1 

The equivalent Gen4 instruction is as the following: 

[([!]f0.0.{select|any4h|all4h})] SEND (8) r1[.mask]:f m0 [-][(abs)]r0[.swizzle]:f 
MATHBOX|COS[|SAT] 

If the source swizzle is replication, the message description field can be modified to 
MATHBOX|COS|SCALAR to take advantage of the fast mode (scalar mode) supported 
by the Extended Math. The implied move of the SEND instruction is equivalent to the 
following instruction: 

MOV (8) m0[.mask]:f [-][(abs)]r0.0[.swizzle]:f {NoMask} 

For a SIMD16 PS implementation, the register mappings are as the followings 

p0     f0…f3      // in order of R, G, B, A 

src0    r0,r1; r2,r3; r4,r5; r6,r7 

dest   r8,r9; r10,r11; r12,r13; r14,r15 

There are several ways to translate the instruction, depending on the 
operand/instruction modifiers present in the instruction. If predicate is not present 
and the source swizzle is replication, say, src0.y, which is r2-r3, the translation could 
be as the following instructions:  

send (8) r8:f m0  -(abs)r2:f MATHBOX|COS 
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send (8) r9:f m1  -(abs)r3:f MATHBOX|COS {SecHalf} // use the second half of 8 
flag bits 

mov (16) r10:f r8:f      // All destination color chan’s are same 

mov (16) r12:f r8:f      // MOV is faster than most MathBox func’s 

mov (16) r14:f r8:f      // These MOV’s are compressed instructions 

Notice that instead of issuing Extended Math messages with the same input data, 
destination color channel replication is performed by the MOV instructions. This is 
faster for the thread for most cases as many Extended Math functions consume 
multiple cycles. This also conserves message bus bandwidth as well as the usage of 
the shared resource – Extended Math. The destination mask in the instruction 
indicates which of the r8 to r15 registers are updated. If the source swizzle is not 
replication, there will be 8 SEND instructions.  

With predication on, if the predication modifier is p0.select, translation is to take the 
selected flag register f#. The other predication modifiers ‘.any’ and ‘.all’ are translated 
into ‘.any4v’ and ‘.all4v’, respectively. Notice that with predication on, it is not 
required to run all 4 pixels in a subspan in the same way, so no need to enforce 
.any4h/.any4v. The following example shows the instruction with predication (but 
without .select modifier). 

(f0[.any4v|.all4v]) send (8) r8:f m0  -(abs)r2:f MATHBOX|COS 

(f0[.any4v|.all4v]) send (8) r9:f m1  -(abs)r3:f MATHBOX|COS {SecHalf} 

(f1[.any4v|.all4v]) mov (16) r10:f r8:f   // All destination color chan’s are same 

(f2[.any4v|.all4v]) mov (16) r12:f r8:f   // MOV is faster than most MathBox 
func’s 

(f3[.any4v|.all4v]) mov (16) r14:f r8:f   // These MOV’s are compressed 
instructions 

The same instructions works also for predication with select component modifier. We 
simply replase f0 to f3 above by the selected flag register, say, f1. The modifier of 
any4h/all4v would also work.  
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15.2.5.2 Channel Enables for Scratch Memory 

The following example demonstrates how to use the SEND instruction to get service 
from the Data Port for scratch memory access.  

Let’s consider general instruction that uses scratch memory as a source operand 

[([!]p0.{select|any|all})] add dest[.mask], [-]src0[_abs][.swizzle], [-
]src1[_abs][.swizzle] 

For a SIMD4x2 VS implementation with the following register mappings 

p0     f0 

src0    r0 

src1    s2 / r10 

dest   r1 

In this example, the scratch memory offset is provided by an immediate and a GRF 
register r10 is used as the intermediate GRF location for spill/fill of scratch buffer 
accesses. This arithmetic instruction is converted into a Data Port read followed by an 
arithmetic instruction.  

mov (8) r3:d r0:d {NoMask} // move scratch base address to be assembled with 
offset values 

mov (1) r3.0:d 2*32 {NoMask} // s2 for vertex 0 

mov (1) r3.1:d 2*32+16 {NoMask} // s2 for vertex 1 

send (8) r10 m0 r3 DATAPORT|RC|READ_SIMD2 

[([!]f0.{sel|any4h|all4h})] add (8) r1[.mask]:f [-][(abs)]r0[.swizzle]:f [-
][(abs)]r10[.swizzle]:f 

So if scratch register is the source, there is no need to use the channel enable side 
band. This is also true for channel-serial PS cases. 

Now, let’s consider the case when a scratch register is the destination of an 
instruction. 

p0     f0 

src0    r0 

src1    r1 

dest   s2 / r10 

We have 

add (8) m1:f [-][(abs)]r0[.swizzle]:f [-][(abs)]r1[.swizzle]:f 
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mov (8) r3:d r0:d {NoMask} // move scratch base address to be assembled with 
offset values 

mov (1) r3.0:d 2*32 {NoMask} // s2 for vertex 0 

mov (1) r3.1:d 2*32+16 {NoMask} // s2 for vertex 1 
[([!]f0.{sel|any4h|all4h})] send (8) null[.mask] m0 r3 DATAPORT|RC|WRITE_SIMD2 

Notice that with a null as the posted destination register, we are able to transfer the 
[.mask] over the message channel enables. In many cases for scratch memory 
assess, a write-with-commit is required, therefore, the posted destination register 
could be r10. 

Now, let’s consider the PS case when a scratch register is the destination of an 
instruction. 

p0     f0-f4 

src0    r0-r7 

src1    r8-r15 

dest   s16-s23 / r16-r23 

When predication is not on (or predication with swizzle control on), we have 

add (16) m4:f [-][(abs)]r0/2/4/6_BasedOnSwizzle:f [-][(abs)] 
r8/10/12/14_BasedOnSwizzle:f 

add (16) m6:f [-][(abs)]r0/2/4/6_BasedOnSwizzle:f [-][(abs)] 
r8/10/12/14_BasedOnSwizzle:f 

add (16) m8:f [-][(abs)]r0/2/4/6_BasedOnSwizzle:f [-][(abs)] 
r8/10/12/14_BasedOnSwizzle:f 

add (16) m10:f [-][(abs)]r0/2/4/6_BasedOnSwizzle:f [-][(abs)] 
r8/10/12/14_BasedOnSwizzle:f 

mov (8)  r3:d 0x76543210:v {NoMask}  // ramp function 

mul (16) acc0:d r3:d 16 {NoMask}  // ramp function 

add (8)  acc0:d acc0:d 64 {NoMask,SecHalf} // ramp function 

add (16) m2:d acc0:d 2*256 {NoMask}  // ramp function 
send (16) null m1 r3 DATAPORT|RC|WRITE_SIMD16 

As there is no bit left from the unit specified descriptor field, the 4-bit mask must be 
put into the header field in m1, which requires at least two more instructions. 

Alternatively, or for the case that predication without modifier is on, we can do a read-
modify-write. 

mov (8)  r3:d 0x76543210:v {NoMask}  // ramp function 

mul (16) acc0:d r3:d 16 {NoMask}  // ramp function 
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add (8)  acc0:d acc0:d 64 {NoMask,SecHalf} // ramp function 

add (16) m2:d acc0:d 2*256 {NoMask}  // ramp function 
send (16) r16 m1 r3 DATAPORT|RC|READ_SIMD16  // read from scratch 

// some of the following four instructions may be omitted based on [.mask] field 

[([!]f0.{sel|any4v|all4v})] add (16) r16:f [-][(abs)]r0/2/4/6_BasedOnSwizzle:f [-
][(abs)] r8/10/12/14_BasedOnSwizzle:f 

[([!]f0.{sel|any4v|all4v})] add (16) r18:f [-][(abs)]r0/2/4/6_BasedOnSwizzle:f [-
][(abs)] r8/10/12/14_BasedOnSwizzle:f 

[([!]f0.{sel|any4v|all4v})] add (16) r20:f [-][(abs)]r0/2/4/6_BasedOnSwizzle:f [-
][(abs)] r8/10/12/14_BasedOnSwizzle:f 

[([!]f0.{sel|any4v|all4v})] add (16) r22:f [-][(abs)]r0/2/4/6_BasedOnSwizzle:f [-
][(abs)] r8/10/12/14_BasedOnSwizzle:f 

mov (16) m4:f r16:f {NoMask} 

mov (16) m6:f r18:f {NoMask} 

mov (16) m8:f r20:f {NoMask} 

mov (16) m10:f r22:f {NoMask} 
send (16) null m1 null DATAPORT|RC|WRITE_SIMD16 {NoMask} // write back to scratch 
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15.2.6 Flow Control Instructions 

Unconditional branches are performed through direct manipulation of the 32-bit IP 
architectural register. For example: 

 
mov (1) IP <memory_address>  // jump absolute 
add (1) IP  IP  <byte_count> // jump relative 

Note that jump distances are specified in terms of bytes, as opposed to instruction 
counts in the case of break, halt, etc. To minimize confusion, an assembler-only 
instruction ‘jmp <inst_count>’, where <inst_count> is an immediate term, may be 
defined which takes an instruction count for a distance. The jmp pseudo-opcode can 
be mapped to an “add (1) ip ip <inst_count> * 16” instruction.  

Also note that IP is always an instruction-sized aligned address (16 bytes), thus the 4 
LSB’s are not maintained in the IP architectural register and should not be relied upon 
by software. 

IP, when used as a source operand, reflects the memory address of the instruction in 
which it is used. The following are examples illustrating the use of IP: 

 
add (1) IP 4*16  // jumps to HERE_1  
add (1) IP 0x35  // jumps to HERE_1 (4 lsb’s 
don’t-care)  

 <instruction> 
 <instruction> 
HERE_1: <instruction> 
HERE_2: <instruction> 
 <instruction> 
 add (1) IP -2*16  // jumps to HERE_2 
 ... 
 add (1) IP 0  // infinite loop 
 add (1) IP 0xF  // infinite loop 
 ... 

Note for Assembler: The if/iff/else/while/break instructions identify relative 
addresses as the targets of an implicit jump associated with the instruction. These are 
optional in the assembly syntax as the jitter can determine the location of the 
matching instruction (e.g. matching endif instruction for a given if instruction). 
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15.2.7 Execution Masking 

15.2.7.1 Branching  

Example  15-3.  If / Else / EndIf 

//------------------------------------------------------------------- 
// Example if/else/endif scenario 
//   “if (r5==r4) ...else ... end-if” 
//------------------------------------------------------------------- 
  ... 
  cmp.e.f0 (8)  null r5 r4 // does r5 == r4? 
  (f0) if (8)   HERE_1  // “if” part - save then update IMASK; 
       //    or goto the ‘else’ if all false 
  ...    
  ... 
HERE_1:       // now do the ‘else’ part 
  else (8) HERE_2   // “else” part - invert IMASK 
       //    or goto the ‘endif’ if all false 
  ...    
  ... 
HERE_2: 
  endif    // “end-if” part – restore IMASK 
  ....    // and continue... 

If it is known that the code has no nested conditionals, a predicate can be used for a 
lower overhead, more efficient if/else/endif. (One must consider the probability of all 
channels taking the same branch, and the number of instructions under the if/else 
blocks as to which conditional method, predicate or mask, is most efficient).  

15.2.7.2 Fast-If  

Below is an example of a fast-if instruction. For the ‘iff’ instruction, only and iff-endif 
construct is allowed, as opposed to a if-else-endif. Note that the target address for 
branching if all enabled channels fail is one instruction beyond the endif, as the ‘iff’ 
does not push and update the IMask unless the branch is taken for at least one 
execution channel. 

Example  15-4.  Fast If 

//------------------------------------------------------------------- 
// Example – Fast If 
// One instruction overhead conditional 
//------------------------------------------------------------------- 
  ... 
  cmp.e.f0 (8)  null r5 r4  // any flag update 
  ... 
 (f0) iff (8) HERE_1    // “fast-if” – only pushes IMask; 
        //    if execution falls through,  
        //    else go to HERE_1 
  ... 
  ... 
  endif     // “end-if” part – restores IMask 
HERE_1: 

  ...     // and continue... 



 
 

 
 

522     

15.2.7.3 Cascade Branching 

As there is no ‘elseif’ instruction, a C-like cascade branching such as if / elseif / else / 
endif, can be realized using the basic building blocks of if / else / endif as shown in the 
following example. Notice that two ‘endif’s’ are required in order to pop the IStack 
correctly. 

Example  15-5  If / Elseif / Else / EndIf 

//------------------------------------------------------------------- 
// Example if/elseif/else/endif scenario 
//   “if (r5==r4) ...elseif (r6>r7) else ... end-if” 
//------------------------------------------------------------------- 
  ... 
  cmp.e.f0 (8)  null r5 r4 // does r5 == r4? 
 (f0) if (8) HERE_1   // “if” part - save then update IMask; 
       //    or go to the ‘else’ part if all false 
  ...    
  ... 
HERE_1:       // now do the ‘else’ part 
  else (8) HERE_2   // “else if” part - invert IMask 
       //    or go to the ‘else’ part if all false 
  cmp.g.f0 (8)  null r6 r7 // is r6 > r7? 
 (f0) if (8) HERE_3   // “if” part - save then update IMask; 
       //    or go to the ‘else’ part if all false 
  ...    
  ... 
HERE_3:       // now do the ‘else’ part 
  else (8) HERE_4   // “else” part - invert IMask 
       //    or go to the ‘end-if’ part if all false 
  ...    
  ... 
HERE_4: 
  endif     // “end-if” part – restore IMask for elseif 
HERE_2: 
  endif     // “end-if” part – restore IMask for if 
  ....  

15.2.7.4 Compound Branches 
Compound branches are supported through the ability logically combine flag registers 
for each intermediate result. 

Example  15-6  Compound Branch 

//------------------------------------------------------------------- 
// Example:  “if (r0 > r1) OR (r2 <= r3)” 
//------------------------------------------------------------------- 
  ... 
  cmp.g.f0 (8)  null r0:d  r1:d  // r0 > r1?  
  cmp.le.f1 (8) null r2:d  r3:d  // r2 <= r3? 
  or (1) f0:w f0:w  f1:w   // combine f0 and f1 
 (f0) if (8) HERE_1    // Can now do normal if/else 
  ... 
  ... 
HERE_1:  endif            
  ... 
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Example  15-7.  Compound Branch Using 'Any' or 'All' 

//------------------------------------------------------------------- 
// Example:  assuming we’re doing a channel-serial vector in r0-r3 
//  We want to know if all components of the vector are > 0x80 
//------------------------------------------------------------------- 
  ... 
  cmp.g.f0 (16)   null r0 0x80  // r0 > 0x80? 
  cmp.g.f1 (16)   null r1 0x80  // r1 > 0x80? 
  cmp.g.f2 (16)   null r2 0x80  // r0 > 0x80? 
  cmp.g.f3 (16)   null r3 0x80  // r1 > 0x80? 
 (f0.all4v) if (16) HERE_1 
  ... 
  ...   // code executed only for those channels 
  ...   // where per-channel r0,r1,r2,r3 all > 0x80 
  ... 
HERE_1:  endif     
  ...     //  and continue... 

15.2.7.5 Looping 

Due to Gen4’s SIMD-16 architecture, it must support the case of up to 16 loops 
running in parallel. These must be handled as independent loops, each with its own 
loop-exit condition which could occur after a different number of loop iterations. To 
account for each channel’s progress, a 16b loop-mask ‘LMask’ is defined with 1b 
associated to each execution channel. This mask keeps track of which channels 
remain active inside a loop block. 

Basic Do-While Loop 

Example  15-8 illustrates the most basic loop. Two operations must be accomplished 
before loop entry. (1) Prior to loop entry, there is some subset of enabled channels as 
dictated by the code sequence prior. In general, the active status of each channel is 
indicated in the virtual EMask any point in time. These active channels will become the 
channels over which the loop is run, and LMask must be initialized with the EMask 
value. (2) Since a given loop may be nested within another loop, the previous LMask 
& CMask must be saved to the LStack for later restoration upon loop completion. The 
‘msave’ instruction performs both the save and update in a single instruction, and 
thus all loop-blocks should be fronted with a “msave LStack LMask” and “msave 
LStack CMask” operation. 

Note that the LMask and CMask share the same mask-stack. Thus, CMask must 
always be a 1’s-subset of the LMask for proper stack operation. This is the case if 
CMask is updated to LMask each pass through the loop (see Example  15-8) and 
through the ‘break’ instruction updating both masks. 

Each pass through the loop, a loop terminating operation must be evaluated and 
stored in a flag register. This condition must be evaluated on a channel-by-channel 
basis as exemplified: 

  cmp.z.f0 (8) null r2 d3   // any operation that updates a flag 

The result of this operation sets a bit per channel in the specified flag register, which 
is then used in the ‘while’ instruction. As loops are performed, channels may become 
disabled as their termination condition is met.  
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‘While’ termination is determined on a channel-by-channel basis by the logical AND of 
corresponding bit positions of AMask, CMask and the specified flag. If the result is ‘1’ 
the channel remains enabled for the next pass of the loop; if ‘0’ the channel is 
disabled until loop fall-through. The ‘while’ instruction causes the LMask to be updated 
with the latest result of enabled channels. If any channel remains enabled (LMask != 
...000b), an additional pass through the loop is made. Once a channel is terminated 
for the loop operation, it remains terminated until the loop is complete for all 
channels. 

Upon fall through, the ‘while’ instruction causes the previously saved LMask & CMask 
to be popped from the LStack, enabling execution on the same subset of channels 
enabled prior to loop entry (unless a channel had been otherwise terminate inside the 
loop via ‘halt’). 

Example  15-8.  Basic Loop Construct 

//-------------------------------------------------- 
// Example: Basic do-while loop structure 
//-------------------------------------------------- 
   ...     
   do     // save L/CMask & update 
BEGIN_LOOP: 
   mov (1) CMask LMask {NoMask} // update CMask for this pass 
   ...     
   ...     
   <some flag update> 
  (<p>) while (8)  BEGIN_LOOP   // cond. branch  
        //    + restores LMask on fall-thru 
   ...     

Do-While Loop with Break 

A loop may also be terminated for any channel via the ‘break’ instruction. The ‘break’ 
instruction causes the corresponding bit positions of enabled channels to be cleared in 
the LMask. If the updated LMask = ...000b, a branch is made to the specified 
instruction location. An example is shown below in which the ‘break’ is at the same 
conditional-nesting level as the terminating ‘while’. Its primary value may simply be to 
support a “do...break.. while (true)” –type structure for a more direct 1:1 translation 
from higher-level source code. 

Example  15-9.  Loop Construct With Non-Nested ‘Break’ 

//------------------------------------------------------------- 
// Example: While-true loop 
//------------------------------------------------------------- 
#define BrkCode(i,d) (i << 16) + d 
 
   do    // save L/CMask & update 
BEGIN_LOOP: 
   mov (1) CMask LMask {NoMask} // update CMask for this pass 
   ...     
   <some flag update> 
  (<p>) break (8) BrkCode(0,HERE_1) // Restores LMask when all 
       // channels complete loop. 
   ...     
   ...     



 
 
 
 

    525 

   while (8) BEGIN_LOOP  // while true 
HERE_1:      
   ...     

 

A break condition may occur from various levels of nested-ifs. This gives rise to the 
possibility that a the loop may terminate from within nested ‘if’s, and due to the jump 
inherent in the ‘break’ instruction, the associated ‘endif’s’ are not encountered to 
clean-up the IStack as nesting levels are exited.  

 

Example  15-10  Loop Construct With ‘Break’ From Within Nested If’s 

//------------------------------------------------------------- 
// Example: General Loop Structure w/ break inside if’s 
//------------------------------------------------------------- 
#define BrkCode(i,d) (i << 16) + d 
 
   do     // save L/CMask & update 
BEGIN_LOOP: 
   mov (1) CMask LMask {NoMask} // update CMask for this pass 
   ...     
   if ... 
   if ... 
   if ... 
   ...     
  (<p>) break (8) BrkCode(3,HERE_1) // we’re 3 levels deep, so 
   ...     
   endif 
   endif 
   endif 
   ...     
  (<p>) break (8) BrkCode(0,HERE_1) 
   ...     
   while (8) <flag_spec> BEGIN_LOOP // cond. branch  
        // + restores C/LMask on fall-thru 
HERE_1:      

 

Do-While Loop with Continue 

A continue instruction ‘cont’ is provided skip to the next iteration of the loop. Because 
not all channels participating in the loop may be enabled at the time this instruction is 
executed, some channels may require continuation of the loop. A special mask ‘CMask’ 
is defined which accounts for channels temporarily disabled for the current loop pass.  

Since loops may nested, the CMask must be saved and restored around a loop similar 
to LMask. Since the CMask value within a properly constructed loop is always a subset 
of the LMask, it can share the LStack for storage, so long as it is pushed after LMask 
as shown in Example  15-11. This save/restore operations are not required if the loop 
being entered does not have any occurrence of a continue instruction. 
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Example  15-11.  Do-While with Continue 

//------------------------------------------------------------- 
// Example: General Loop Structure w/ basic break and cont. 
//------------------------------------------------------------- 
#define ContCode(i,d) (i << 16) + d 
 
   do    // save L/CMask & update 
BEGIN_LOOP: 
   mov (1) CMask EMask  // re-initialize CMask for this pass  
   ...     
   ...     
  (<p>) cont (8) ContCode(0,HERE_1) 
   ...     
HERE_1:      
  (<p>) while (8) BEGIN_LOOP  // cond. branch  
       //    + restores C/LMask on fall-thru 
  ...     

 

 

15.2.7.6 Indexed Jump 

Example  15-12.  Indexed Jump 

  //------------------------------------------------------------------- 
 // Code example shows the use of jmpi to perform a case statement 
 // of any number of options in 3 jumps 
 //------------------------------------------------------------------- 
 .default_execution_size  8 
 ... 
 jmpi r0<0,1,0>   // jump relative, based on r0.a.x 
     // ----- Jump Table ------ 
 jmp HERE_0   // redirect for case 0 
 jmp HERE_1   // redirect for case 1 
 jmp HERE_2   // redirect for case 2 
 jmp HERE_3   // redirect for case 3 
 ... 
HERE_0:    // ... case 0 ... 
 ...     
 jmp DONE 
HERE_1:    // ... case 1 ... 
 ...     
 jmp DONE 
HERE_2:    // ... case 2 ... 
 ...     
 jmp DONE 
HERE_3:    // ... case 3 ... 
 ...     
DONE: 
 ...    //  and continue... 
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